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ABSTRACT. The antipodal graph of a graph G, denoted by A(G), has the same vertex set
as G with an edge joining vertices # and v if d(u, v) is equal to the diameter of G. (If G is
disconnected, then diam G=«.) This definition is extended to a digraph D where the arc

(u, v) is included in A(D) if d(u, v) is the diameter of D. It is shown that a digraph D is an
antipodal digraph if and only if D is the antipodal digraph of its complement. This generaliz-
es a known characterization for antipodal graphs and provides an improved proof. Examples
and properties of antipodal digraphs are given. A digraph D is self-antipodal if A(D) is
isomorphic to D. Several characteristics of a self-antipodal digraph D are given including

sharp upper and lower bounds on the size of D. Similar results are given for self-antipodal

graphs.
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1. INTRODUCTION.

We will use Chartrand and Lesniak [1] for basic terminology and notation.

For a pair u, v of vertices in a strong digraph D the distance d(s, v) is the length of a
shortest directed u - v path. We can extend this definition to all digraphs D by defining
d(u, v) = = if there is no directed u - v path in D. Similarly, if G is a disconnected graph
with vertices u, v in different components, then we can define d(u, v) = «=. Hence, for a
digraph D that is not strongly connected or a graph G that is disconnected, we define the

diameter diam(D) or diam(G) to be .
For a digraph D, the antipodal digraph A(D) of D is the digraph with V(A(D)) = V(D)

and EAD)) = {(u, v)|u, v € V(D) and dp(u, v) = diam(D)}. Our first result gives a useful
property of antipodal digraphs. The proof is straightforward, so we omit it.
LEMMA 1. If D is a symmerric digraph, then A(D) is also symmetric.

For 1 < p(D) < 3, it is easy to check that the converse of Lemma 1 is true. However,
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for p(D) > 4, there exist asymmetric digraphs with symmetric antipodal digraphs. Figure 1
shows an asymmetric digraph D, of order p =4 with diam(D,) = = and the corresponding
symmetric antipodal digraph A(D,) where the undirected edge between two vertices indicates
the presence of both directed arcs between the vertices. Figure 1 shows an asymmetric strong

digraph D, of order 4 with finite diameter (diam(D,) = 3) and its symmetric antipodal

digraph A(D,).

DI: A(Dl):

Dz: A(Dz):

Figure 1

The convention of representing the symmetric pair of arcs (, v) and (v, u) by the
single edge uv induces a one-to-one correspondence ¢ from the set of symmetric digraphs to

the set of graphs. For example, in Figure 1, we have o(A(D))) = K(1, 3) and ¢(A(Dy)) =

K, U _K; Therefore, by Lemma 1, it is natural to define, for a graph G, the antipodal graph
A(G) of G as the graph with V(A(G)) = V(G) and E(A(G)) = {uv|u, v € V(G) and d(u, V) =
diam(G)}.

Antipodal graphs were introduced by Singleton [2] and have been studied by Acharya

and Acharya [3], Rajendran {4], Aravamudhan and Rajendran in [5,6], Johns [7], and
Chartrand et al. [8] where the following properties have been verified.

PROPOSITION 2. For a graph G of order p, the antipodal graph A(G) = G if and only
fG K,

PROPOSITION 3. If G is a non-complete graph of order p, then A(G) < G-

PROPOSITION 4. For a graph G, the antipodal graph A(G) = G if and only if (1) G is
of diameter 2 or (2) G is disconnected and the components of G are complete graphs.

In [5] a characterization of antipodal graphs was given which we now state.

PROPOSITION 5. A graph G is an antipodal graph if and only if it is the antipodal
graph of its complement.
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Using other results in [5], we can give a second form of Proposition 5.
PROPOSITION 6. A graph G is an antipodal graph if and only if (1) diam(G) = 2 or
(2) G is disconnected and the components of G are complete graphs.
In the next section, we will generalize these results and give a characterization of

antipodal digraphs. This will lead to a characterization of antipodal graphs in Proposition 4,

our proof of which is simpler than the proof given in [5].

