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ABSTRACT. The purpose of this paper is to study generic submanifolds with parallel structures,
generic product submanifolds and totally umbilical submanifolds of a locally conformal Kaehler
manifold. Moreover, we give some examples of generic submanifolds of a locally conformal Kaehler

manifold which are not CR-submanifolds.
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1. INTRODUCTION.

Let M be an almost Hermitian. manifold with almost Hermitian structure (J,¢). The manifold
M is called a local conformal Kaehler (briefly, 1.c.K.) manifold if for any z € M there is an open
neighborhood U such that, for some differentiable function o:U—R,¢' =¢ ~ %] q is a Kaehler metric
on U. If U =M then the manifold is called a globally conformal Kaehler (briefly, g.c.K.) manifold.
Let Q be the Kaehler form of an almost Hermitian manifold M defined by @U,V) = g(U,JV), for any
vector fields U,V on M. Then it is easy to see that M is a l.c.K. manifold if and only if there is a
global 1-form w (the Lee form of M) such that

dA=wAQ, dw=0, (1.1)

and M is a g.c.K. manifold if and only if w is exact. For a l.c.K. manifold M, the Lee vector field B
is given by

9(B,U) = w(U) (1.2)

for any vector field U on M. We denote by ¥ the Levi-Civita connection of g. We define a torsion-

free linear connection ¥V on M by

Vyv=Tyv-Luww +w(v)U - gv.v)B) (1.3)
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for any vector fields U,V on M. The linear connection ¥ is called the Weyl connection of #. Then
we may easily observe that the Weyl connection ¥V satisfies the condition: ¥V J =10, ¥ ¢ =0 on each
neighborhood on which (J,¢'=¢7 79| q)) is a Kaehler structure.

In general, let M be a 2n-dimensional almost Hermitian manifold and M be an m-dimensional
Riemman manifold isometrically immersed in M. Let V be the Levi-Civita connection on M

induced by V. Then the Gauss and Weingarten formulas are given respectively by
TV = VyV +hU,V), (1.4)
TyN=-ANU+ VN (1.5)

for any vector fields U,V tangent to M and N normal to M, where h is the second fundamental form
of M in M and V 1 is the normal connection on the normal bundle T 1 (M) with respect to the
Levi-Civita connection V. Then we have g(4 NUsV) = g(h(U,V),N), for any vector fields U,V tangent
to M. For any vector field U tangent to M, we put

JU = PU+FU (1.6)

where PU and FU are tangential and normal components of JU, respectively. Then P is an
endomorphism of the tangent bundle T(M) of M and F is a normal bundle valued 1-form on T(M).

For any vector field N normal to M, we put

JN =tN +fN, (1.7)

where tN and fN are the tangential and normal components of JN, respectively. Then f is an
endomorphism of the normal bundle T 1 (M) of M in M and ¢ is a tangent bundle valued 1-form on
71 (M)

DEFINITION: Let M be a submanifold of an almost Hermitian manifold M. The holomorphic
subspace D, of T,M at z € M is defined by D, =T ,MNJT M. D, is the maximal complex subspace
of T,M which is contained in T,M. If the dimension of D is constant along M, and furthermore, D
defines a differentiable distribution on M, then M is called a generic submanifold of M.

Let M be a generic submanifold of an almost Hermitian manifold M. We call the distribution
D the holomorphic distribution and the orthogonal complementary distribution D1 the purely real
distribution. They satisfy the following relations:

D,nDZ = {0}, DA nJID = {0} for each z € M.
Let v, be the holomorphic normal space of M at z, i.e.,
ve=TF&MnIT, M.
Then v,(z € M) defines a differentiable vector subbundle v of T L (M) satisfying
TL(M)=FDL 4+ (direct sum), (T L (M))=D L. (1.8)
Furthermore, we have

pLDL Pp=Dand DL 5pPDL. (1.9)
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We put dim D =2p and dim DL =q If p. ¢>1, then the generic submanifold M is said to be
proper. In the sequel, we shall consider only proper generic submanifolds. We put

(VyP)V = Y (PU)~ P(V V), (1.10)
and

(VyFIV =V (FV)-Fv Vv (1.11)
for any vector fields U,V tangent to M. We say that P (resp. F) is parallel if (V ;P)V =0 (resp.
(VyF)V =0) for any vector fields U,V tangent to M. If a generic submanifold M of an almost
Hermitian manifold # satisfies the condition JD L+ ¢ T 1 (M), then M is called a CR-submanifold of
M. Dragomir ([4]) studied CR-submanifolds of l.c.K. manifolds. The present paper is a

continuation of the previous work [5].

