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ABSTRACT. This article deals with thickness in topological transformation semigroups
(t-semigroups). Thickness is used to establish conditions guaranteeing an invariant mean on a
function space defined on a t-semigroup if there exists an invariant mean on its functions
restricted to a sub-t-semigroup of the original t-semigroup. We sketch earlier results, then give
many cquivalent conditions for thickness on t-semigroups, and finally prescnt theorems giving

conditions for an invariant mean to exist on a function space.
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1. Left-Thickness in Semigroups

Mitchell introduced the concept of left-thickness in a semigroup [Mitchell, 1965]: a subset T
of semigroup S is left-thick in S «= V¥ finite U < S, 3teS: Ut c T.

Any lcft ideal of a semigroup is left-thick, but not conversely. The complete relationship
between left ideals and left-thick subsets is this: Let p(S) be the Stonc-Cech compactification of
semigroup S endowed with the discrete topology, and let T ¢ S. Then T is left-thick in S = the
closure of T in B(S) contains a left ideal of p(S) [Wilde & Witz, 1967. lemma 5.1]. (See Theorem
4.3.g infra for a more general formulation of this result.)

It can be shown that in the definition t can be taken in T or U can be a singleton.

Let B(S) = the set of all bounded complex- or real-valued functions on semigroup S. For
any seS and feB(S), T,f denotes the function in B(S) defined by Tf(t) = f(st) (Y'teS).

A mean on B(S) is a member of the dual space B(S)* of B(S) which satisfies p(1) = 1 =
lpl. Mean y is invariant «~p(Tf) = pf (VseS.feB(S)).

The importance of left-thickness for our subject is because of this theorem [Mitchell, 1965,
theorem 9]. A

Theorem. Let T be a left-thick subsemigroup of semigroup S. Then B(S) has a lefi-
invariant mean « B(T) has a left-invariant mean.

H. D. Junghenn generalized Mitchell's concept of left-thickness [Junghenn, 1979, p. 38].
First it is necessary to define more terms.

Subspace F of B(S) is left-translation invariant = T feF (VseS.feF). Let peF*. the dual space
of F; define T f (VfeF) by T,f(s) = p(T,f) (VseS). Then T,: F-B(S). F is left-introverted «

T, (F)<F (VpeF*).

Definition. Let S be a semigroup: FeB(S) be a left-translation invariant, left-introverted,

norm-closed subalgebra containing the constant functions: T<S be non-empty;
F(T) = {geF|xysgsl}. Then
T is F-left thick in S = Ve>0,geF(T), and finite U = {s,.5,....5,}<S 3seS: g(s5) > 1—€ (i=1....n)

If xt€F, then Junghenn’s definition of F-left thickness reduces to Mitchell’s definition of left-

thickness: let g = .xp then for 0<e<1, 1-e<g(ss) = xp{ss) = sseT (i=1,...n).
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Junghenn generalizes Mitchell’s theorem thus:

Theorem. If T is a left-thick subsemigroup of S, then F has a left-invariant mean =

F| has a left-invariant mean.

2. Transformation Semigroups

Thickness can be dcfincd in the more general setting of a transformation scmigroup. This
scction defines such semigroups and other necessary terms.

Dcfinition 2.1. A transformation semigroup is a system (S.X.x) consisting of a semigroup S,
a sct X. and a mapping =: SxX -X which satisfies

1. =n(s,x(tx)) = n(st.x) (Vs.teSxeX);
2. n(ex) = x (WxeX) whenever S has two-sided identity e.

If n(s,x)=sx expresses the image of (s.x) under =, then condition (1) becomes s(tx)=(st)x and
condition (2) becomes ex=x.

The abbreviated notion (S.X) will denote a transformation semigroup whenever the
meaning of = is clear or whenever r is generic.

(T.Y) is a subtransformation semigroup of (SX) = T is a subsemigroup of S. YcX. and
TY<Y.

Definition 22 Let scmigroup S and set X both be endowed with Hausdorff topologies.
Transformation semigroup (S.X.x) is a topological transformation semigroup, or t-semigroup «

n is scparately continuous in the variables s and x.

