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ABSTRACT. In this paper, we show that the moving directions of the primal-affine scaling
method (with logarithmic barrier function), the dual-affine scaling method (with logarithmic
barrier function), and the primal-dual interior point method are merely the Newton directions
along three different algebraic “paths” that lead to a solution of the Karush-Kuhn-Tucker
conditions of a given linear programming problem. We also derive the missing dual information
in the primal-affine scaling method and the missing primal information in the dual-affine scaling
method. Basically, the missing information has the same form as the solutions generated by the

primal-dual method but with different scaling matrices.

KEY WORDS AND PHRASES. Linear programming, interior-point method, Newton method.
duality theory.
AMS SUBJECT CLASSIFICATION CODE. 90c05.

1. INTRODUCTION.

Since Karmarkar [7] proposed his polynomial-time projective scaling algorithm for solving
linear programming problems in 1984, the interest of studying interior-point methods has been
arising to a peak in recent years. In particular, Vanderbei, Meketo;:l, and Freeman [15], and
independently, Barnes [2] extended Karmarkar’s algorithm to the “pure affine scaling” method
for a linear program in its standard form: {Minimize c'z | Az = b, z >0} where A is an mzn matrix;
z, c€ R® and be R™. Adler et al. [1] applied the same affine scaling technique to its dual
problem: {Mazimize bly| Aly+s=c, s>0} where ye R™ and se R". Both extensions have been
effective in practice, but neither was proven to be of polynomial-time bound.

Gill et al. [5] discovered that Karmarkar’s algorithm is equivalent to a “projected barrier
method” that comes from adding a “logarithmic barrier function” to the linear objective function.
Moreover, Gonzaga’s combination (6] of such a barrier function with the “pure affine scaling”
results in a “primal-affine scaling method” (with centering force) which exhibits a polynomial
complexity of O(n3L). The same type of combination applied to the dual problem produces a
“dual-affine scaling method” (with centering force) with the same complexity.
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Monteiro and Adler [11] and, independently, Kojima, Mizuno, and Yoshise 8] focused their
attention on solving the “K-K-T optimality conditions” consisting of the “primal and dual
feasibility” along with the “complementary slackness”. Enforcing primal and dual interiority by
replacing each complementary slackness condition z;s;=0 with a relaxation of z;5; = p for u>0,
they showed a “primal-dual method” that exhibits the same complexity of O(n3L).

According to Shanno and Bagchi [12], the moving directions of the primal-affine scaling, the
dual-affine scaling, and the primal-dual algorithms can all be represented as a combination of a
“steepest descent direction” and a centering vector obtained from the logarithmic barrier function
method. In particular, if 7 =(z 1,5.2, C T ,,)t is a current primal interior feasible point,
e=(1,1,-- -, and D = diag(z 1'Z 9 -+ T p) is a diagonal matrix of 7, then the moving direction

Az of the primal-affine scaling method in literature becomes

Az =21 DI - DAY(AD? 4" = 1AD)Dc + DI - DAY(AD?A") = 1AD)e (1.1)

A ncw interior feasible point is given by z =7 +6Az with0<6 < 1.

Similarly, if § =(¥,99 - -9 m)t is a current dual feasible solution with ¥ =c— A%, 5 >0, and
Z = diag(3 |, 9, - - -,F ) is a diagonal matrix, then the moving direction in the dual-affine scaling
method is

Ay=L(az=2ah) "l -(az- 24" laz " le (1.2)

A new dual feasible interior solution is then given by y =¥ +0Ay and s = c — A’y where 0 <9 < 1.
As to the primal-dual method, let (z,5,5) be a current interior feasible solution that

satisfies AF = b, Al ¥ +% =cand >0, 3 >0, then the moving directions are given by

Ar= [z 1-z-1pAtaz ~ DAYy~ 1Az ~ (), (1.3a)
Ay =(AZ - 1paty—1az — 1y, (1.3b)
As= — Al Az~ 1paly~ 14z~ Lyp), (1.3¢)

where v(p) = DZe — pe and As =s-75.

In this paper, we show that the moving directions of the primal-affine scaling method (1.1),
the dual-affine scaling method (1.2), and the primal-dual interior point method (1.3a), (1.3b) and
(1.3c) are merely the Newton directions along three different “algebraic paths” that lead to the
solution of the Karush-Kuhn-Tucker conditions of a given linear programming problem. We also
derive the dual information in the primal-affine scaling method and the primal information in the
dual-affine scaling method. Basically, they have the same form as in (1.3) but with different
scaling matrices.

