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ABSTRACT. It is well known that a wide class of obstacle and unilateral problems arising in
pure and applied sciences can be studied in a general and unifield framework of variational
inequalities. In this paper, we derive the error estimates for the finite element approximate
solution for a class of highly nonlinear variational inequalities encountered in the field of
elasticity and glaciology in terms of wlP(Q) and Lp(@)ynorms. As a special case, we obtain the

well-known error estimates for the corresponding linear obstacle problem and nonlinear problems.
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1. INTRODUCTION.

Variational inequality theory is an interesting branch of applicable mathematics, which not
only provides us with a uniform framework for studying a large number of problems occurring in
different branches of pure and applied sciences, but also gives us powerful and new numerical
methods of solving them. In this paper, we concider a broad class of highly nonlinear elliptic
boundary value problems having some extra constrained conditions. A much used approach with
any elliptic problem is to reformulate it in a weak or variational form aud then to approximate
these. In the presence of a constraint, this approach leads to a variational inequality, which is
the weak formulation.

In recent years, the finite element techniques are being applied to compute the approximate
solutions of various classes of variational inequalities. Relative to the linear variational
inequalities, little is known about the accuracy and convergance properties of finite element
approximation of nonlinear variational inequalities associated with nonlinear elliptic boundary
value problems. The nonlinear problems are much more complicated, since each problem has to
be treated individually. This is one of the reasons that there is no unified and general theory for
the nonlinear problems. An error analysis of finite element method for the boundary value
problem having nonlinear operator — V(| Vu|?~2V) was derived by Glowinski and Marroco [1],
which was an improvement of the results of Oden [2]. For piecewise linear finite element
approximations, they obtained error estimates in the wbPnorm of order /P~ 1 which were
extended by Noor [3] for strongly nonlinear problems. Babuska [4] also obtained the same type
of estimate for the finite element approximation of second order quasilinear elliptic problems.

Error estimates for various types of variational inequalities involving second order linear and

nonlinear elliptic operators have been derived by many workers including Falk [5], Mosco and
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Strang [6], Janovsky and Whiteman [7] and Noor ([8], [9]), under sufficient regular solutions.
Oden and Reddy [10] obtained some general results for a class of highly nonlinear variational
inequalities involving certain psuedo-monotone operators under the assumption that all the
solutions (exact and approximate ones) of these variational inequalities are in the interior of a
closed convex set in WI‘P(Q). This assumption converts the variational inequalities into
variational equations, which makes the error analysis a standard one as in the uncontrained case.
The most important and difficult part of the problem is when the solutions are not in the interior
of a closed convex set, a case not covered by their analysis. It is also known that in the presence
of the constraints, the approximate solution is no longer a projection of the exact solution as in
the unconstrained case. This represents a major difficulty in obtaining the error estimates for the
finite element approximation of nonlinear variational inequalities.

In the present study, our analysis is based on the existence theory of nonlinear operator
equations put forward by Glowinski and Marroco [1]. We extend their results for a class of
nonlinear obstacle problems arising in elasticity and glaciology in Section 2. Section 3 is devoted
to an analysis of error estimates in finite element approximation for our model problem. Here we
derive error estimates in the W1 P(Q) and Ly-norms using the ideas and technique of Mosco and
Strang [6]. Our results represent a substantial generalization and improvement of the error
analysis of finite element approximation of strongly nonlinear monotone operators and variational
inequalities contributed by Glowinski and Marroco [1], Oden and Reddy [10] and Noor [9].

2. VARIATIONAL INEQUALITY FORMULATION.

The mathematical model discussed in this paper arises in the field of elasticity and
Oceanography, see [11]. We consider the problem of finding the velocity of the glacier, which is
required to satisfy the nonlinear obstacle problem of the type 1 < p < co.

