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ABSTRACT. Let {Xni} be an array of rowwise independent random elements in a sep-
n
arable Banach space of type r, 1 < r < 2. Complete convergence of n1/? 3> X to 0,
k=1
0 < p < r £ 2is obtained when sup E|[Xnu]|* = O(n®) , a > 0 with
1<k<n

l l . . . . . . .
v (; - ;) > a+ 1. An application to density estimation is also given.
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1. INTRODUCTION AND PRELIMINARIES.

Let (€, ]|.]|) be a real separable Banach space. Let (2, 4, P) denote a probability space.
A random element X in £ is a function from € into € which is A - measurable with respect of
the Borel subsets B(£). The p** absolute moment of a random element X is E|| X ||P where
E is the expected value of the random variable || X||P. The expected value of a random
element X is defined to be the Bochner integral (when E||X|| < o0) and is denoted by
EX. The concepts of independence and identical distributions for real-valued random
variables extend directly to £. A separable Banach space is said to be of (Rademacher)
type r, 1 <r <2, if there exist a constant C such that
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2 X

k=1

E

<CY E|X:|"
k=1

for all independent random elements Xj, ..., X, with zero means and finite r** moments.
Every separable Hilbert space and finite dimensional Banach space is of type 2. Every
separable Banach space is at least type 1 while I"” and L" spaces are of type min(2, r) for
r>1.

Throughout this paper {Xn: : 1 < k < n,n > 1} will denote rowwise independent

random elements in £ such that
EXn =0  for all n and k. (1.1)

The major results of this paper show that
1 n
=i ;‘2_:1 Xnk =0  completely (1.2)
where complete convergence is defined (as in Hsu and Robbins [1]) by

yop

n=1

> e] < o© (1.3)

1 n
_nl/P ; Xnk

for each € > 0.
Erdés [2] showed that for an array of i.i.d. random variables {X,t}, (1.3) holds if
and only if E|X1;1/?? < co. Jain [3] obtained a uniform strong law of large numbers for

sequences of i.i.d. random elements in separable Banach spaces of type 2 which would
yield (1.2) with p = 1 for an array of i.i.d. random elements {X,i} in a type 2 space.

Woyczynski [4] showed that
1 n
i ZX + =0  completely (1.4)
k=1

for any sequence {Xn} of independent random elements in a Banach space of type r,
1 <p<r <2with EX, = 0 for all n which is uniformly bounded by a random variable
X satisfying E|X|P < co. Recall that an array {Xn:} of random elements is said to be
uniformly bounded by a random variable X if for all n and k and for every real number
t>0

P Xnell > t] < P[IX]| > ¢]. (1.5)

Note that i.i.d. random elements are uniformly bounded by ||X;1||. Moricz, Hu, and Taylor
[5] showed that Erdds’ result could be obtained by replacing the i.i.d. condition by the
uniformly bounded condition (1.5). Taylor and Hu [6] obtained complete convergence in
type r spaces, 1 < r < 2 for uniformly bounded; rowwise independent random elements.
The results of this paper relaxes the assumption of uniformly bounded random elements

in Taylor and Hu [6]. Moreover, a major application of the main result of this paper is
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indicated for kernel density estimators where uniformly bounded random variables can not

be assumed.

2. MAJOR RESULTS.
The following lemma from Woyczynski [4] will be used in obtaining the major result,

Theorem 2.