2. MOVING ALONG THREE PATHS.

Consider a linear programming problem in its standard form and its dual problem. For a
positive scalar u, we can incorporate a logarithmic barrier function into either the primal and
consider the problem (P”):{Minimize cta:—/.l' gl In z;| Az =b, z >0}, or into the dual and consider
(Dy): {Mazimize bty+p. __i::lln s; 1 Aly+s=c, s>0}. A straight-forwa.rd derivation [14] shows that
the K-K-T conditions of both (P”) and (D) lead to the same system of equations:

Aty+s—c=0.
Ar-b=0,
(2.1)
pe—Xs=0,.

z>0,s>0
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where X = diag(z|, 25, - - -, 2,) and eb=(1,---,1).

To assure the existence of a unique optimal solution to (Py,) and (D), or equivalently the
existence of a unique solution to system (2.1), we assume that (1) there exists a primal interior
feasible solution, i.e., the set W = {z € R™ Az = b,z > 0} is nonvoid; (2) there exists a dual interior
feasible solution, i.e., the set T = {y € R™,s € R Aly + s = ¢c,s > 0} is nonvoid; and (3) matrix 4 has
full rank. Note that these three assumptions are commonly accepted in most, if not all, related
papers.

Now focus on system (2.1). We know that, under the above assumptions, as p approaches 0,
the unique solution of (2.1) solves the given linear programming problem. However, for any
u>0, we can actually approach the solution of pe — Xs =0 from many different but equivalent
“algebraic paths®. Here a “path” means the contour of an algebraic function. More specifically,

for z;>0,s; >0, consider the following three functions

f(z,',s,') =H—ZS),
.y

and g(:ivs") —‘z-i_s,'v

h(z;s;) = sﬁi- z(i=1---,n)

Note that although the above three functions look different, they are algebraically equivalent to
‘the complementary slackness condition in (2.1), since {(z,5)|f(z;s;) =0,z;>0,s;>0, for
i=1,.-.,n}={(z,5) ] g(z;,5;) = 0,2; > 0,5, >0, for i=1,--.,n}={(z,5)|h(z;,5;) =0,2;>0,5;>0, for
i=1---,n}={(z,5)| ye— Xs =0,z > 0,5 >0}.

Hence we can consider system (2.1) in terms of these three functions, i.e.,

Aty +s5-c=0,

Az -b=0,

f(z8)=0, i=12,-.-,n

z>0, s>0;

Aty+s—c=0,
Az -b=0,
(2.3)
9(z;8,)=0, i=12---,n,
>0, s>0
and
Aly+s—c=0,
Az -b=0,
h(z;5;)=0, i=12--,n,

z>0, s>0;

Assume that T = (T |,Z4,- - Za)t >0, =(F T g . sp)t>0 and 7 =@ T Tt are
given with AT =5 and A%y +5 =c. Our objective is to solve (2.2) ~ (2.4) via Newton’s method.
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Note that functions f,g and h are the only nonlinear expressions in each of these three systems,
therefore we only have to linearize them when applying Newton’s method.

2.1. The Primal-Affine Scaling Method

Focus on system (2.3) and one Newton step with the linearization of g(z;,s;) = 0 yields

zi-z,
- b _[
SitE | T !
£i §;—F
1 13
Hence 5= -2;’#— L2 z; (2.5)
iz}

Remember that D = diag (Z {,Z 9, - - -,Z p), (2.5) becomes

3=2uD—2' —pD_2z.

Since we move along the Newton’s direction, we know Aly+s = c and, hence,

z =% D? [Aty+2uD~ 2% —c). (2.6)

Multiplying matrix A on both sides of (2.6), we have

b=Az=} aD? (Aly+ 24D~ %% —c).
Consequently,
y=(AD%24Y) ~ 1[AD% — ub). (2.7)

Plugging (2.7) into (2.6), we obtain that

Ar=z-F
=22 DI - DAY(AD%4Y) 1 AD]De
+D[I -DAYAD?AY~1aDID D~ le.

This direction is exactly the moving direction (1.1) of the primal-affine scaling method.

2.2 The Dual-Affine Scaling Method.

If we work on system (2.4), the moving direction of the dual-affine scaling method can be
obtained. To verify this, note that one Newton step with the linearization of h(z;, s;) = 0 results in

0-h(Z ;5,)=[VhE ;5 )]

Using the formula of function h, we have
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z,-T,
- _H "
Ti-5 = [ -h- _—2]
1 S K _
SiT5,
2 M
and =5 - 38 (2.8)
i F;
Remember that Z = diag(s |,5 5, - - -.5 ;). (2.8) becomes
r=2z2 Yle—pz- 2. (2.9)

Since we move along the Newton’s direction, therefore Az =b and Aly+s=c, and (2.9) turns out
to be
b= Az:?pAZ‘le—pAZ_zs

=2uAZ " Ve pAaz —2c - Aly). (2.10)

Now, substituting c for A% +5 in (2.10), we have

b=2uAZ " le—pAz~24% —paz =% +paz — 24l
Hence,
Ay=Laz- 24" Wb (az 24" laz " Le.
This is exactly the moving direction (1.2) of the dual-affine scaling method.
2.3. The Pimal-Dual Method.

