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ABSTRACT. The extension of bounded lattice continuous functions on an arbitrary set x to the

set of lattice regular zero-one measures on an algebra generated by a lattice (a Wallman-type space)

is investigated.

Next the subset of lattice regular zero-one measures on an algebra generated by a lattice which

integrates all lattice continuous functions on X is introduced and various properties of it are

presented.

Finally conditions are established using repleteness criteria whereby the space of lattice regular
zero-one measures on an algebra generated by a lattice which are countably additive (a Wallman-

type space) is realcompact.
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1. INTRODUCTION.
Let X be an arbitrary set and L a lattice of subsets of X. A(L) denotes the algebra generatel

by L, and M(L) those bounded finitely additive measures on A(L ), and mt(L those elements of

M(L) which are L-regular while Mn(L) denotes those elements of Mn(#) which are countablv

additive. The zero-one valued members of the above are designated by I(L ), n(L ), and

respectively. For A A(L ), w(A) {u 1I(L_)[ u(A) 1}, w(L {u’(L)IL L ), then ln(L with the

topology of closed sets ru’(L) of arbitrary intersections of sets of w(L) is a compact, T topological
space. It is one of the Wallman type spaces. Assuming L is disjunctive then it is T if and only if

L is normal.

We begin by considering briefly, because of their importance, certain fundamental properties of

normal lattices. Then we proceed to a consideration of ln(L ), and the extension of bounded lattices

continuous functions on x to II(L ). These results are generally knovn (see [8]) but we give
somewhat shorter more direct proofs here.

We next consider the space Q(L) of measures in t(L which integrate al___[1 lattice continuous

functions on X, and show its relationship to t(L ), and under suitable conditions, its relationship
to the G-closure of X in In(L ).
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Finally, we consider the Wallman type space ln(_L ), and the lattice w(_L ), where for A A(_L ),

w,(A) {u IRa(L_)[ u(A) 1}, and where w,(_L {w(L)[l, _L }. It is well-known that if _L is

disj’unctive then w(_L) is replete. We consider in this space the lattice of closed sets rw(L and its

associated lattice of zero sets, and investigate their repleteness thus obtaining sufficient conditions

for the space 1,q*(_L to be realcompact.

Our notations and terminology is consistent with [1, 3, 5, 6, 11]. However, the main definitions

and notations used throughout the paper are presented for the reader’s convenience in section 2(a).
We note also that a number of results on normal lattices in section 2(b) are related to work of [4
9].
2.(a)BACKGROUND AND NOTATION.

Let x be an abstract set, and __L the lattice of subsets of x. We assume that , X _L for most

of our results. First:

Lattice Terminology:

A(_L is the algebra generated by _L.

a(_L) is the a-algebra generated by _L.

6(_L is the lattice of all countable intersections of sets from _L. _L is a delta lattice (6-lattice) if
(_L __L.

r(_L is the lattice of arbitrary intersections of sets of _L.

_L is complemented if L _L > L’ _L (prime denotes complement), that is, _L is an algebra.

_L is separating, if for any two elements z y of X, there exists an element L _L such that
and y L.

_L is T if, for any two elements z # y of X, there exists A,B L_. such that X A’ and u B’ and

_L is disjunctive if for any z X and A _L such that r A, there exists a B L such that B
and At3B=.

_L is regular if for any z X, and A _L such that z A there exist B, C _.L such that
A C C’ and B’ t3 C’ .

_L is normal if for all La, L2 _L. such that L: t3 L there exists /q, L _L such that L C LI’,
L C L2’, and 1’ CI 2’ $"

__L is compact if every covering of X by elements of __L’ has a finite subcovering.

_L is countably compact if every countable covering of x by.elements of _L’ "has a finite
subcovering.

_L is LindelSf if every covering of x by elements of _L’ has a countable subcovering.

__L is countably paracompact if whenever A. ,A. _L there exists B. _L such that A. C B.’
and B,’ .

L is complement generated if, for L L there exists L, L such that L
n=l n"

It is well known that if _L is complement generated then _L is countably paracompact.

Measure Terminology
We denote by M(_L) the finitely additive bounded measures on A(_L) (we may and do assume

all elements of M(__L) are > 0).
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u M(L is /‘-regular if for any ,4 A(/‘),u(A) sup{u(L) lL C A,L 6./‘ }; (equivalently)
inf{u(L’) A C L’,L E L_ }.

u E M(L is a-smooth on L if L, /‘ ,n 1,2 and L, > u(L,)--,O

u M(/‘) is a-smooth on A(L) if A, A(_L), n= 1,2 and A, > u(A,).-,O. Note u is
smooth on A(_.L iff u is countably additive.