Again, a t-semigroup will be denoted briefly by (S,X).

Let C(X) denote the sct of continuous and bounded complex- or real-valued functions on X.

Dcfinition 23. Let (S,X) be a t-semigroup. Tf denotes. for any seS and feC(X), the
function in C(X) defined by Tf(x)=f(sx) (¥xeX). If F is a lincar subspace of C(X). then F is §-
invariant = TfeF (VseS.feF). Notation: T = {T;|seS} and T,F = {T(f|feF}.

Observe that T,T, = T (Vs.teS).

Definition 24. Let (S.X) be a t-semigroup: F be a linear space <C(X) which is norm-
closed, conjugate-closed. S-invariant, and contains the constant functions; GeC(S) a linear spacc.
and let peF*. Define T f (VfeF) by T f(s) = u(T,D) (VseS). Then T,: F-B(S). Fis G-
introverted « T (F)cG (VueF*).

In the preceding definition F* may be replaced by C(X)* since every functional in F* can be
extended to a functional in C(X)*. Also it can be shown that F* can be replaced by M(F), the
set of all means on F. ‘

Definition 2.5. Let F be G-introverted. peF*, and AeG*. The evolution product of A and p,
denoted Ay, is defined by Apf = A(T,f) (VieF).

Note that ApeF* and that if G is norm-closed, conjugate-closed, and contains the constant
functions, then AeM(G) and peM(F) imply ApeM(F).

A mean on FcC(X) is defined in the same way as a mean on B(S) was defined in section 1.
If F is an algebra under pointwisc multiplication, then mean y is multiplicative = p(fg) = p(Dp(g)
(vi.geF).

Let M(F) = set of all means on F, and MM(F) = set of all multiplicative means on F. M(F)
and MM(F) are both w*-compact. being closed subscts of the unit ball in F*.

Mean peM(F) is invariant = u(Tf) = p(f) (VfeFseS). Note that y is invariant = e(s)T, =
T, (VseS).

An evaluation at xeX is defined by e(x)f = f(x) (VfeF): clearly an evaluation is a mean. A
finite mean on F is a convex combination of evaluations.

A mean is multiplicative if and only if it is the w*-limit of evaluations.



THICKNESS IN TOPOLOGICAL TRANSFORMATION SEMIGROUPS 495

A special case of transformation semigroup is furnished by letting X = S and x = A(°)
where A S-S is defined for any fixed seS by A(t) = st (VteS). If G=C(S) is a linear space, then
Lg(t) = g(st) (Vs.teS.geG): also, L.peM(G) = ApeM(G). If F<C(X) is a linear space then LT,
= T, T, (VseS.ueM(F)). Mean peM(G) is left-invariant = p(Lg) = p(g) (VgeG).

3. Thickness in Transformation Semigroups

Junghenn'’s generalization of F-left thickness carries over in a straightforward way to
transformation semigroups. The corresponding concept is defined in Definition 3.1, and a
plethora of alternative characterizations is given by Theorem 3.3.

Assumptions:

{(S.X) is a transformation semigroup;

G¢cC(S) is a subalgebra;

F<C(X) is an algebra which is norm-closed. S-invariant, G-introverted, and contains the constant
functions;

YcX.
Notation:

F(Y) = {geF|xys<g<1} = {geF|0<g<1, g=1 on Y}

Z(Y) = {geF|g=0 on Y}.

Definition 3.1. Y is F,S-thick in X = Ve>0,geF(Y), and finite U = {s,$,,....5,} S, 3xeX:
g(sx)>1~€ (k=1,..,n).

Remark 32 If X = S and the action is left multiplication, then the definition is identical to
Junghenn’s.

Relative to Theorem 3.3 b,h,ij infra it is necessary to recall that a norm-closed subalgebra F
of C(X) is also a closed lattice, so that, in particular, feF = |f|eF [Simmons, p. 159, lemma].