Finally, we work on system (2.2) to derive the moving directions of the primal-dual interior

method. Simply taking a Newton step with the linearization of f(z;,s;) = 0, we have

Zi— Ty
0- (7,5 ) =V f(z ;7 )
s; —?i
Putting in the formula for f results in
z,—-—f.
f,’?i—ﬂ= —(_8-‘,5") . (211)
5. —-F

Equation (2.11) can be represented in terms of Az and As, in this case,

DAs + ZAz = — DZe + pe. (2.12)

Moreover, since we are moving along the Newton’s direction,

AAz =0, (2.13)
and
AlAy +As =0. (2.14)
Equations (2.12), (2.13) and (2.14) form a system of linear equations with unknown variables
Az,Ay and As. Using (2.13) and (2.14) to eliminate Az and As in (2.12), we get

Ay =(AZ2 " 1paly=1az =1y,
where v(p) = DZe — pe.
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Plugging Ay in (2.14), we have

As= - AlAz DAYy = 1az = L)

After As is known, Ar immediately follows from (2.12) as

Az= -[z2" -z~ DAY 4z~ 1pAty~ 14z~ Y (p).

This describes the moving directions (1.3a, b, c) of the primal-dual method.

Combining the results we have shown in the previous three subsections, we have our main
theorem:

THEOREM 1. The moving directions used in the primal-affine scaling, dual-affine scaling,
and primal-dual methods are the Newton's directions along three different, yet equivalent,
algebraic paths that lead to the solution of the K-K-T conditions (2.1).

3. MISSING INFORMATION.

Since the moving directions of both the primal-affine scaling and dual-affine scaling methods
are closely related to that of the primal-dual method, we can further exploit the dual information
in the primal approach and the primal information in the dual approach.

3.1. Dual Information in the Primal-Affine Scaling Method.

From (2.5), we have
s=2uD~ 2% —pD~ 2
=2uD~ 2% - uD~ %7 + Az)
=uD ™% —uD~2D(1 - DAY AD?A") = 14D] (L De +e)
=uD =% —uD~2D(FDe +¢)+ uat(AD24%) 14D (L De 4 ¢)
=c— AYADZAYY ~ 1 AD(Dc - pe) .
Since we are moving along the Newton’s direction, both the primal and dual feasibility are
kept. Hence we can define
y=(AD%24%) =~ 1AD(Dc - pe)
and Ay=y-7 =(AD?AY) = 1AD(Dc — pe) -7
= (AD2AY = 14D%(c - A%y —uD~1¢)
=(AD%2AY = 1AD(DZe - pe) . (3.1)

Compare (3.1) with (1.3b), we see the dual moving direction embedded in the primal-affine
scaling method has exactly the same form as that of the primal-dual method except the scaling
matrix becomes D instead of z ~1/2p1/2,

3.2. Primal Information in the Dual-Affine Scaling Method.

Similarly, we can derive the embedded primal moving direction of the dual-affine scaling
method. Starting from (2.9), we have

z=2pZ"le—pZ_2s
=202 le—pz~Ys -} %4z~ 24Y " b - paz ~ L))

=uz2 " Ne+ 271444224 (] ADe- a2~ 1))
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=uz " Ne+z1alaz =241~ 1az - ([ZDe - ¢))
=pz " W1-z71a%4z 24 " 14z~ (L 2De + o) 4 7

Hence we know

Ar=-[2"1-2-24%42 24t~ 142~ 1\(DZe - pe) . (3.2)

Compare (3.2) with (1.3a), we see, this time, the primal moving direction embedded in the
dual-affine scaling method has exactly the same form as that of the primal-dual method except
the scaling matrix becomes Z ~1 instead of z2~ 1/2p1/2,

Summarizing the results in the previous two subsections, we have the following theorem:

THEOREM 2. The dual moving direction ebmedded in the primal-affine scaling method has
the same form as that of the primal-dual method but with a different scaling matrix. Similarly,
the primal moving direction embedded in the dual-affine method has the same form as that of
the primal-dual method but with a different scaling matrix.

4. CONCLUSION AND DISCUSSION.

In this paper, we have shown that the moving directions of the primal-affine scaling method,
the dual-affine scaling method, and the primal-dual interior point method are merely the Newton
directions along three different “algebraic paths” that lead to the solution of the Karush-Kuhn-
Tucker conditions of a given linear programming problem. We have also derived the dual
information embedded in the primal-affine scaling method and the primal information embedded
in the dual-affine scaling method.