LEMMA 1. Let 1 £r £2 and q 2 1. The following properties are equivalent:

(i) Eisof typer
(ii) There exists a C such that for all independent random elements X,,...,X, in £
with EXy; =0, and E|| Xi||? < 00, k =1,2,...,n

q/r
E| Zxkn" <CE (Z ||xk||')

k=1

THEOREM 2. Let {Xni} be an array of rowwise independent random elements
in a separable Banach space of type r. If EXp; =0 and

sup E||Xnill” = O(n%), a>0 (2.1)
1<k<n
wbeneu(%—%) >a+1,0<p<r <2 Then

1 n
i EX,.;, -0 completely.
k=1

PROOF: Let € > 0 be given. By Markov’s inequality

oo 1 n oo 1 1 n v
EIP("nl/P kz:x"k">e) SE_,, nl/pZX”k
n= =1 n=1 k=1

(2.2)

— 1
_CIEIWE

z Xnk
k=1 ,

By Lemma 1 and Hélder’s inequality,

oS e (£

<G Z . ,;; ZEuxuku“

X nv/r-1

SC‘EW nsup E|| X |

s

E nv/p

n=1

quk

v

vir=1.qn.
<oy linn?

nv/p
had 1

=sz-m<00

n=17 \?
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since v (% - %) > 1+ a. Therefore,
1 n
.y ; Xnar —0 completely.

REMARK 1.

For values of p and r, 1 < p < r <2, it follows that v > 2. Moreover, as p and r move
close to each other v increases without bound. However, for certain values of p strictly
less than one, a value of v = 1 is possible to obtain complete convergence. To see this
let p=13, r=1anda =0 I follows that u(%—%) = y(3-1) = 2v > 1 implies
that v > % However, the proof of Theorem 2 requires that v > 1. Thus, v = 1 is the
smallest moment necessary (given suitable conditions on p, r and a) to obtain complete

convergence, via Theorem 2

REMARK 2.

The condition sup E||Xa||¥ = O(n?) is somewhat stronger than (1.5) used by Taylor
and Hu [6]. Howlesv:f,n the bound in each row increases as n — oo which is a substantial
improvement in Theorem 4 of Taylor, Moricz and Hu [5]. This substantial improvement
will be illustrated in Example 1.

An immediate corollary to Theorem 2 is obtained for i.i.d. random elements.

COROLLARY 3. Let {Xni} be an array of i.i.d. random elements in a Banach
space € of type r such that EX;; = 0. Let E||X1||¥ < oo where v (% - },) >1,0<p<
r < 2. Then,

'—1]1—/; ZX,.; -0 completely.
k=1
REMARK 3.
The moment condition in Corollary 3 can be considerably smaller than the moment

condition in Theorem 6 of Taylor and Hu [6], (see Remark 1) but in general will be much
larger.

3. EXAMPLE 1.
Let X;,...,Xn be ii.d. random variables with common density function f. The kernel
estimator for f with constant bandwidths h, is given by

1 « t-X
)= gx( ~ “) @.1)

where K is a bounded (integrable) kernel with compact support [a, b] and the sequence
{hn} is bounded and monotonically decreasing to 0 as n — oco. Let Xni be defined as

fo=g e (5) -2 (e (52)] &

follows:
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Since the sequence {Xy} is i.i.d., it follows that {Xux : k = 1,2,...} is i.i.d. for each n.
Verification of Condition (2.1) depends on the choice of K, the bandwidth sequence {h,}
and the particular Banach space. Typically, b, = O(n~¢) where 0 < d < 1. To illustrate
the applicability of Condition (2.1), consider the Banach space L", 1 < r < 2. Then for

each k and n
oo _ r v/r
E|Xul® <2 / L (=X 4
o |hn hn

< C] h"u(l-r)/r

< andv(r—])/'.

Sinced<%mdr>1,uca.nbecbosensothat

sup E||Xni||” = O(n®)
1<k<n

1 1 . r—1
u(;-—-;)>a+l bylettmgp-landa—dv( - )

Verification of (2.1) follows easily for LY, ¢ > 2, since they are of type 2. Thus,
n n _ _
n~! 3 Xne — 0 completely or (nh,)™! 3 (K (t hxk) —E(K (t hxl))) -0
n n

k=1 k=1

completely. Hence, consistency for (3.1) follows since (h,)"'E (K (t;—xl)) — f(t) by
traditional techniques. "
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