We will use the following notations.

M,(/‘ the set of/‘-regular measures of M(/‘ ).

M(L the set of a-smooth measures on/‘ of M(L ).

M(L the set of a-smooth measures on A(/‘ of M(L ).

Mn(/‘) the set of/‘-regular measures of M(/‘ ).

Note that if u Mn(/‘ and u E M(/‘ then u Mn"(L__ ).
Also we denote by I(/‘ ), In( ), I(/‘ ), I(L ), and ln(/‘ the subsets of M(/‘ ), Mn(L_ ), M(/‘ ),

M(/‘ ), and Mn(/‘ consisting of zero-one valued measures.

Now for ul,u I(/‘ ),u < u2(L means ul(L < u2(L for L /‘.

Let J(L) denote those ul(/‘) such that whenever L,,EL n=1,2, and L,,L then
n=l

Clearly, I’(L C J(L C I(L ).

For u q M(/‘ the support of u,S(u) r {L /‘ u(L) u(X)}. /‘ is replete if for any u IR(/‘ ), u #
s() # .
Let C(/‘ be the set of all real-valued _L-continuous functions defined on x, where I:X--,R is called
/,-continuous if I-I(E)6/‘ for any closed set E C R. If X is a topological space, C(X) denotes the

continuous functions on x or equivalently we can write C(X)= C(F) where F is the lattice of closed

sets of x. z(/‘ is the lattice of zero sets of functions in C(/‘ ).

Cb(/‘ set of all real valued bounded/‘-continuous functions defined on x.
Next we define w(A) {u ll:t(/, )l u(A) 1} for A A(__L ), and w(__L {w(L) IL L }.
We have for A, B fi A(/‘ ):

(1) w(A U B) w(A)Uw(B)

(2) w(ACIB) w(A)f3w(B)

(3) w(A)’ w(A’)

(4) w(A(L )) A(w(L ))

(5) A C B > w(A)C w(B)
Note w(_L is a lattice and if L is disjunctive then w(A)= w(B) if and only if A B.

The Wallman topology is obtained by taking w(_.L as a base for the closed sets of a topology on

la(_L ). < I(_L ), rw(_L)> is the general Wallman space associated with x and __L. Note we have

w(L) Z for L _L if _L is separating and disjunctive. We also define: w,,(A) {u Irt"(L_. u(A) 1}
where A tE A(/‘ ), and note w(_L n In(L w(L ).

We now consider two lattices. Let __L and _L denote lattices of subsets, of X where _.L C L

_L1 semi-separates _L2 if AL1, BL2 and AnB= implies there exists C_L_I, BCC and

A n C . _L separates _L if A, B __L and A n B implies there exists C, DtE L such that
A C C,B C D, and C n D . /‘ is _L rcountable paracompact if for every sequences {B,,} of sets of
_L 2, such that B,, there exists {A, q _L 1} such that A,’ and B, C A,,’.
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_L is L - cb if given B,, , B. _L there exists {An},A . L such that A,, and B C An.

Clearly if _Ll separates _L then _L semiseparates L 2.

If v e M(L2) then by v A() we xnean v restricted to A(_L1). We state the following well

known results:

Let L C _L2 be two lattices of subsets of X. If __L semiseparates _L2 then for v e MR(_L),
u=vlA(L) MR(L 1).

Suppose L C L are two lattices of subsets of X. Then if tt E M(_L 1), u extends to t, E Mn(_L ).
Moreover, the extension is unique if L separates L 2.

We will frequently assume in the sequel that _LC_L2 and _L2 is _L countably paracompact or

countably bounded, but we note that this is unnecessary in certain situations as the following facts

listed below show:

(1) If L is _L1 countably bounded and if _L is countably paracompact (e.g., if _L1 is

complement generated) then _L is _L countably paracompact.

(2) If _L2 is countably paracompact and if _L separates _L then _L2 is _L countably
paracompact.

(3) Suppose L is L countably paracompact and _L semiseparates _L then L is L
countably bounded.

(4) If _L is countably paracompact and if _L separates __L then _L is _L1 countably bounded.