Theorem 33. The following statements are equivalent:

a. Y is FS-thick in X;

b. Ve>0, finite D = {g,,g,,...8} <F(Y),
finite U = {s,,5,,....5,}<S
xeX: inf {g,(s;x)|g;eD.,s, eU}>1—¢;

c. Ve>O, finite D = {g;,g,,....8,} <F(Y),
finite U = {s,,55.....5,} <S

n m
eX: 1 Y sis)>1—€ (i=1,..,m) and 1 Y g(sx)>1-€ (k=1,...n);
n = m i

ILeMM(F), VseS,geF(y): A(Tg) = 1 and A(g) = 1;

3ueM(F), VseS,geF(Y): u(Tg) = 1and p(g) = 1;

JpeM(F), VveM(G),geF(Y): vp(g) = 1;

Cle(Y) contains a compact MM(G)-invariant set;

Ve>0,geZ(Y), finite U = {5,55,...5,}<S xeX: |g(5,x)| <e (k=1,...n);
Ve>0, finite D = {g,,g5.m} Z(Y), finite U = {s,,5,,....5,}<S;
IxeX: sup{| g(s%) | |gjeD,skeU} <e:

j-  Ve>0, finite D = {g,g5.....gn} Z(Y). finite U = {s,,5,,....5,}<S:

Fw om0

-

IxeX:

S

n m
Y lg(six)| <€ (i=1,...m) and % Y lg(s0) | <e (k=1...n);
k=1 1=1

k. 3IreMM(F), VseS.geZ(Y): A(Tg) = 0 and A(g) = 0;
L. 3peM(F), ¥seS,geZ(Y): p(Tg) = 0and p(g) = 0;
m. JpeM(F), WeM(G),geZ(Y): vpu(g) = 0.
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PROOF: a = b: f(x) = inf {g(x)|g,eD} is in F(Y) because 0<g;<1, g,=1 on Y (i=1,...,m).
By (a) 3xeX: {(sx)>1—e (k=1....n). Because U is finite, inf {f(s,x)|s,eU}>1-e.

n
b —c: inf {g(5x)|geDseU}>1—€ = Y g(5x)2n [inf {g(s5)}]>n(1-¢)
k=1

m
and }° g(six)2m [inf {g,(s,x)}]>m(1—¢).

1=1

n
¢ = d: For each (e,U,D) in (c) choose x = x(e,U,D) so that — E g(spx)
k=1

>1—%e (VgeD). Let reU.geD. Then g(sx)<1 (k=1...n) = ¥ g(sx)sn—1= — ¥ g(s%)

S er sy er

2-n+1 = g(x) = i: gsx) — Y, g(sx)>1—e. Define (,UD) < (¢',U".D’) =
k=1 Syt
e2e’,UcU’,DcD’. The net {e(x(e,U,D))) ¢ MM(F) has a subnet {e(x;,)) which w*-
converges to some A’eMM(F), since MM(F) is compact. For >0 and (¢, U.D) 2 (3.{s},{g}) it
follows that 1-3<1—-e<g(sx(e,U,D)) = e(x(¢,U,D)) Tg by the earlier inequality. Therefore,
1-3<limy, [e(x,)(Teg)] = [limy, e(x,)] (Tg) = A'(T,g). Since 3 was arbitrary, 1<A'Tg.
Because 0sg<1, Teg<1, and so A’(T,g)<1. Thus, the first part of (d) is proven. Let veMM(G);
then A=vi’eMM(F) and (T, . Tg)(t) = A’ [T,Tg] = A'(Tyg) = 1 = A(Tg) = vA'(Tg) =
v[T,. Tg] = vl = 1; also vA'(g) = v[T,.g] = vl = 1.

d = e: MM(F)cM(F).

e =f: Let veM(G) and p be as in (e), so that (T g)(s) = (rTeg) = 1; then
ve(@) = v(Tg) = v(1) = 1.