2. PRELIMINARIES.
Let M be a generic submanifold of a l.c.K. manifold M. For the Lee vector field B of M, we

put
B=8BT+ B along M, (2.1)

where BT (resp. B ) is the tangential (resp. normal) component of B. Furthermore, we put
1
BT =P+ BD ™ along M, (2.2)

where BD (resp. BP J') is the D-component (resp. D1 -component) of BL. Since ¥J =0 with
respect to the Weyl connection ¥, taking account of (1.3) ~ (1.7), (1.11), (1.12), (2.1) and (2.2), we

have

(V xP)Y Loy X + Ju(v)I X - th(X,Y)

+10x,07)BT ~Lgx.v)PBL ~Lox, vyt L =0, (2.3)

h(X,JY)-F Y yY +%g(X,JY)B L

- %g(X, v)FBT —%g(X, Y)fBL - snx,v) =0, (2.4)
(V xP)Z-A FZX—%w(JZ)X+%w(Z)JX——th(X,Z) =0, (2.5)
(V xF)Z +h(X,PZ) - fh(X,Z) =0, (26)

(V zP)X - L3 X)Z - Lu(X)PZ - th(X,2) =0, 2.7

FV zX -h(JX,Z)+ fh(X,Z) =0, (2.8)

(V gPW = ApyZ - 2o(W)Z + Ju(W)PZ + 19(2,0W)BT

-39z,w)PBT —lyz,wyB L —thz,w)=0, (2.9)

(V ZFYW +h(Z,PW) +19(2,0W)BT +du(W)F2z
-392,W)FBT —19(z,W)fB L - fh(z,W) =0, (2.10)

for any X,Y e Dand Z,WeDL.
We recall the conditions for the distributions D and D to be integrable.
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PROPOSITION 2.1 ([5]). The distribution DL is integrable if and only if

g(h(X,JY) = h(JX,Y)+g(X,JY)B,FZ) =0,

forany X,YeDand ZeDL.
PROPOSITION 2.2 ([5]). The distribution DL is integrable if and only if

V 4 (PW) =V (P2)+ Ap W — ApyZ + 9(2,JW)Be D+,

for any zwepD<L.

Let M be a totally geodesic generic submanifold of a Kaehler manifold M. Then it follows
immediately that P and F are parallel, and furthermore D is integrable. So, it is worthwhile to
study generic submanifolds with parallel structures and also totally umbilical generic submanifolds
in a l.c.K. manifold.

3. GENERIC SUBMANIFOLDS WITH PARELLEL STRUCTURES.

In this section, we consider generic submanifolds with parallel P (resp. F) of a l.c.K. manifold.

THEOREM 3.1. Let M be a generic submanifold of a l.c.K. manifold M. If P is parallel, then
D is integrable and BP Lo 0 along M. Moreover, if dim D >4, then BT =0 along M.

PROOF. By (1.11) and (2.3), we get

- 3I)X + Lo X)Y + 9(X,97)BT + Lo(v)ix —du(x)sy =0, (3.1)

for X,Y € D. Putting Y =JX in (3.1), we get

W(X)X +w(JX)JX - g(X,X)BL =0, (3.2)

for any vector field X on M. From (3.2), we get

1 1
(p-1)9(BP, BP) + pg(BP ~ ,BP 7 ) =0. (3.3)
First, we assume p >2. Then, by (3.3), we have
BD =y, BD'L =0 (and hence BL =0). (3.4)
Thus, by (2.3) and (3.4), we get