2.’(b)NORMAL LATTICES AND MEASURES.
In this section we will consider a number of measure implications of normal lattices and other

special lattices as well as converse implications. We first note:

THEOREM 2.1. Let _L be a complemented generated lattice. The tt I(_L’) implies

PROOF. Since _L is complemented generated then L is countably paracompact and therefore

I(_L’)c I(L_ ). Therefore it suffices to show u fi ln(L ), but this is easy for if L _L then

L= ,=ILn"L" _L all n, and we may assume that the L,’ . Now if u(L)=O, and if all u(L,’)

then ,,=t31 nL’= and u(L,,’taL’)= all n which is a contradiction since u I(L’). It follows that

u(L) i,ff{u(Z’) L C ,’, q _L and this implies u E IR(_L ).
REMARK. It is equally easy to show if _L is complement gerterated and u q M,,(L_ ’) then

u M(_L ).

THEOREM 2.2. Let uJ() and let L be a -lattice then UL < (L,’) where all
--i’-I

PROOF. Suppose and u(Li’ 0. Now (L,’)= 0 implies u(Li’ 0 all and
i=1 i=1

taLi Li’ therefore u 0 where obviously q L. Also tt infu(Li) since
i= i=1 i=

u q J(__L ). So u (,=L,)= 0 implies there exists an 0 such that
i=L’ c L,0 and u(L,0 0. Therefore

u(Lio’ which is a contradiction, therefore theorem is proved.
THEOREM 2.3. If _L is normal and complement generated then u J(_L > tt I(_L ).
PROOF. Let tt E J(_L ); we know that tt < on _L where t, I(_L ). This gives t, < u on _L’.

Suppose u # . Then there exists L L such that ,(L) 0, (L) 1. However, L L since L is

complement generated so L C L,’. Therefore t,(L) > t,(L,,’) for all n which implies tt(L,’)
for all n as < tt on _L ’. Now L taL,, > L t3 L, therefore since _L is normal there exists

A.’, B.’ L’ such that L C A., L. C B., and A. FIB.’ b. Therefore L C A. C B. C L. from this
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which gives v(A.’)= and v(B.)= by monotonicity of v. Therefore u(B.)= as u < v on _L. Also
/, c A.’c B. C L.’= > L C.=1A.’ C .= lB. C .=,L.’= L which implies that/,

.=1A.’= .= lB.
f L., so u(L) 0 > 0 which > u(B.) 0 by u d(/, ). This is a contradiction as

u(Bn) 1. Therefore u v IR(__L > u l.q(/, ). Now u J(_L > u I(L ), therefore u I//(L ).
THEOREM 2.4. Let /, be a normal lattice, u I(_ ), u < p(_L ’) where pc I(_L ’). Then for

L L, (L’) sup{p(L) l/. L’I , L }.
PROOF. Suppose u(L’) 1, where L _L then since u I(_L there exists , c L’,/, _L ,u(,) 1.

Since /, c L’= > L n . , therefore by normality there exists A, B _L such that
LCA’,,CB’,A’nB’=. Therefore ,CB’CACL’, also u(,)=l= >u(B’)=l by monotonicity of u.

Therefore p(B’)= as u < p(_L’), p(A)= follows by monotonicity of p, proving the theorem.

REMARK. This theorem is equivalent to the following: Let L be normal and let. v _< u(_L)
where v I(_L and u I(L ). Then u(L’) sup{v(,) , C L’,. L }. Next we show that actually the

property in Theorem 2.4 or equivalently the one in the remark characterizes normal lattices, i.e.,
THEOREM 2.5. Suppose u la(_L and p _< u(/, where p I(/,’) and u(L’) 1, L /, implies

L’D A _L such that p(A)= 1. Then _L is normal.

PROOF. Let p < u(/, ), p _< v(/. where u,v I(/, and p I(_L’). Assume u # v, this implies

u(L1) 0, v(L) 1, u(L2) 1, v(L2) 0 where L, L _L and L n L . Now u(L) 0 implies

u(/l") which implies there exists L1" D A L such that p(A) and v(L2) 0 implies v(L2"
which implies there exists L2":) B /, such that p(B) 1. Since A C/q’, B C/2" then / : A" and

L C B’. So ,(B) implies p(B’) 0 which implies u(B’) 0 as u _< p(_L’). However, by monotonicity

u(L2) < u(B’) and u(L2) which implies u(B’) which contradicts u(B’) 0. Therefore u v which
means _L is normal.

THEOREM 2.6. Let __L be a normal lattice, u I,(_L ), u _< v(_L where v I,(_L ). Then

,(L’).
PROOF. Suppose u I,(/, we know p _< u _< v(_L where v _< u < p(_L’) and v IR(_L ), p I(_L ).

