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ABSTRACT. In this paper a notion of statistical independence of sequences of integers is developed. The
results are generalizations of known results on independent sequences mod m in the integers and more
generally, independent sequences on compact sets. All that is assumed is that one has a countable

partition of the integers indexed by an ordered set.
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1. INTRODUCTION.

In 1940, Steinhaus and Kac [6] established the concept of independent functions on the unit square,
[0, 1] x [0,1]. Since that time the notion of independence has been developed in several different settiv.ygs.
The independence of sequences of integers mod m was examined by Kuipers, Niederreiter and Shiue [2. 3].
Similar work was done by Kuipers and the author in the Gaussian integers [1]. In both of these
situations, one of the key properties used to characterize independent sequences was the existence of a
nonprincipal character on the ring structure involved. The question of what can be said about
independent sequences when there is no nonprincipal character or indeed no ring structure has also been
considered. Niederreiter [5] considered independence in compact spaces. In this article we examine
similar questions in a more general setting. While the set Z, the nonnegative integers, is considered, any

ordered countable set may be used.

2. DEFINITIONS AND NOTATION

Let A = (ap ;g°=0 be a sequence in Zj, the set of nonnegative integers. Let A be a countable ordered

indexing set. If C = {C)}, . 5 is a partition of Zj (Z; = U Cy CyNCy=gifX # p), define
AeA

A(C'\,n) = Z 1 = |{al, ey a”} n C,\I . If for each A € A we have that the limit
apeC
1<k<n
Cy,n
nl-ll%o A( n/\ ) exists, then define

C,,n
aA(A)=,}L%—-—A( %) e

{2x(A)}, € A 8 the asymptotic distribution function (a.d.f) of A with respect to the partition €.
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Now consider two sequences A and B, both with an a.d.f. with respect to the partition C. Define

A B (Cy Cum)= 1
1<k<n

(A B)(Cy Cpi n)
—

A and B will be said to be acceptable if the limit_lim =9 (A, B) exists for all A,
n—00 B

pn €A

Definition 1.1 Let A and B be acceptable sequences with respect to a partition € = {C/\}/\ €A A and B
are C-independent provided that for all A, x4 € A we have

o,\,p(A, B) = ¢,(A) ¢,,(B)

If one chooses the set A to be finite then C-independence is equivalent to that described by
Niederreiter [5] in compact spaces. If the equivalence classes of the partition C are chosen to be residue
classes mod m, C-independence becomes independence mod m as considered by Kuipers, Niederreiter, and

Shiue [2,3].

3. MAIN RESULTS

THEOREM 2.1 Let A be a sequence which is acceptable with respect to a partition C = {C,\},\ €A
A and A are C-independent if and only if ,(A) = 1 for some X € A.

PROOF: Suppose there is a C, such that 0 < ¢»\(A) < 1. If we assume A and A are C-independent
then, since 8,(A) = 2), A(A, A),

0 <[8)(A)]) % < 85(A) = 8 \(A, A).
Thus A and A cannot be C-independent.

Now suppose ¢,(A) = 1 for some A € A. Then ¢”(A) =0for pu€ A, p # X It follows that for
B NEA p # Xor n# A
Buq (A, A) =9,(A) gp(A) =0
and
¢,\’,\(A. A)=9,(A)gy(A) =1

THEOREM 2.2 Given a sequence A, A will be C-independent of B for every B such that A and B

are acceptable if and only if 8)(A) = 1 for some A € A.

PROOF: From Theorem 2.1, it follows that 8)(A) = 1 for some A € A in order that A and A be C-

independent.

Ifeg \(A) = 1 for some A € A and B is any sequence suci: .~.at A and B are acceptable, we have

B(c;,,,n) ¥y A(C: n) ) (A, B)(C;\, c,,;n) . B(C: ,,)
43 )
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Noting that

A(C,, n
(—,:'—) S L om=1-0h) =0

7€
n#A

lim
n—oC

neA
n#A
it follows that

2y, ulAs B) = 0,(B) = 0\(A) 0,(B)
and
¢,1'#(A, B) = ¢,’(A) ¢“(B) =0ifn#A

As an example of the relationship between a.d.f. and the notion of C-independence we have the
following result. We will consider the special case where A = Z,. If any other countable indexing set is
used, the choice of k can be done by choosing any order preserving map f:A—Z; and letting k = f(A)

where 8,(A) # 0, and the subsequence {ak }°° of A is determined by a, €C,.
nly—

=1
THEOREM 2.3 Let A and B be acceptable with respect to a partition € = {Ci}i €2, with a.d.f.
. 00
{2,(A)}; €z, and {g,(B)}; €z, respectively. Let Cy € € be such that g (A) # 0 and let {ak"}nzl be

the subsequence of A such that a, € Ck' If A and B are C-independent, then the sequence
n

. fo's) .
B = {bkn}nzl has {g.(B)}, €z, as its a.d.f.

PROOF: For any j € Z, since A (Cy, ky) = n, we have (A, B)(Ck, Cj k,,) = B(Cj, n). By the
C-independence of A and B we have
(A, B)(Ck,C]; k,
Jim — %= 8,(A)

and

B»(Cj,n) (A, B)(Ck.Cj;kn) k,
I E T

n
we have, by letting n—oco
-1
8,(B) = o(A)s (B #,(A)] " = 9,(b)
Thus we have some basic properties of C-independent sequences as well as a method of obtaining
sequences with a given a.d.f.. It would, of course, be gratifying to be able to generate acceptable

sequences which are C-independent. In this direction we have a construction following an idea of

Nathanson [4].

THEOREM 2.4 Let A = {“n} and B’ = {b’u}:cj_l ke ccceptable with respect to a partition

0o
n=1
C={C)}x e withadf {s)(A)}, c 5 and {2,(B)}, € A Tespectively, where A is {1,2, .., m}or

A =1Z;,. Then there exists a sequence B = {bn}:;l such that

i) A and B are C-independent
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i) {#)(B)}) ¢ A is the a.d.f. for B.

PROOF: Let z'J 4 denote the index of the j"h term of A contained in Ck. The sets {ij k o0
partition ZO as k runs through A. Define b, = bi],k = b'j. i=1

First we establish that

B(Cy, n) = #;A B(Cx 4(Cpw na)) tab 80 )

The relationship (1) can be seen as follows. Consider the elements b 1 < k < n such that

bk € C,\. For fixed u we count the elements b; b (which are the terms b'l, ey

Ly 2 b"A(Ctm)» u
bA (C,p ") ) that are in C). There are B(CA, A(C#, n)) such terms. Now let g run through A.

We now establish ii). From (x) we have

Ko 5 x4 o A A ) N?)

BEX ~;A€A A(Cw")

Letting n—+oco we have

gyb)= > 8)(B)s,(A) = 8)(B) Y 8,(A) = 0\(B)
pEA HEA

To establish the C-independence of A and B consider (A, B)(C »C w n) = B’(C w AC )y n))

Thus (A, BYC)y, Cyi B(C,, A(Cy, n
. x» Cu , w ACyn)
2), #(A, B) = - lim " = lim T
Cp A(Cy, n)
) s A Cyn ,
= lim R( ATy ) ) . A ,;\ )= 2,(B)g\(A) = 8,(B)ay(A).

It would be of interest to examine how the structure of the partition C affects the independence of

sequences. Perhaps a partition whose classes are determined by the number of prime factors or distinct

prime factors would be of interest.
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