2 th(X,Y) + g(X,Y)tB =0, (3.5)

for X,Y € D. On one hand, by (1.11) and (2.4), we get

FV x(PY)+hX,Y)+ f(X,JY) +1(X,V)B L +19(x,0V)fB L =0, (3.6)

for X,Y € D. By (1.11) and (3.6), we get

FP[(X,Y]+ f{h(X,JY) - h(JX,Y)} + ¢(X,JY)fBL =0, 3.7

for X,Y € D. From (3.5), we get also
t{h(X,JY) - h(JX,Y)} + o(X,JYB L =0, (3.9)
for X,Y € D. Thus, by (3.7) and (3.8), we have
J{h(X,JY) - h(JX,Y)} + ¢(X,JY)JBL = — FP[X,Y], (3.9)

for X,Y € D. By (3.9), we have
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(h(X,JY) = h(JX,Y)+g(X,JY)B,JZ)
=9(FP[X,Y]),Z2) =0, (3.10)
for X,YeD and Ze DL. Thus, from Proposition 3.1 and (3.10), it follows that D is integrable.

Next, we assume that p =1. Then, by (3.3), we have

Pt _o (3.11)
By (2.3), we get
%u(y )X — %w(/\'))' + %w(JY)JX - %u(JX)JY
—t{h(X,JY) = h(JX,Y)} - 9(X,JY)PBT — g(x,0y )BT =0, (3.12)

for X,Y € D. On one hand, by (2.4) and (3.1), we get

FP[X,Y] - f{h(X,JY) = h(JX,Y)} + ¢(X.JY)fBL =0, (3.13)

for X,Y € D. By (3.12) and (3.13), we get

J{h(X,JY) = I X,Y)} + 9(X,JY)I BT + g(x,JY)PBT
+lo()y Lo x +e@x)Iy - Loy x + FPIX, Y] =0, (3.14)

for X,Y € D. From (3.11), it follows that PBT = JBT.
Thus, (3.14) implies

h(X,JY)—h(JX,Y)+g(X,JY)B
= Lo(x)7y ~ Loy x - Joux)y +Le(y)X + IFP{X, Y], (3.15)

for X,Y € D. By (3.15), we have

g(h(X,JY)—h(JX,Y)+g(X,JY)B,FZ) = g(FP[X,Y),Z) =0, (3.16)

for X,Y e D and Ze DL . Thus, from (3.16) and Proposition 3.1, if follows that D is integrable.
THEOREM 3.2. Let M be a generic submanifold of a l.c.K. manifold M such that F is
parallel. Then the distribution D is integrable and each leaf of D is totally geodesic in M.
PROOF. By (1.12), we have
0=(V gF)Y=FV yY, for X,Y € D. (3.17)

By (3.17), we have V xY € D for any X,Y € D, from which the theorem follows immediately.
4. GENERIC PRODUCT SUBMANIFOLDS.

Let M be a generic submanifold of an almost Hermitian manifold M. If M is locally expressed
in the form M =M DxMD | » where M) (resp. MD 1) is a holomorphic submanifold (resp. a
purely real submanifold) of M, then M is called a generic product submanifold of M. In this
section, we consider generic product submanifold of a l.c.K. manifold M.

THEOREM 4.1. Let M be a generic product submanifold of a l.c.K. manifold M. If BP =0
along M, then we have

BT =0 along M, (4.1)
and
vV xP=0, (VzP)X =0, (4.2)

for XxeD,zeDt.
PROOF. Since (V xP)Z€ D L for xeD,zeDL, by (2.5), we get

9(W(X,Y),FZ) + 10 2)9(X,Y) - du(2)9(I X,Y) = 0, (4.3)
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for X,yeD, zeDLl. By (43), we get immediately BP Lo 0, and hence (4.1). Since
(V xP)Y €D, for X,Y € D, by (2.3) and (4.1), we get

(V xP)Y =0, for X,Y € D. (4.4)

Since (V zP)e DL, for ZzW e DL, by (2.9) and (4.1), we get

a(h(X,2),FW)=0, for XeD, ZeDL. (4.5)

by (2.5), (4.1) and (4.5), we have

0=9g((V XP)Z,W) - g(h(X,W),FZ)—g(th(X,Z),W)

=g(( VXP)Z,W)—g(h(X,W),FZ)+g(h(X,Z),FW)
=g((V xP)Z,W) (4.6)
for Xe D, z, We DL. By (4.3) and (4.6), we have the first equality of (4.2). Since (V zP)X € D,
for XeD, Ze DL, by (2.7), we have immediately the second equality of (4.2). Q.E.D.

