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ABSTRACT. A Tychonoff non—normal space is constructed which can be used for the con-
struction of a regular space on which every weakly continuous (hence every 8—continuous or

n—continuous) map into a given space is constant.
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1. INTRODUCTION.

We construct for every Hausdorff space R a Tychonoff non—normal space S such that. if f
is a weakly continuous map of S into R then there exist two closed subsets K “LK'nL =¢
such that f(K') = f(L') = {r}, r € R. Therefore, applying the method of Jones [1], we can
first construct a regular space containing two points —oco, + 0o such that f(—o0) = f(+00), for
every weakly continuous map f of this space into R and then, applying the method of llialis
and Tzannes (2], a regular space on which every weakly continuous (hence every 6—continuous
or 7)—continuous (Dickman, Porter and Rubin (3])) map into R is constant. The construction
of S is a modification of the space T}(R) in Iliadis and Tzannes [2]. For regular spaces on which
every continuous map into a given space is constant see also Armentrout [4], Brandenburg and
Mysior (5], van Douwen (6], Herrlich [7], Hewitt (8], Tzannes (9] and Jounglove [10]. A map
f: X - Y, where X,Y are topological spaces is called 1) weakly continuous if for every
z € X and U open neighbourhood of f(z) there exists an open neighbourhood V of z, such
that f(V) C ClU, 2) 6—continuous if for every z € X and open neighbourhood U of f(x),
there is an open neighbourhood V of = such that f(CIV) C CIU 3) n—continuous if for every
regular—open sets U,V of Y,

(@) £U) C IntClf ()

(i) IntClf (U N V) C IntClf~1(U) nIntClf 1 (V).

Every n—continuous is §—continuous (Dickman, Porter and Rubin [3, Proposition 3.3. (c)])
and every §—continuous is obviously weakly continuous.

We denote 1) by |X| the cardinality, of X, 2) by ¥(X) = sup{¢(X,x) : x € X} the
pseudocharacter of X, where (X, z) is the pseudocharacter of X at z, that is the minimal
cardinality of pseudobases of z. (The set U, consisting of open neighbourhoods of z, is called a
pseudobasis if NU, = {z}), 3) by ¢*(X) the smallest cardinal number greater than ¥(X).

2. THE SPACES.
Let R be a Hausdorff space and K, L two uncountable sets such that |K| = |L| =R > |R].
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For every k; € K (resp. |; € L) we consider an uncountable set K; (resp. L;) and a set M
such that |K;| = |L;| = |[M| > y*(R). Ontheset S =MJKU|JK;ULU|JL; we define the
following topology: Every point belonging to K, L; is isolated. For every k; € K (resp. I; € L)
a basis of open neighbourhoods are the sets O(k;) = {ki} UC; (resp. O(li) = (I} U D;), where
Ci, D; consist of all but finite number of elements of K, L;, respectively. For every point m € M
a basis of open neighbourhoods are the sets O(m) = {m} U P U Q, where P,Q contain all but
finite number of elements of the sets {hi(m) : i € I'}, {g:(m) : i € I}, respectively, where I is an
index set, |I| = R and h;, g; are one—to—one maps of M onto K;, L;, respectively.

One can show that the space S is Tychonoff and non—normal.

Let f be a weakly continuous map of S into R Since |K| > |R|, it follows that for some
1 € R there exists K’ C K such that |K'| = |K| and f(K') = (r|}. Let {ko,:n=1,2,..} bea
countable subset of K’. Since for every open neighbourhood U of ry the set f~!(CIU) contains an
open neighbourhood of k,,n = 1,3, ..., it follows that |K, \ f~'(r1)| < ¥(R,r). Consequently,
il;h.. is the one—to—one map of M onto K, then |h;' (K, \ f~'(n))] < ¥(R,71) and hence

th;'(K.. \ £7'(r1))| € ¥(R,ry). Repeating all the above for the set L we have that for some

r2 € R there exist L' C L, |L'| = |L|, f(L') = {r3} and a countable subset {I, : n =1,2,..} C
L’ such that if V is an open neighbourhood of r3 then |L, \ f~'(r3)] < ¥(R,r3) and hence
0

IUga" (Ea \ S (ra))l < $(R,r). Therefore if M* = | J(h7'(Ka \ £-(r1)) U gz (La \ £ (r2))

n=| =1

then M\ M' #0. Let m € M\ M’ and CIW be anclosed neighbourhood of f(m) such that
1,73 € CIW. There exists an open neighbourhood O(m) of m such that f(O(m)) C CIW, while
for every n = 1,2,...,hy(m) € f7'(ry), gn(m) € £~ (r3) which imply that f(n) =r; =r,.
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