Suppose I,n" , v(Ln’)= all n, L.’ I," Then there exists ’n C L." such that p(.,)= all n by
Theorem 2.5. Therefore u(n)= since p _< u(_L ). Now ,. since .=,. C n=/’"’" This

contralicts the fact that u I,(_L ), therefore v I(L ").
COROLLARY 2.7. If _L is normal and countably paracompact then the v (from Theorem 2.6)

belongs to IR’(/’ )-

PROOF. Since _L is countably pars.compact then I(_L’) c I,(_) by Theorem 2.2. Then
v I,(_L and since v In(/, it follows that v IR’( ).
Next we consider a pair of lattices _L ,

_
2 of X such that/, c/, 2, then we have:

THEOREM 2.8. If _L separates/, then _L is normal if and only if/, 2 is normal.
PROOF. The proof is not difficult. We just show/, normal implies

_
normal. Now let/,

be normal and u I(_L ), u _< v(_L ), u _< v2(/, ) where v, v I.(_.L ). Now we can extend u I(/, 1) to, I(__L ) and extend v to r I(/, 2), v2 to r2 I(_.L ). Now we have , _< rl(_.L 2), ’ < r2(/" ) which is
not difficult to see since

_
separates 2. Now -2 is normal, therefore r =r and

v r A(_L 1) r[A(l, 1) v2- Therefore __L is normal.

3. THE WALLMAN SPACE I(_L).
We give here a brief discussion of the general Wallman space (see also [11]). Consider the set

Ia(_L and the lattice of subsets w(_L ). It is well-known that w(_L is compact and it is not difficult
to show:
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THEOREM 3.1. The following are equivalent"

(a) w(_L)is normal;

(b) w(_L)is regular;

(c) w(_L)is r:.
Now since w(_L) is compact, rw(L_) the topology of closed sets, is compact and w(L) separates rw(L_ ),

and by Theorem 2.8 w(_L) is normal if and only if rw(L_) is normal. < In(L_ ), ru,(L )> is a compact

t.opological space and it is always T1. Assuming _L is disjunctive, it is T if and only if _L is normal.

Next, let _L be a 8-normal lattice of subsets of X, then the Alexandroff representation theorem (see
[1]) yields for the conjugate space of Cb(_L ), namely Cb(_L )’= MR(_L where to any E C(_L )" there

corresponds a unique u E MR(_L such that ,(f) f fdu, for all f C(L ).
x

A net {u,} in MR(_L converges to u in MR(L in the weak topology if and only if

f fdua--, f fdu for all f C(_L ). We shall denote weak convergence by w*.
x x

THEOREM 3.2. Now let L be -normal and consider convergence in MR + (_L). The following

are equivalent"
w*

(1) =- =
(2) u(,(X)-u(X) and li u,(A) <_ u(A) for all A L_

(3) u,(X)-.u(X) and lira u(A’) >_ u(A’) for all A’ _.L" For the proof in this particular setting

see ’([71).
THEOREM 3.3. Let u E IR(L )*u Mn(__L then u IR(_L ). Thus IR(_L is w*-closed in MR(_.L ).

PROOF. Suppose u, IR(_L }w-**u MR(L ). Therefore u(X)u(X) by Theorem 3.2. Now

u,(X) since u(, E IR(_L ), therefore u(X) 1, which means for A A(_L ): 0 _< u(A) _< 1. Suppose
A A(L_ and 0 < u(A) < 1. Since u q MR(L there exists L L C A such that 0 < u(L) <_ u(A) and there

exists A C ’E _L" such that u(A) _< u(L’) < 1. Therefore 0 < u(L) _< u(’) < 1. Now L (2/," therefore

LCl= which implies there exists A, Bq_L such that LcA’,cB’,A’OB’=d by L normal.

Therefore L C A’C B (2 L" which implies 0 < u(L) <_ u(A’) <_ u(B) _< u(’) < so that u(A’) <_ u(B) < 1. Now

since u-u then li t%(B) <_ u(B) for B q _L. Now u(B) < 1, therefore u(B) < which means

u(B) 0 since u IR(_L ). Also lira u(A’) >_ u(A’) for A’ _L" but u(A’) < 1, therefore lira u(,(A’) > 0 as

0 < u(A’) < 1. Therefore u,,(A’) since u, E IR(_L ). However for A’C B we have u(A’) 1, u(B) 0

which is impossible. Therefore u(A) 0 or 1, which implies u IR(_L ).

THEOREM 3.4. [{u,}] MR(L
PROOF. The proof of this is not difficult and can be modelled ater the well-known special

case of L being the lattice of zero sets in a Tychonoff space.