V(| Vu|P V- V2> in Q
u>y in Q

(2.1)
(-9 VulP 29u)-V2u_f)u—v)=0 inQ

u=0 on N

where Q is the cross-section of the glacier and v is the given function, known as the obstacle. The
presence of f and - v 24 may be interpreted as body heating terms, these arises from resistivity
and are local Joule heating effects. Also, in elasticity, the problem of torsional stiffness of a
prismatic bar with a simply connected convex cross-section Q@ and subject to steady creep, which
is characterized by a power law, can be described by (2.1) and p is the exponent of the creep law.
The case p=1 and V2u=0 is related to the problem of capillarity and minimal surfaces, see Finn

(12].
The problem (2.1) is a generalization of the nonlinear problem of finding u such that
— V(| Vu|P2Vu) =g in Q }, 22)
u=0 on a0

for which the error estimates have been derived by using the finite element approximation by
Glowinski and Marroco [1]. The presence of the obstacle needs a different approach for deriving
the error estimates and this is the main motivation of this paper.

Let © c R™ be a bounded open domain with smooth boundary Q. We consider W,l,' PQ) a

reflexive Banach space with norm "
P
ol =( f1901?
Q
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and the dual space W~ 19(q), $+4=1. The pairing between wlP@) and w ~19Q) is denoted
by < -,->. For more details and notation, see Kikuchi and Oden [13].
We here study the problem (2.1) in the framework of variational inequalities. To do so. we
consider that set K defined by
K={ve W‘l,‘ P(Q): v>y onQ}, (2.3)

which is a closed convex sct in W,],' P(Q).
The energy (potential) functional I[v] associated with the obstacle problem (2.1) is given by
=% / | Vo|P dz+ / (Vv)2 dz—2 / fdx
Q

=J(v) + b(v,v)=2< f,v>, (2.4)
where
J(v):% / | Vol|Pdz, bluv)= / Vu.Vvdz, abilinear form
Q Q
and

< f,u> =/fvd:.
Q

Following the techniques of Noor [8] and Kikuchi and Oden [13], one can show that the
minimum of I[v], defined by (2.4), can be characterized by a class of variational inequalities of

the type

<Tu,v—u> +bu,v—u)> < f,v~u>, forallvek, (2.5)
which is known as the weak formulation of the obstacle problem (2.1) with
<Tuv> = <J(u)v> = / [Vu|?~2 Vu Vo dz (2.6)
Q

We here consider the variational inequality (2.5) to obtain the error estimate for u-u, in
both Wl P(Q) and Lynorms. In order to derive the main results. we need the following results
which are due to Glowinski and Marroco [1].

LEMMA 2.1 For all u,ve W1 P(Q), we have

<Tu—Tv, u—v> > alu-v]||P, p>2 (2.1
<Tu-Tv, u=v> < Bllu=vl|(Jlull + lv])P 2 P22, (2.8
<Tu—Tv, u—v> > a”u—vl|2(||u||+Ilv")p_2. 1<p<2, (2.9}

| Tu=Tv|| > Bllu—v||P ] 1<p<2 (2.10)

We also remark that if the operator T satisfies the relations (2.7)-(2.10) and the bilinear
form b(u,v) is positive continuous, then, using the techniques of Noor [14] and Kikuchi and Oden
[13], we can prove the existence of a unique solution of (2.5). Furthermore, concerning the
regularity of the solution u € K satisfying (2.5), we assume the following hypothesis:

(A) {For ve WhP@)nWw2P(),ue K satisfying (2.5) also lies in W2 P(Q)}.

3. FINITE ELEMENT APPROXIMATIONS.

In this section, we derive the error estimates for the finite element approximation of
variational inequalities of type (2.5). To do so, we consider a finite dimensional subspace
S,c wlP@) of continuous piecewise linear functions on the triangulation of the polygonal
domain © vanishing on its boundary 8Q. Let y, be the interpolant of y such that ¢, agrees at all
the vertices of the triangulation. For our purpose, it is enough to choose the finite dimensional
convex subset K, =S, N{v, >, only at the vertices of the triangulation}, as in Berger and Falk
[15]. Far other choices of convex subsets, see ([5], [7], (8], [13]).
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The variational inequality (2.6) can in practice seldom be solved, and so, approximation u,
to u from a finite dimensional convex subset K, are sought. Thus the finite element
approximation u, of u is:

Find u) € K, such that

< Tup, vp—up > +blup, vy—up) > < f, vp—uy >, for all v, € k. (3.1)

We also note that in certain cases, the equality holds instead of inequality in (2.6). This
happens when v, together 2u — v, also lies in K. In this case, we get
<Tu, v—u> +b(u, v—u)= < f, v—u>. (3.2)