f = a: We prove (not (a)) = (not (f)). Suppose 3e>0, heF(Y),U =

n
{5,598, }<S such that ¥xeX, 3s,eU: h(s,x)s1—e. Define v= 'l. Y e(s). Then (¥xeX)
k=1

n
[ve(x)]h = .l.ll Y h(s,x)<1—e/n because O<h<1 and, for some s, = s,, h(sx)s1—e. This
k=1

inequality, valid for all evaluations e(x), also holds for all finite means, and so for all limits

ueM(F) of finite means: vp(h)<i-— €. Therefore () is impossible.
n

d = g: Choose LeMM(F) as in (d). MM(G)A is then an MM(G)-invariant set.
Since Cl[e(Y)] is closed, it suffices to show that e(s)1eCl[e(Y)] for ¥seS. Suppose that 3sy:
€(sg)A ¢Cl[e(Y)]. Then, since MM(F) is compact Hausdorff and so completely regular,
3heC(MM(F)): 0<h<1, h(e(sg)A) = 0, and h(Cl[e(Y)]) = 1. g = heeeF(Y) because for yeY
g(y) = h(e(y)) = 1. Then A(Tsog) = [e(sg)r]g = h(e(sg)A) = O, contradicting (d).

g = d: Let I be an MM(G)-invariant set cCl(e(Y)). If Ael, then

e(s)Ael<Cl(e(Y)) (VseS). Therefore, A(T,g) = [e(s)A) g = 1 (VgeF(Y)). Clearly A(g) = 1
(VgeF(Y)).
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a = h: Assume Y is F,S-thick in X. Let €>0, geZ(Y), finite UcS. If g=0,

result is trivial; hence, assume that g»0. Then 1— T|]—|| |gleF(Y). Consequently, 3xeX:
[

1
- |g(s0)] 21—
Mell =~

€

lgll
h = a: Assume (h). Let €>0, geF(Y), finite UcS. Then 1-geZ(Y).

Therefore. 3xeX:|1-g(s;x)| <e = —e<1-g(s,x)<€ = —g(5,x)< —1+e=g(s;x)> 1—€ (k=1....n).
h =i: sup {Igjl |gJeD}eZ(Y), because g =0 on Y (j=1....m).
i = k: For each (¢,U,D) in (i) choose x = x(¢,U,D). Decfine

(e.U,D)<(€’ .U’ D’) = e2¢€’. UcU’, DcD’. The net <e(x(e,U,D))><MM(F) has a subnet

{e(x,)) which converges to some LeMM(F) since MM(F) is compact. Let 8>0. If (e,U.D) 2

(8.{s}.{g}), then 82€e>sup {Igj(skx(e.U.D))I IgjeD,skeU}zIg(sx(e,U.D))]. Ergo 82

lim, [e(x,) | Tgl] = [lim,e(x,)]| Tl = A|Tg|. Since 8 was arbitrary, the first part of (k) is

. whence |g(s,x)| <e (k=1....n).

proven. The second part is shown in the same manner as the second part of (c) = (d).

i = j: Trivial.

n
Y lgi(s)] (=1..n) =

j =i: In the first part of (j), replace e by £: £ >
n n k=1

o=

n
€> Y lg(six)| > sup {|gj(sx)| |geD.seeU).
k=1

k =1, 1 = m: Trivial.
m = h: We show (not (h)) = (not (m)). Suppose Je>0, heZ(Y), finite UcS

n
such that ¥xeX,3s,eU: |h(s,x)| 2ze. Dcfine v=l Y c(s,). Then VxeX: [v(ex)]Ih| =
n k=l

n
Y Ih(sx)| 2€/n, because |h| = 0 and for some s, = s,, |h(s,x)| 2e. Hence, replacing e(x) by
k=1

Sl

any finite mean, then for any peM(F), v |h|2€/n. Therefore (m) is impossible. QED
Remark 3.4. Parts d., e, k., and 1, of Theorem 3.3 suggest that S behaves with regard to
thickness as though it contained an identity. In fact, if S! denotes the semigroup S with a discrete
identity 1 adjoined, then Y is F,S-thick in X « Y is F.S!-thick in X where S! acts on X in the
natural way.
Corollary 3.5. If the characteristic function xyeF, then the following statements are
equivalent:
Y is F,S-thick in X:
V finite U = {sl,sz,....sn};;S.BxeX: sxeY (k=1,..,n);
Vv finite U = {s,,5,,...5,}S.3yeY: s yeY (k=1,...,n);
The family {s~!Y|seS} has the finite intersection property;

a o g

e stC' e(s™1Y) #0 where e(s'Y) = {e(x)|sxeY}.