COROLLARY 4.2. Let M be a CR-product submanifold of a l.c.K. manifold M. If BD =g
along M, then P is parallel.

PROOF. Since PW =0, and V W, (V zP)W € DL, for z, we DL, we have immediately
(VzPW =0for Z,WeD 1. Thus, from this together with (4.2), the corollary follows. Q.E.D.
5. TOTALLY UMBILICAL GENERIC SUBMANIFOLDS.

A Riemmannian submanifold M of a Riemannian manifold M is called a totally umbilical

submanfiold if

h(U,V) = (U, VA, (5.1)

for any vector fields U,V tangent to M, where H is the mean curvature vector. In this section, we
consider some totally umbilical generic submanifolds of a l.c.K. manifold.

THEOREM 5.1. Let M be a totally umbilical generic submanifold of a l.c.K. manifold M such
that P is parallel. Then we have BD + =0 and 2H+B1 =0 along M. In particular, if dim D> 4.
then 2H + B =0 along M.

PROOF. Since P is parallel, from Theorem 3.1 and (3.4), (3.11), it follows that D is integrable

and

B0t =, (5.2)
By (2.4), we have easily
2H+BL =0. (5.3)
By (3.1), we get
w(X)? + (I X)% = o(X, X)o(BT, BT), for X € D. (5.4)
By (5.2) and (5.4), we have
(r-1)o(BT,BT) =0. (5.5)
By (5.5), if p > 2, we have BT =0. Therefore, the Theorem follows from (5.3). Q.E.D.

COROLLARY 5.2. Let M be a totally umbilical generic submanifold of a l.c.K. manifold ¥
such that Be D. If P is parallel, then M is totally geodesic and B =0 along M.
THEOREM 5.3. Let M be a totally umbilical generic submanifold of a l.c.K. manifold M such
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that dim FDL <dim DL on a dense open subset in M. If P is parallel and dim DL >2, then
2H + B =0 along M.
PROOF. By (1.5), (2.9), (5.1) and (5.2), we have

0= -duw)g(z,BT) + Lu2)gw, BT)
+Low)g(Pz, BT) - Ju(2)9(PW . BT) + 9(2.0W)o(BT  BT)
= g(2,0w)g(BT, BT), (5.6)

for ZzweDL. From (5.2) and (5.6), taking account of Theorem 5.1, the theorem follows
immediately. Q.E.D.
THEOREM 5.4. Let M be a totally umbilical generic submanifold of a l.c.K. manifold M such
that Be DL . Then the purely real distribution D 1 is totally geodesic in M.
PROOF. For Xe D, We DL and N eT L (M), by (1.3), (1.5) and (5.1), we have

0=g((V yJIN.X)
= 9(V y(IN),X) - g(J V N, X)
= o(T WIN),X) +9(T N, IX)
= g(V w(tN), X) +9(V (fN), X)
=g(V W(tN)vX)’
from which the theorem follows immediately. Q.E.D.

THEOREM 5.5. Let M be a totally umbilical generic submanifold of a l.c.K. manifold M such
that F is parallel. Then we have 2H + B =0 along M.

PROOF. Since F is parallel, from Theorem 3.2, it follows that D 1 is integrable and each leaf
of DL is totally geodesic in M. Thus, by (2.4) and (5.1), we have immediately 2H + B+ =0. Q.E.D.
6. EXAMPLES.