THEOREM 3.5. The w*-topology of Mn(_L when restricted to IR(L gives the Wallman

topology rw(L_) for closed sets.

PROOF. Let u- u we will show wu--,u where w is convergence in Wallman. Consider

uo w(L)’, therefore uo(L" 1. Using Theorem 3.2 we have lira u(L’) >_ %(L’), therefore lira u(L’) 1.

But liarn ua(L" <_ liana ua(L" <_ 1, therefore lim u,,(L’) 1. So there exists % such that for all a _> %
ua(L’) 1, therefore u w(L’) for all a _> a0. This gives u, u which proves the theorem.

We assume now that _L is -normal, separating and disjunctive. Let f Cb(L we define 7 on

IR(L by (u) f fdu where u e IR(_L ).
X

THEOREM 3.6. 7 e CUR(L_ )).
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wPROOF. Let u uo. We must show that (u)-(Uo) which means u,- u0. For uo w(L’) we
whave u w(L’) for all a > ao as u, uo. Therefore, u(L’)= 1, a > a0, which implies lim u(L’)= 1.

Therefore li u(L’) u(L’) lim ua(L’) and u0(L’) as uo w(L’). So lim u(L’) Uo(L’) and

therefore by Theorem 3.2 we have uuo which proves e C(I( )).
THEOREM 3.7. The correspondence f] is a bijection between C() and C(I()); the

continuous functions on the Wallman space In( )"
PROOF. Let A {lf e C( )}. Then A C C(rw( )) C(IR( ))" Since uu f(u) C(In( ))"

Now it is easy to show the following:

(I) +g=+
(2) h=aforaR
(3)
() Z II, teefoe A is a c]osea sbaleba of O(( ))

(6) . eefoe gie Z( tbee exis A cb that () 0.

So b be Stoe-Weiets beoem C(( )) which ptoe be btem.. B SAC ().

cosie tbei e]afiobJp o (). et be -om lattice. We ee
( { z( )1 Zla < fo all ( )}.

OR .1. ’( c( ).
ROO. e "() a , (IZI -). Oe c ee . which imp]ie (.)0 ice

"( ). beefoe () 0 [o N big. Now

fl]’ldv= f I]’ldv+f lYldv
X LN L

N

<_NV LN,

<N

Therefore f fldv < N which proves v e Q(_.L ).
x

THEOREM 4.2. IR(_L n Ia(/, ") C Q(_L ).
PROOF. Let (Ill >n)=A.’. Clearly A," and A.e__L for all n. Now let velR(L_)nI,,(L__’),

therefore v(A.’) O, n > N. Nowf fldv f fldv+ f fldv. Therefore f fldv < NV(AN), so
X AN A

N
X

f lldv < VV(AN) < . Therefore, v e Q(_L which provides the theorem.
x

THEOREM 4.3. IR’(_L C IR(_L n I,(L’) C Q(L ).
PROOF. By Theorems 4.1 and 4.2 and the trivial observation that In’(/.)c I(I,)t’)l,,(L_’),

the result is proved.
Following Varadarajan who considered the lattice of zero sets in a Tychonoff space, we introduce

DEFINITION. The Sequence {B,} in __L is called regular if B,.," and there exists A, in _L

such that B. c An’C Br, + for all n.

THEOREM 4.4. Let {B.} be a regular sequence. Then there exists {I.}, I. e; Cb( ), 0 < I. <
such that I,., , ln(Bn)= O,.f.(B’.+ 1)= for n 1,2

PROOF. Omitted.
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THEOREM 4.5. Let X be an abstract set and L a b-normal lattice of subsets which is also

countably paracompact. Let {A,} in _L, A, . Then there exists a regular sequence {C,} such

that C c An" for all n.

PROOF. Since A and since L is countably paracompact then there exists {Bn} in _L with

ARC Bn" 4. Now we show by induction that for any n we have {CK},{DK} in _L with

AKCCK’CDKC(Bh.’VC’K_I) where K=I

follows by normality. (2) Assume expression is true for n. Now An+ICB’n+ and

A, + C An C Cn’, therefore A + C B’n + n C,’. Using normality, there exists C + 1, Dn + _L such

that An+ 1C C’n+ aDn+ 1C (B’n+ nCn’) which finishes the induction argument. Since C c An" we

must show {Cn} is regular. Now C,’c Bn" implies Cn" and C c D’n + C C + 1" Therefore {Cn} is

regular as Dn+l_L. Finally using the previous two results it is not difficult to show using an

argument similar to Varadarajan that the following holds"

THEOREM 4.6. Let _L be b-normal and countably paracompact, then Q(_L) C IRa(_L ).
So using Theorems 4.1 and 4.6 we have:

THEOREM 4.7. Let L be 6-normal and countably paracompact, then Q(_L IRa(_L ).