2. A CHARACTERIZATION OF ANTIPODAL DIGRAPHS.

We begin with some properties of antipodal digraphs.
LEMMA 7. For a digraph D of order p, the antipodal digraph A(D) = D if and only if

*

I of

PROOF. First, suppose that 4(D) = D. If (u, v) € E(D) then (u, v) € EA(D))-

Therefore, dy(u, v) = 1 = diam(D)- Since K; is the only digraph of diameter 1, we have
D = Kp" For the converse, if D = K;, then diam(D) = 1 and for every pair y, v of vertices
in p, the distance dpu, v) = 1. Hence, A(D) = K; and A(D) = D- ®

Since oK) = K, Proposition 2 follows immediately.

Suppose that D & K;- Then digm(D) > 2 and if (u, v) is an arc of p, then (y, v) will
not be an arc of A(p). Similarly, if (4, v) is an arc of 4(D), then it is not an arc of p. Thus,

A(D) is always a sub-digraph of p. This is our next result.
LEMMA 8. If D is a digraph of order p that is not a complete symmetric digraph, then

A(D) < D.
As a special case, we have Proposition 3.

We can now present a result that will be useful in our characterization of antipodal
digraphs.

THEOREM 9. For a digraph D, the antipodal digraph A(D) = D if and only if either
(1) diam(D) = 2 or (2) D is not strongly connected and for every pair u, v of vertices of D, the
distance dp(u, v) = 1 or dy(u, v) = .

PROOF. First, suppose that diam(D) = 2. If (u, v) € E(D), then dD(u,.v) =1;s0
(4, v) ¢ E(AD)). If (u, v) ¢ E(D), then, d(u, v) = 2 and (4, v) € E(A(D)). Therefore,
A(D) = D. Now, suppose that D is not strongly connected and for every pair u, v of vertices

of D, the distance d,(u, v) = 1 or dy(u, v) = =. If dyu, v) = « for every pair u, v of
vertices, then D = _K_; for some positive integer p, and A(D) = A(K,) =K, =D. If, on the

other hand, diam(D) = « and (u, v) € E(D), then (4, v) ¢ E(A(D)). If (u, v) ¢ E(D), then
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dy(u, v) = » and so (u, v) € E(A(D)). Hence, A(D) = D.

For the converse, suppose that A(D) = D. Assume that the diameter is finite and not
equal to 2. If diam D = 1, then D = K;. However, then A(K,') = IT;, which contradicts
Lemma 7. Thus, assume that 2 < diam D < <. Let u and v be vertices of D such that
dp(u, v) = 2. Note that (4, v) ¢ E(D) and (u, v) ¢ E(A(D)); so A(D) * D. Now, assume
that diam D = » and there exist vertices u and v such that 1 <dp(u, v) <. Then (4, v) ¢
E(D) and (u, v) ¢ E(A(D)) and again, A(D) # D. 'y

If D is a symmetric digraph of diameter 2, then ¢(D) is a graph of diameter 2. On
the other hand, if D is symmetric but not strongly connected and for every pair u, v of

vertices of D, the distance dp(u, v) = 1 or dy(u, v) = =, then @(D) is a disconnected graph

where each component is complete. This implies Proposition 4.

We can now give a characterization of antipodal digraphs.

THEOREM 10. A digraph D is an antipodal digraph if and only if D is the antipodal
digraph of its complement.

PROOF. First, if D is the antipodal digraph of its complement, then D is an antipodal
digraph. For the converse, suppose that D is an antipodal digraph and let H be a digraph
such that A(H) = D. We consider three cases based on diam H.

CASE 1. Suppose that diam H =1. Then H = K, , for some positive integer p and
A(H) = AK;) -K; «D. Since D = K_, and A(Ef) = K, it follows that D = A(D), as desired.