PROOF: e =a: Let pesQSCI e(s~1Y:; also let seS. geF(Y). Then peCl e(s'Y),s0 3

net (x,) such that p=w*—lim e(x,) and sx €Y (Vn); whence pTg = [w*—lim, e(x;)] Teg =
lim; [g(sx,)] = liml; = 1. Now let 1eM(G). Then ApeM(F) and ApTg = A[T(T)] =
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A[LT,g] = A[LJ] = 1: also Ap(g) = A[T,g] = AuT,g] = A[1] = 1. Therefore by 3.3.e Y is
F,S-thick. QED
Results for transformation semigroups comparable to the theorems of section 1 can be
generalized in the same way as in [Junghenn 1979, p. 40, theorem 2).
Theorem 3.6. Let (S,X) be a transtormation semigroup;
(T.Y) be a subtransformation semigroup of (S.X); and
FcB(X) be a translation invariant, conjugate-closed, norm-closed
subalgebra which contains the constant functions.
If F has invariant mean p with respect to (T,X) such that inf {u(g)|geF(Y)}>0. then F|y
has invariant mean with respect to (T,Y).
PROOF: X is embedded in the compact set MM(F) by e(¢), and F=C(MM(F)) by the
Gelfand representation theorem. Also Cl ¢(Y)csMM(F). By the Riesz representation theorem,
the invariant mean p defines a regular Borel probability measure f§ on MM(F) such that u(f) =

I MM(nldl‘(VfiF)- Invariance of p is reflected in fi as follows:

A
jMM(HTC(,)fdp = j MM(BTlfdp = WTH = W = f L (MeT).

Since p is regular, f (Cl e(Y)) = inf{ f (U)|U open, Cl e(Y)cU}. Now let U be any open
set such that Cl e(Y)cU. Because MM(F) is normal, by Urysohn’s lemma, 3 2 eC(MM(F))~F
such that g (Cl e(Y))=1, g (U%)=0, and 0< g <1: thus 8 <xy; and g, the correlative of £, is in

F(Y). u(g) xydp = i(U). Therefore by hypothesis 0 <

= .[ MM(F)gd'1 < I MM(F)
inf {p(g)|geF(Y)} < inf { £ (U)|U open, Cl e(Y)cU} = i (Cl e(Y)). Ergo,

v(

1 PO
= T ) IG e(Y)fd“ is a mean on F.

Define v on Fly by vo(fly) = v(f). v is well-defined because f|y = g|y = f—geZ(Y) -

(f_/\g) =00n Cle(Y) =0 = v(f—g) = v(D—v(g). Also vgeM(F|y).

To show that v is invariant it suffices to prove that ICI e(\{)’I’e(,)fdﬁ = Ia e(Y)fdﬁ (VteT).

Fix teT. Define E; = e(t)~}(Cl e(Y))\Cl e(Y), E,, = e(t) " (E,_,) (n22).
The E,, are pairwise disjoint: peE, = e(t)peE; = e(t)p ¢Cl e(Y) = p¢E,, so E\nE, = 0. Assume
that E;; and E are pairwise disjoint (1sm<n). Then peE,,, = e(t)peE, = e(t)p €¢E, (1sm<n)
= pee(t)'Ep, = Epyyy = E, (2sp=m+1<n+1), 50 Epy;nE, = 0. Also peEy,; = (t)"peE,
(by induction) = ()" ¢Cl e(Y). but peE; = e(t)peCl e(Y) = e(t)"neCL e(Y) (by invariance of
Y), so E; . ,nE; = 0. The E_ are Borel sets since p - e(t)p is w*=continuous for YueMM(F).