We also have:

THEOREM 4.8. If Q(L )= IR(_L Ia(_L" and if Ia(L’) C la(L then Q( )= IRa(L ).
PROOF. Q(_L) IR(L__)NIa(L_.’)C IR(L_.)fIa(L_.), but we know if v MR(L and v Ma(L then

v MRa(_L). Therefore Q(L_.)C IR(L)NIa(__L)= IRa(L), so Q(L_)C IRa(L). However, from Theorem
4.1 we have IRa(L C Q(L ), therefore Q(L IRa(L ).
Note: la(L" C la(L) if L is countably paracompact, also if _L is regular and LindelTf.

Now we consider two lattices _L and _L such that L C _L 2. Then C(_L 1) C C(L 2).
THEOREM 4.9. Let _L 1, _L be lattices of subsets such that _L semi-separates _L

and if u u A(L 1), then u Q(_L 1)-
PROOF. Since _L semi-separates L

integrates all f C(_L 2), u integrates all g C(_L 1)- Hence u Q(_L 1)-
THEOREM 4.10. Let _L 1, L be lattice of subsets such that _L

and u u[A(L 1). If Q(_L 1) IRa(-L 1) then v I(L
PROOF. By the previous theorem u Q(_L 1) IRa(-L 1) by hypothesis, and since _.L separates

_L it is easy to see u, the extension of u, is in Ia(_L 2").
THEOREM 4.11. Let _L1,L be lattice of subsets such that _L separates _L 2. If

Q(_L 1)= Ina(_L 1) then Q(L2)= IR(I.,2)VIIa(L_2").
PROOF. v Q(_L 2) implies v IR(__L 2), but v Ia(_.L 2") from Theorem 4.10, therefore

Q(L2) C IR(L2)VIIa(L2"). However we know if veln(L2)Ola(L_2") then vQ(L_2) from Theorem 4.2

which proves the result.

We have the following application: For _L 6-normal, z(_L C _L where z(_L consists of all sets of

L of the form L Ln’, L L for all n, (see [1]). Now z(_.L separates L and z(_L is normal and
n=l

countably paracompact. Therefore by Theorem 4.7 we have Ina(z(L_))=Q(z(L_.)). Now using
Theorem 4.11 we have Q(_L IR(L C Ia(_L"). Also if Ia(L" C Ia(L then Q(_L Ina(_L by Theorem

4.8.

REMARK. We recall that if x is Tychonoff space and if _L z, the lattice of zero sets then

(IRa(z), rwa(z)) is the realcompactification u(x) of x.
Now we consider other criterion for Q(L)= In(L_)CIa(L"). If X is a topological space and if

A C X we denote by ]6 the GT-closure of A. Now if X is an abstract set and L as usual is a
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separating disjunctive b-normal lattice of subsets then we can view X embedded in Q(_L); we have

x c Q(_L c ln(_L ). In fact, using Theorem 4.3 we have X c In’(_L C IR(_L t3 I,(L ") C Q(_L C IR(L ).

THEOREM 4.12. R$ c Q(_L where X" is the G-closure of X in the Wallman space In(_L ).

PROOF. Suppose ueX"6. If uSQ(L) then there exists fC(_L), f_>0 such that fldu=oo.
Let A,,’= (/" > n) _L" Then A," and u(A,’) 1. Therefore u ,=lw(A"’) C I(L )- X which

contradicts the fact u Xti. Therefore u Q(_L ), so R c Q(_L ).

THEOREM 4.13. If Q(_L C R, then Gs-closure of X in ln(_L ), then u I,(_L’) where u Q(_L ).

PROOF. Suppose u Q(L) which implies u l(_L). If u $ I,(_L’) then there exists Ln’
L L, u(L,’) 1. Therefore u n= lw(L,’) C ln(L )- X. Therefore u 6, so Q(L C " implies

u I(L ").
THEOREM 4.14. Q(L if and only if u I,(_L’) for all u Q(L ).