CASE 2. Suppose that 1 < diam H < =. Since the diameter of H is finite, H is
strongly connected and for every pair u, v of vertices of H, the distance dy(u, v) sdiamH.
Define H' as the digraph formed by adding the arc (u, v) to E(H) if 1<dg(u, v) <diamH.
Note that d,,/(u, v) = 1 when d,(u, v) < diam(H) and dg/(u, v) =2 when dg(y, v) = diam(H) .
Thus, D = A(H) =A(H’). Since diam(H') =2, we have A(H') =H by Theorem 9. Therefore,
D =H' and D = H' which gives D = A(D), as desired.

CASE 3. Suppose that diam(H) = «. Define H’ as the digraph formed by adding the
arc (4, v) to E(H) if 1<d,(u, v) <diam(H). Now, if d(u, v) < =, then dy(u, v) = 1 and if
dy(u, v) = =, then d,(u, v) = = also. Thus, D = A(H) = A(H'). Since H' is not strongly
connected and for every pair u, v of vertices of H' the distance dy(u, v) =1 or dy(u, v) =1
we have A(H’) = H' by Theorem 9. Therefore, D = H' and D = H’ which gives D = A(D),

as desired. [ )



ANTIPODAL GRAPHS AND DIGRAPHS 583

This characterization can be restated, with the aid of Theorem 9, as follows.
COROLLARY 11. A digraph D is an antipodal digraph if and only if (1) diam(D) =2
or (2) D is not strongly connected and for every pair u, v of vertices of D, the distance
dg(u, v) =1 or dg5(u, v) = .

With the correspondence ¢ between symmetric digraphs and graphs, the characteriza-

tions of antipodal graphs in Proposition 5 and Proposition 6 follow immediately.

«3. SELF-ANTIPODAL DIGRAPHS AND GRAPHS.

In the previous section, we proved, for a digraph D of order p, that the antipodal
digraph A(D) is identical to D if and only if D = K; . Similarly, for a graph G of order p,

the antipodal graph A(G) is identical to G if and only if G = K,. A more interesting
question can also be asked. When is A(D) isomorphic to D or when is A(G) isomorphic to
G? If A(D) = D, then we will call D a self-antipodal digraph and if A(G) = G, we will call
G a self-antipodal graph. Self-antipodal graphs were studied in [3].

Although no characterization is known for self-antipodal digraphs, certain types of

digraphs are known to be self-antipodal. First, the complete symmetric digraphs are self

antipodal. In addition, given a positive integer p 2 3, the directed cycle C;, where V(C,/,) =
vis vp5 s vp} and E(C‘/,) = {v,v,)|1sis<p-1} U {(vp, v))}, is self-antipodal.
Both of these classes of digraphs are strongly connected; however, there exist self-antipodal
digraphs that are not strongly connected. The self-antipodal digraph D in Figure 2 is an
example of minimum order that is weakly connected but not unilaterally connected.

For a class of self-antipodal digraphs D that are unilaterally connected but not strongly

connected, let p > 1 be an integer and let D « T,, the transitive tournament of order p.
Note that if (u, v) € E(T), then dT'(v, u) = . Thus, odA(T')(v) = id,'(v) and since the sequence
of indegrees of the vertices of T,is0,1,2 .,p-1we have the same sequence as the score
sequence for A(Tp). Because Tp is the only tournament with score sequence 0, 1, .., p - 1, it
follows that A(T;,) = TP.