Furthermore, if ¥ is the interpolant of u, which agrees at every vertex of Q, then ¥ lies in K. It
is well known from approximation theory, see Ciarlet [16] that
lu= || <chflully (3.3)

Finally, let M and M, be the cones composed of non-negative functions on W,l,’ P(Q) and its
subspace S;,. Thus, it is clear that
U=u-vy isin M
Up=up—vy is in M.
From these relations, it follows that
u—uy =U~Up+v-v, (34)

We also need the following result of Mosco and Strang [6], which is known as the one-sided
approximation result.
LEMMA 3.1. Suppose that U >0 in the polygon (plane) @ and U lies in Wl P()nw2 P(q).
Then, there exists a V, in § such that
0<V,<U  inQ
and
HU=Vull <chlU]l4 ‘3.5)
We now state and prove the main result of this paper.
THEOREM 3.1. Let the nonlinear operator T:W 1 P(@)—w ~ 1:P(Q) satisfy the relations
(2.7)-(2.10) and b(u,v) be a positive continuous bilinear form. If V;, € M, and 2U -V, € M, theu

1
o(hP 1), P22, 13.6)

u—ull = 1
R wlrq) oK P), 1<p<2, (3.7

where u € K and u, € K, are the solutions of (2.6) and (3.1) respectively and the hypothesis (A)
holds.
PROOF. Since both v=4+V, and 2u—v=1y+(2U V) are in K, we have from (2.5) and
(3.2) that
<TuVp-U> +b(u,V,-U)= <f,V,-U>. (3.8)
Letting vy = y; +V} and u, = ¢, + U}, in (3.1), we obtain
<Tuh,Vh—Uh> +b(uh,Vh—Uh)2 <f,Vh—Uh>| (3-9)
and taking v=¢+U), in (2.5), we have
<Tu, Up=U> +buly-U)2 < fU,-U>. (3.10)
Subtracting (3.8) from (3.10), we get
<Tu, Up=Vy> +b(u,Up-V,)> < fU, -V, > (3.11)
From (3.9) and (3.11), it follows that
<Tu—Tup,Up—Vp > +bu—up,Up—V,) >0,



CLASS OF NONLINEAR VARIATIONAL INEQUALITIES 507
which can be written as
<Tu~Tuy, U=Up> +b{u—up,U-Up) € <Tu=Tup, UV > +blu—uy,U-V,> (3.12)

Since b(u,v) is a positive bilinear, so far p > 2 and using (2.7), we have
allu-u, 1P< <Tu-Tupu—u, >

< <Tu-Tupu—uy, > +b(u-uh,u—uh>

<Tu—Tup¥—op > +b(u-—uh,tl)—¢h> + <Tu—Tuh.U—Uh> +b(u—uh,U—Uh).
S <Tu—Tup¥—¥p > +b(u—upv—4;)
+ <Tu=Tuy,U-Vy > +bu—u,,U-V,), by using (3.12).

S Nu=up BN+ Lo IDP + e =l + 1V =V, 1), (3.13)

A

by using (2.8) and the continuity of b(u,v).
Without loss of generality, we assume that

Hugll < Hlull. (3.14)
Combining (3.3), (3.8), (3.13) and (3.14), we have, for p > 2.
—oml/p-1
Tu—ull wlr@)™ o(h )
which is the required result (3.6).
Similarly, we can show that, .
- =0(h%-P), for 1<p<2
lu—uy |l Wcl;’p(ﬂ) ( ) torl<p<

REMARK 3.1

(1) For p=2, the results obtained in this paper are exactly those of Falk {5] and Mosco
and
Strang [6].

(2) In the absence of the constraints, our results reduce to the well known results of
Glowinski and Marroco [1] and Babuska [4].
whim = o(h!/3), which is proved by Oden and Reddy [10]

in finite elasticity under the oassumption that the solution lies in the interior of the
convex set K. Thus our results represents an improvement of the previous results
For 1 < p <2, there is no counterpart in the linear theory and our results appear to be
new ones.