PROOF. If Q(_L)= and if uQ(L_) then u I,(_L’) by the previous theorem. While if

Q(L)CI,(_L’) then we must have Q(_L)c for if not then there exists GG such that

u G c IIt(_L X where u IR(__L ). Therefore u ,,=t3 O c Ir(_L where On is an open set, which

implies u O for all n. Now w(Ln" is an open set for L __L, therefore u w(L,’)C: O, which yields
u f3= iw(L C ,=0 Therefore there exists u Q(_L) such that u I"1= lW(Ln’) where the w(Ln"
and where L, L and w(L,() C la(L )- X, but then u(zn" for all n and Ln" which is a

ctntradiction. Thus Q(_L) c and then by Theorem 4.12, Q(_) X
Using the previous theorem and Theorem 4.2 we have:

COROLLARY 4.15. If _z is b-normal separating and disjunctive then (L )= if and only if

Q(L )= In(_L )f3 Ia(L ").
REMARK. We note that Q(_)= lrt(L_ if and only if Ct,(L)= C(L); this situation arises in

particular if C(_L) consists only of constant functions. (see below)
5. THE WALLMAN SPACE l(_L).

First we note I(L may be empty. Let X {0,1,2 where L consists of and all sets of the

form {n,n+l for all n, and vl,vIR(L ). If v C v then there exists L1,LeL such that

vl(L1)=l, V(L1)=O, vl(L)=O, v(L)=l and LIOL=. However, this is impossible here

Llt3L unless L or L=. Therefore lrt(L_)={u}. Now clearly if L,,={n,n+l },LneL_ and

Lnl. However, u(L,)= for all n, therefore lrt"(L_)=. We also have in this example:

C(L_ )= Cb(L_ )= constant functions; _L is not disjunctive, _L is not countably paracompact; _L is not

regular; _L is a b-lattice.

Now we state a familiar result:

THEOREM 5.1. Let _L be disjunctive then < Ii:ta(L_. ),Wa(L_. > is replete.
Next we give facts about C(_L ): we denote by MRI(L the set {u MRa(L )1 f I.fldlul < oo for

all C(_L )}. Note It"(L_ MI(L_. and we denote by, similar to Varadarajan, the topology on

MR(_L). A net {t} in MrtI(L_) converges to u in Mt(_L) with respect to W if and only if

f fdua.- f fdu for all f C(_L ). The topology W restricted to I’(_.L is the Wallman topology. Now
x.
using th it is easy to show that (u) f Sdu, u I"(L_. is continuous with respect to the Wallman

x
topology rw,(__L on I(_L ), i.e., (u) C(IR"(L_ )) C(rw,(_ )). Let _L be separating, disjunctive and

b-normal throughout and f e C(_.L ).
THEOREM 5.2. Let ]C(_L) then ]-l[a, oo)=Z(y) where g=(f-a) h 0C(_L) and similarly

]-1 (-oo, a] Z() where hC(L_.).

PROOF. Omitted.

THEOREM 5.3. Let z(_L_ be the zero lattice of C(_L then w,,(z(L_. )) z(w,,(L_ )).



528 J. CAMACHO

PROOF. Let Z z(L ) L. Therefore by a theorem of Alexandroff Z n=lLn"Ln L_ all n.

Thus w,,(Z)= W(L,)’. But w,(_L) is -normal therefore by Alexandroff theorem again we get

wa(Z z(wa(L_ )). Converse if w,,(L) z(w,,(L_ )), where L _L then w,(L)=
and since L is disjunctive, L=nILn’= z(L) again by Alexandroff’s result and the proof is

completed.
We have seen that if f C(_L then C(rw(_L )), i.e., it is continuous with respect to Wallman

topology on IR’(L ). However we can do better.

THEOREM 5.4. If l C(_L then ] C(w(L_ )) (where ](u) f fdu for all u Ina(_.L )).
x

PROOF. We must show ]-(E) w(_L) for any closed set E C R. It will suffice to show this

for E=[a, blcR. Now [a,b]=(-,b]O[a,) so 7-[a,b]= 7-[(-,b]O[a,)]=
t3]-l[a,o-) =Z()f3Z() using Theorem 5.2. Next we note if gC(L) then Z()= Z(g) where the

closure is taken in the Wallman space ln(L_) with topology of closed sets two(L_). Therefore

]-l[a,b]=Z(g) fqZ(h), and Z(g),Z(h) z(L_)C L_ so]-[a,b]=Z(g)OZ(h) (using l OD =Af3B for

A,B L )). In addition 7- [a,b] Z(g + h) and Z(g + h) Z (L_ and Z(g + h) wa(Z).
Therefore ]-[a,b] w(Z) which implies ]-[a,b] w(z(L_)). However using Theorem 5.3 we

get ]- [a,b] z(w(L_ )). However z(w(L_ )) C w(L_ therefore ]- i[a,b] 6 w(L_ which implies

f C(w(L_. )).