If D is a disconnected digraph, then D is not self-antipodal because A(D) is strongly
connected and diam A(D) <2. To see this, let 4 and v be vertices of D. If u and v are in
different components of D, then dy(u, v) = « = diam(D). Thus (4, v) € E(A(D)) and
dA(D)(u, v) = 1. If, on the other hand, u and v are in the same component of D, then there
exists a vertex w in a second component of D. Now, dp(u, w) = dy(w, v) = =, 50 (4, w) €
E(A(D)) and (w, v) € E(A(D)) and dA(D)(u, v) < 2. Therefore A(D) is strongly connected and
diam(A(D)) < 2.
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Figure 2
Also, D is not self-antipodal if D is strongly connected and the eccentricity of some

vertex v of D is less than the diameter of D. In this case, od,;,(v) = 0 and A(D) is not

strong.

We combine these two observations in the next result.
LEMMA 12. If D is a self-antipodal digraph, then D is weakly connected. If, in

addition, D is strongly connected, then D is self-centered.

An immediate consequence of Theorem 9 and Lemma 12 is as follows.
THEOREM 13. If D is a self-complementary digraph of order p 2 2, then A(D) = D if

and only if (1) diam(D) =2 or (2) D is not strongly connected and for every pair u, v of vertices
of D, the distance dy(u, v) = 1 or dy(u, v) = =.

We now present a result on the size of self-antipodal digraphs.

THEOREM 14. If D is a non-complete self-antipodal digraph of order p 2 3, then
p<4qD) s pp-1)2.

PROOF. By Lemma 12, the digraph D must be weakly connected. The minimum
number of arcs in a weakly connected digraph is p - 1,50 p - 1 < q(D). Suppose that
q(D) = p - 1. Then D can contain no directed cycles and hence D is not strongly connect-
ed. If D is unilaterally connected, then D contains a directed walk that passes through each
vertex of D. This can only be done with p - 1 arcs if D is a directed path P’. However,
since A(P’) is isomorphic to a transitive tournament, D is not self-antipodal. Finally, if D is
weakly connected, but not unilaterally connected, then there exist two vertices 4 and v in D
such that no u - v directed path and no v - u directed path exist in D. Therefore, dy(u, v) =
dp(v, u) = and the arcs (4, v) and (v, 4) are both in A(D). Since D contains no directed

cycles and A(D) contains a directed 2-cycle, A(D) # D. Therefore, q(D) = p.

For the upper bound, we know since D # K; that A(D) ¢ D. Now D = A(D) c D
implies that g(D) < q(D). Therefore, q(D) < %q(K;) =p(p-1)2. ®

The bounds in Theorem 14 are sharp. The lower bound is sharp for the class of
directed cycles and the upper bound is sharp for the class of transitive tournaments. It is not
true, however, for given positive integers p and ¢ with p < ¢ < p(p-1)/2,that there is a self-

antipodal digraph D having ¢(D) = ¢. For instance, there is no self-antipodal digraph with

four vertices and five arcs.
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We now turn to self-antipodal graphs. If G is a self-antipodal graph and ¢ is the
natural one-to-one correspondence from the set of symmetric digraphs to the set of graphs,
then ¢ !(G) is a self-antipodal digraph. By Lemma 12, the digraph ¢ '(G) is weakly connect-
ed; so G is connected. Also, since ¢ '(G) is symmetric, it is strongly connected and thus
¢ (G) and G are self-centered. Therefore, we have the following result.

THEOREM 15. If G is a self-antipodal graph, then G is connected and self-centered.

Now, suppose that G is a self-antipodal self-complementary graph of order p 22. By
Theorem 15, the graph G is connected and so Proposition 4 implies that A(G) = G = G if and

only if G has diameter 2. We state this as the next result.
COROLLARY 16. Let G be a self-complementary graph of order p > 2. Then G is a

self-antipodal graph if and only if diam G = 2.
An important class of self-antipodal graphs is the class of odd cycles. To see this, we