The view of “algebraic paths” not only unifies the existing three major interior-point
methods, but also provides us a platform to study new interior-point algorithms. At least in
theory there are infinitely many algebraic paths that could lead us to the solution of the K-K-T
conditions and each path may generate a new moving direction associated with a potential
interior-point algorithm. If a suitable stepsize can be decided at each iteration and convergence
can be proved for a potential candidate, this “algebraic paths” approach will provide a fertile
source of new algorithms. More detailed information can be referred to Sheu and Fang [14].

ACKNOWLEDGEMENT.  This work is partially supported by the North Carolina
Supercomputing Center, the Cray Research Grant, and the National Science Council Research
Grant #NSC 81-0415-E-007-10 of the Republic of China.

FEREN

1. ADLER, I; KARMARKAR, N.; RESENDE, M.G.C. & VEIGA, G., An implementation of
Karmarkar’s algorithm for linear programming, Mathematical Programming 44 (1989),
297-335.

2. BARNES, E.R., A variation on Karmarkar’s algorithm for solving linear programming
problems, Mathematical Programming 36 (1986), 174-182.

3. FANG, S.C., A new unconstrained convex programming approach to linear programming,
ZOR 36 (1992), 149-161.

4. GILL, P.E. & MURRAY, W., Numerical methods for constrained optimization, Academic
Press, London, 1974.

5. GILL, P.E.;; MURRAY, W.; SAUNDERS, M.A.; TOMLIN, J.A. & WRIGHT, M.H., On
projected barrier methods for linear programming and an equivalence to Karmarkar’s
projective method, Mathematical Programming 36 (1986), 183-209.



572

10.

11.

12.

13.

14.

15.

R. SHEU AND S. FANG

GONZAGA, C., An algorithm for solving linear programming problems in O(n3L) operations,
Progress in Mathematical Programming: Interjor-Point and Related Methods, 1-28,
Springer-Verlag, 1989.

KARMARKAR, N.,, A new polynomial time algorithm for linear programming,

Combinatorica 4 (1984), 373-395.

KOJIMA, M,; MIZUNO, S. & YOSHISE, A., A primal-dual interior point method for linear
programming, Brogg s in Mathematxcgl Programming: Interior-Point and Related
Methods, 29-48, Springer-Verlag, 1989.

MEGIDDO, N., Pathways to the optimal set of linear programming, Progress in
Mathematica] Programming: Interior-Point and Related Methods, 131-158, Springer-
Verlag, 1989.

MEGIDDO, N. Progress in Mathematical Programming: Interior-Point and Related
Methods, Springer-Verlag, 1989.

MONTEIRO, R.C. & ADLER, I, An O(n3L) primal-dual interior point algorithm for linear
programming, Mathematical Programming 44, (1989), 27-66.

SHANNO, D.F. & BAGCHI, A. A unified view of interior point methods for linear
programming, Rutcor Research Report #35-88 (1988).

PSHENICHNY, B.N. & DANILIN, Y.M. Numerical Methods in extremal problems, Mir
Publishers, Moscow, 1978.

SHEU, R.-L. & FANG, S.-C., Insights into the Interior-Point Methods, ZOR 36, (1992),
227-257.

VANDERBE], R.J.; MEKETON, M.S. & FREEMAN, B.A., A modification of Karmarkar’s
linear programming algorithm, Algorithmica 1, (1986), 395-407.



Mathematical Problems in Engineering

Special Issue on

Modeling Experimental Nonlinear Dynamics and

Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the
70s, was focused on intentionally built nonlinear parts in
order to improve the operational characteristics of a device
or system. Keying, saturation, hysteretic phenomena, and
dead zones were added to existing devices increasing their
behavior diversity and precision. In this context, an intrinsic
nonlinearity was treated just as a linear approximation,
around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear
and chaotic phenomena, engineers started using analytical
tools from “Qualitative Theory of Differential Equations,”
allowing more precise analysis and synthesis, in order to
produce new vital products and services. Bifurcation theory,
dynamical systems and chaos started to be part of the
mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Prob-
lems in Engineering aims to provide a picture of the impor-
tance of the bifurcation theory, relating it with nonlinear
and chaotic dynamics for natural and engineered systems.
Ideas of how this dynamics can be captured through precisely
tailored real and numerical experiments and understanding
by the combination of specific tools that associate dynamical
system theory and geometric tools in a very clever, sophis-
ticated, and at the same time simple and unique analytical
environment are the subject of this issue, allowing new
methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

Manuscript Due December 1, 2008

First Round of Reviews | March 1, 2009

Publication Date June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and
Control Engineering Department, Polytechnic School, The
University of Sdo Paulo, 05508-970 Sao Paulo, Brazil;
piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratério Associado de
Matemadtica Aplicada e Computagdo (LAC), Instituto
Nacional de Pesquisas Espaciais (INPE), Sdo Jose dos
Campos, 12227-010 Sao Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research,
King’s College, University of Aberdeen, Aberdeen AB24
3UE, UK; grebogi@abdn.ac.uk

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers4pt
	Guest Editors