(3) For p=4, we have |ju—u,]||

Using the one-sided approximation result of Mosco and Strang [6] and Aubin-Nitsche trick
(16], and the techniques of Noor [17] and Mosco [18], we can derive the following error estimate
for the finite element approximation of variational inequality (2.6) in the Ly-norm.

THEOREM 3.2. If ueK and u €K, are solutions of (2.6) and (3.1) respectively and
hypothesis (A) holds, then r

P
o(h?-T), P22
“(“-“h)*"L (Q)=‘ p—4
P 0(hP=3), 1<ps2
and )
P
o(hP ), p>2
H(w—up)~ |l Ly@)= P-4
0(h?~3), l1<p<?

where (u-— uh)"' = Sup (u— uh,O) and (u-— up)” =linf (u—uy,0)
REMARK 3.2. For piecewise linear elements and p =4, we obtain |lu—u|| 0.4 0(h4/ 3), a
result obtained by Oden and Reddy [10] under the assumption that all the solutions lie in the
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which can be written as
<Tu-Tup, U=Up> +bu—up,U-Up) < <Tu—-Tup,U—-V,> +bu—u,, U=V, > (3.12)

Since b(u,v) is a positive bilinear, so far p > 2 and using (2.7), we have

allu—-uhllps < Tu—Tupu—u, >

< <Tu—Tuh.u—uh> +b(u-uh.u—uh>

<Tu—Tup¥—¥ > +blu—up,¥—vp > + <Tu—Tup,U-Up > +blu—u, ,U-Up).

IA

< Tu—Tup, =ty > +b(u—up, ¥ —¥y)
+ <Tu—Tup, U~V > +bu—uy,U-V,), by using (3.12).
< Nu=uy Bl + o IDP+ 7 =9 I + NU -V, ) (3.13)

by using (2.8) and the continuity of b(u,v).
Without loss of generality, we assume that
Hupll < Hull. (3.14)

Combining (3.3), (3.8), (3.13) and (3.14), we have, for p > 2,

_ 1/p-1
lu—ugli W,l,' »@) =0h/P™Y,

whi?h is the required result (3.6).
Similarly, we can show that,

1
=yl =0(h3-P), for 1<p<2.

wiP@)
REMARK 3.1.

4 (1) For p=2, the results obtained in this paper are exactly those of Falk [5] and Mosco
an
Strang [6).

(2) In the absence of the constraints, our results reduce to the well known result~ of
Glowinski and Marroco [1] and Babuska {4].

3) For p=4, we have ||lu—u,|| ,, = O(hl/s)‘ which is proved by Oden and Reddy j 0}
h w°Y (n)

in finite elasticity under the assumption that the solution lies in the interior ot rhe
convex set K. Thus our results represents an improvement of the previous res: lts.
For 1< p <2, there is no counterpart in the linear theory and our results appear tc be
new ones.

Using the one-sided approximation result of Mosco and Strang [6] and Aubin-Nitsche trick
[16], and the techniques of Noor [17] and Mosco [18], we can derive the following error estimate
for the finite element approximation of variational inequality (2.6) in the L,-norm.

THEOREM 3.2. If ue K and u €K, are solutions of (2.6) and (3.1) respectively and
hypothesis (A) holds, then

P
o(hP-T), p>2
Nu—up)* il @ =) p-4
d 0PI, 1<p<?
and )
P
o(hP-T), p>2
"(“—“h)-"L Q)= p-4
r 0(hP=3), 1<p<?

where (u—uh)+ = Sup (u—up,0) and (u—uy)~ =Inf (u—u,0)
REMARK 3.2. For piecewise linear elements and p = 4, we obtain ||u—uy|lg 4= 0(h4/ %), a
result obtained by Oden and Reddy [10] under the assumption that all the solutions lie in the
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interior of the closed convex set K in Wl'P-space. In this way, our results represent an
improvement of their result. For 1< p <2, our results appear to be new ones and there is no
counterpart in the linear theory.

4. CONCLUSION.

In this paper, we have obtained the error estimates of the finite element approximations of
the solutions of a class of highly nonlinear variational inequalities in the wlP and Ly-norms,
which appear to be new ones. These estimates are distinctly nonlinear in character. In
particular, for p =2, corresponding to the linear elliptic theory, we obtain an error of order A,

which agrees with the recent results.
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