Now we intend to prove the converse. Suppose that h (w(_L)) then clearly h x C(_L and let

hi x f C(_L then h ] since both are continuous with respect to the Wallman topology and they

agree on x which is dense in I’(L ).

Using the above results we have the following:
THEOREM 5.5. The correspondence f--,] is a bijection between C(_L) and C(w,(L_)); the

w(L )-continuous functions on the Wallman space I*(_L ).

Next let u IR(__L ), then we define M" {f e C(_L )l u Z(f n(L )}. The following facts we list

for completeness (proofs can be found for this setting in [8])"
1) If u, u IR(_L and if u # u then Mu #/lfu2.
2) M is a maximal ideal in C(_L ).

3) (Generalized Gelfand-Kolmogoroff) If M is a maximal ideal in C(_L then there exists u In(L
such that M Mu.

Thus there exists a one to one correspondence between elements of In(__L and maximal ideals

of 6"( ).

Now we return to the Wallman space <IRa(L_),rwa(L)> and give conditions when this

topological space is realcompact. We know that for __L disjunctive w(_L) is replete; the question we

are now concerned with is: when is the lattice z(rw(L_ )) replete? or i.e., when is the Wallman space

realcompact?
THEOREM 5.6. Let _L be g-normal, separating, disjunctive, and countably paracompact then

Q(L_ In(L_ and if In(L_ with the Wallman topology is a c.b. space then it is realcompact.
PROOF. Q(L_)= In(L_) by Theorem 4.7. Now < In(L_),w(_L )> is replete from Theorem 5.1.

Now w(_L C rw(L (of course) and consequently z(rw(L_ )) C two(L_ ). Now _L 6-normal implies

w(_L) -normal and _L countably paracompact implies w(L is countably paracompact. Then by
Theorem 5.3 of [2] we have two(L_) is replete. Now by hypothesis two(L_) is z(rw(L_ )) countably
bounded (c.b.). Thus z(rw(L_ )) is replete by Theorem 3.4 of [2]. Hence < In(L_ ),two(L_ > is

realcompact.

Note. If two(L) is z(rw(L_ )) countably paracompact the same conclusion can be drawn.
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We continue to assume that

__
is separating, disjunctive and -normal. Let h C(II:IO(L_. )) or,

i.e., h C(rw,,(L_ )) in lattice notation, then f hl x C(rL_ ), clearly. If/’ C(_ then by our earlier

work in this section we would have h= "]C(w(_)). This situation arises if X is a Tychonoff

topological space and _L lattice of zero sets of continuous functions on X for in this case if

h C(IR(z)) then h lx C(rz)= C(F)= C(z} where r is the lattice of closed sets of X. Thus, in this

case, w(z)= z(rw(z)) and since wo(z) is replete, we have that lR(z) is realcompact with respect to

the Wallman space.

THEOREM 5.7. Let _L be separating, disjunctive and 6-normal. If C(rw(L_ ))= C(w( )} then

z(w(L_)) z(rw(L_ )) and if w(_L) is z(w,(L )) c.b. or countably paracompact then InO(_L) with the

Wallman topology is realcompact.
PROOF. Since w(L C two(L_) then z(w(L )) C z(rw(L_)). Now let Z(f) z(rw(_L )) where

f C(rwo(L_ )), but C(rwo(_ )) C(wo( )). This implies z(f) z(w(L_ )). Therefore

z(rwo(L_)) c z(wo(L_ )). Now if wo(_L) is z(wo(L_ )) countably bounded or countably paracompact then

since wo(L) is replete we have using the same argument as in the proof of Theorem 5.6 that

z(wo(L_ )) is replete, therefore z(rwo(L_. )) is replete.

Finally we extend Theorem 5.7 but first note z(wo(L_))Cwo(L_)Crw(__) and z(w(_))
c z((L )) c w(L ).

THEOREM 5.8. Let L be separating, disjunctive and -normal. If _L is z(L) countably
bounded (c.b.) or _.L is z(_L)-countably paracompact and assume z(rw(I, )) c_ rz(w(L)), then

z(rw(JL )) is replete, i.e., In(_L with the Wallman topology is realcompact.
PROOF. z(w(l,)) is complement generated since z(_.) is complement generated. (Use

Theorem 5.3) and z(wo(L ))C z(rw(L_ ))C rz(w(L_ )), therefore by Theorem 3.1 part (1) of [2] we have

z(rw(L_ )) is replete, as z(w(L )) is replete from the fact _L is z(_L) countably bounded or

_
is z(_.)

countably paracompact.
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