will show that A(C,,,)), d 2 1, is 2-regular and connected — a characterization of cycles.
First, let V(Cy,,,) = (v}, Va» s Vay,q} and E(Cyy, ) = {vy,,,|1sis2d) U{vy.,v,}. Now,
diam (C,,,,) =d and for each vertex v;, 1 < i < 2d+1, there exist exactly two vertices v; and
v, with j= (i +d)mod(2d + 1) and k=(i +d + 1) mod(2d + 1) such that d(v, vj) =dv, v;) =d.
Thus, v, is adjacent to only v; and v, in A(C,,,,), and so A(Cy,,,) is 2-regular. Next, if u
and v are distinct Yertices in C,,,, , then, without loss of generality, we can let u =v,, and
v=v, with 1<nsd. A u-v pathin A(Cyy,y) is Piu=vyy 1, Voo Vis Vaup Voo =5 Vaow Voo
so A(C,,,,) is connected and it follows that A(C,,,,) = Coir-

We will now define a class of self-antipodal graphs of even order.

For d > 3, let G be the graph of order 2d + 2 and size 2d + 3 such that V(G) =
(Vg Vp» ~» Vaguy} @and E(G) = {(vv,, |1 < i < 2d} U (v, v, vyus Vs VoV, ). Vertices v,
and v, are similar and G - v, = C,,,,. For vertices u and v in G - v,, the distance
dG_vo(u, v) =dgz(4, v). Thus, A(G -v,) is an induced subgraph of A(G). Now A(G-v,) =
C,,., With v, adjacent to v,,, and v,,,. Since v, and v, are similar in G, the vertex v, is
also adjacent only to v,,, and v,,, in A(G) and hence, A(G) = G. We will henceforth

denote this graph by G(2d +2).
We now present a necessary condition for the size of self-antipodal graphs.
THEOREM 17. Let G be a non-complete self-antipodal graph of order p > 5. Then
(M) p < qG) slp(p-1)/4l, if p is odd, and
@2 p+1<qG slpp-1)/4l, if p is even.
PROOF. We first show that lp(p-1)/4] is an uppér bound. The antipodal graph

A(G) < G implies that G < G; 50 ¢(G) s l%q(KP)J = lp(p-1)/4].
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Now consider the lower bounds. By Theorem 15, we know that G is connected.
Hence, p - 1 < q(G). However, if ¢(G) = p - 1, then G is a tree and G is not self-
centered. This is because if u is an end-vertex of G and v is the vertex adjacent to u, then
e(u) = e(v) + 1. Thus, p < q(G). Now suppose that p is even and there exists a self-
antipodal graph G of order p. Then G is connected and contains one cycle. Remove one
cycle edge e from G to form the tree G - e and let V be the set of end-vertices of G - e.

Suppose that there exists a vertex u € V such that u is not incident with e in G. Then, if v

is the vertex adjacent to u in G, then e(u) =e(v) +1. Hence, G is not self-centered and

therefore, not self-antipodal. On the other hand, suppose that every vertex of V is incident

with the edge e. Then |V| = 2 and G = C,. However, for p even, A(C,) = (£)K, and
P 2

again G is not self-antipodal.

Therefore, if p 2 § is odd, then p < ¢(G) < lp(p-1)/4] and if p > 5 is even, then
p+1x4q@G) <lpp-1)/4l. °
The bounds in Theorem 17 are sharp. First, for each odd integer p 25 the cycle C, is

self-antipodal and q(C)) = p. For each even integer p > 8, the graph G(p) is self-antipodal

and ¢(G(p)) =p + 1. Second, for each positive integer p 2 5 such that p =0(mod4) or
p = 1(mod 4), there exists a self-complementary graph G of diameter 2. By Corollary 16, the

graph G is self-antipodal. Hence, ¢q(G) = q(G) = %q(Kp) = p(p-1)4.

Two questions still remain. Do there exist self-antipodal graphs of order p =2(mod 4)
or p = 3(mod4) and size lp(p - 1)/41? Also, for which positive integers p 2§ and ¢ such
that p < ¢ < lp(p-1)/4J, does there exist a self-antipodal graph G with ¢ = q(G)?
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