In this section, we give some examples of generic submanifolds of Hopf manifolds which are not
CR-submanifolds. Let R2"*2 be a (2n +2)-dimensional Euclidean space equipped with the canonical
inner product ( , ) and {e},..,e9, +1%n +2} the canonical orthonormal basis of RZ*+2. We denote
by J, the complex structure on R2"+2 defined by

Jotam —1 = omJ0fam = ~am 1 l1<m<n+l (6.1)

Let §27+1 _ {z e R2"+2,(z,2z) = 1} be a (2n + 1)-dimensional unit sphere with the canonical Sasakian
structure (y,£,n,h) induced from the Kaehler structure (Jg,( , )) on R2?+2 It is well known that
the structure vector field ¢ defines the Hopf fibration x:§2"+1_.CP", where CP™ is a (complex) n-
dimensional complex projective space equipped with the canonical Fibini-Study metric of constant
holomorphic sectional curvature 4. Let §!= {et‘/:T;t €R} be a unit circle. We define an almost
complex structure J on M = §27+ 15 §1 (resp. i = §2"+1xR) by

JT =¢, Jé= —T and JU = U, (6.2)

for any vector field U on M such that n(U) =0, where T =3% is the canonical unit vector field on S!
(resp. R1). Then (s2"+1x 1 J) (resp. (52"t 1xR!,J)) is a l.c.K. manifold (resp. a g.c.K. manifold)
together with the product metric g=h+1on M = 52" +1x ! (resp. M = §2*+1xR!). Then the Lee
form w of M is given by w = 2dt.

I. We denote by 5, the Segre imbedding §,4:CPP x CP4—CP? +4+P2([2]). Let M, be any q-
dimensional purely real submanifold of CPY. Then M =CPPx M, is a generic product submanifold
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of cpP 19+ P4 in which CP? is imbedded as a totally geodesic complex submanifold. We denote by
the immersion «:M;—~CP%. Let M ={S,q o (1x0)~ }(s2(P+a+PD+1) 1 pull-back of the Hopf

bundle = $2(P+9+P0+1) y the immersion Spg © (1 xL):Cprnll—»CPp+‘7+pq. Then we may
casily observe that M is a generic submanifold of the Hopf manifold i = s%(P +4+P +1,51 For
example, let M| be the real submanifold of CP? (¢ > 1) defined by
My ={(@gzq_prg+V -1 2._|)€ cpy; (zgr-2q_112q) are homogeneous coordinates of a g-
dimensional real projective space RPY}. Then M, is a purely real submanifold of CP? which is not
totally real.

In the following II ~ IV, we assume that = 7 x 1.

II. Let Il be the 5-dimensional linear subspace of R® given by Il = spangle,...es}. We put

5

st=s"nMand M{={z= 3 Te; € 5% 0 <25 < 1). For each point z € M%, let D} be the subspace of
1=1

T,,M% defined by Dy = {ue TIM%; (u,Jgz) =0, (u,e5) =0}. We put M = M% xS c s7xs!). For each

. V-1t
point (z,e YEM, let D —— be the subspace of T M defined by
(z,eV ™) (z,eV ~
D ={(v,0)€T M; ve D%}. Then we may easily observe that M is a totally
(:,e‘/'”) (z,e\/—lt z
geodesic generic submanifold of M with the holomorphic distribution D which is not a CR-
submanifold of M. We may easily check that the Lee form of M is tangent to M.
III. We put M = M%x {1} (c §"x81). Then M is also a totally geodesic generic submanifold of
M with holomorphic distribution D as in II (restricted to M‘%x {1}) which is not CR-submanifold of
M. In this case, we may easily check that the Lee form of M is normal to M.
5
IV. We put Mg ={z= ‘E:lziei-o-L e € s o< zg < %}. For each point z € Mg, let DY be the

V2

subspace of T2M§ defined by D”:{ueTIM§; (u,Jgz) =0, (ueg)=0}. We put M= ng{l}. For
each point (z,1)eM, let D(I’ 1 be the subspace of T(I’ l)M defined by
D(z,l) ={(u,0) € T(z,l)M”‘ € DY}. Then we may easily observe that M is a totally umbilical generic
submanifold of M with holomorphic distribution D which is not a CR-submanifold of M and is not

totally geodesic in M.
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