Because (Vn22) Teq xE__l(p) = xE__I(e(t)u) = xe(l)"E__,(")’ it follows that

0 =0 -1 = i = i = . = § .
WEy) = Ke()™'Ey_y) = MM(Ey e 'E,_ I* = I MM(F) LEOXE, 48 I MM(F)*E,-1 9 W(Ey_1)
n
Therefore, 12 ft (E{UE,u...uE,) = z f (E]) = nfi(E,). Since this holds for arbitrary n,
)=l

f(Ey) =0
Because Y is invariant, e(T)Cl e(Y)<Cl e(Y), whence Cl e(Y) \ e(t)”!Cl e(Y) = 0. Since
Cl e(Y)Ae(t)"'Cl e(Y) = [Cl e(Y) \ e(t)™'Cl e(y)]UE, = E,, [Cl e(Y)Ae(t)"'Cle(Y)] = 0, s0

j a e(Y)Tem fdp = f o @ ey Tecw 148 = f wmc TewliXa ecr)ldii = J‘o cmf"“‘ QED
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Theorcm 3.7. Let (S.X) be a t-semigroup;
(T,Y) be a sub t-semigroup of (S.X);
FcB(X) be a translation invariant, norm-closed, G-introverted
subalgebra which contains the constant functions.

1. If F|y has an invariant mecan with respect to (T.Y) and T is G-thick in S, then F has an
invariant mean with respect to (S,X).
2. If G has a left-invariant mean and Y is F.S-thick in X, then F|y has an invariant mean with
respect to (T.Y).

PROOF: 1. Functional i in F|y* defines a functional u in F* by pf = wl|y (VIeF). thus
uwTf = uTf|y (VleF.teT). Therefore, because F is G-introverted. F|y is G|-introverted.

Reclative to the algebra F|y defined on (T.Y): Let i be an invariant mean of F|y: then
e(t)p =u(Ts)=p (VteT) where e(1)eMM(G| ). Let XeCl e(T) = MM(G|)., and let
{e(t))=e(T)eMM(G | 1) be a net such that T = w*—lim e(t,). Ergo,
A = [wx—lim e(t,)]{ = lim [e(t,)@] = lim_ji = @. Thatis, 1 = i (vAeCl ¢(T)).

Relative to the algebra F defined on (S,X): 3 left-ideal K of Cl ¢(S) in Cl e(T)csMM(G)
[Wilde & Witz, 1967, lcmma 5.1]. Choose ApeK. Then e(s)AgeK<Cl ¢(T)csMM(G) (VseS).

Any e Cl ¢(T)eMM(G) gives rise to a Xe Cl ¢(T)esMM(G/| ) in the following way:
l'=w*—lima e(t,)eMM(G). Now {e(t,)) is a net in e(T)sMM(G | ) so has a convergent subnet
(e(tg)) with T=w*—lim e(1,)eMM(G|). X may not be unique. For peF|y* define peF* by
uf=pl|y (VfeF) as we have done earlier. Then for all feF Anf ly = X(T;f ly) =
limg [c(ty) T f |y] = limg ﬁTt’f ly]ialso. Apf = A(T, ) = lim, [ET"HY]: ergo Au(f) =

Aa(E] y)» regardless of the choice of X which is associated with A.

Finally, choose g to be an invariant mean of F|y. and dcfine peM(F) as before. Then Ap(f)

= AE(fly) = W(fly) = u(b), that is, Ap=y (VAeCl c(T)=MM(G)). In particular, e(s)Agu =
u (VseS), so that Ayu is invariant.

2. Because Y is F,S-thick in X, then by Theorem 3.3.f 3peM(F) such that
vp(f) = 1 (VweM(G),feF(Y)). Let v be an invariant mean of G. Then vy is an invariant mean
of F such that vu(f) = 1 (VfeF(Y)). By Theorem 3.6 F|y has an invariant mean with respect to
(T,Y). QED

In the preceding theorem the thickness condition on T in (1) implies the thickness condition
on Y in (2) according to the following lemma:

Lemma 38 Let (S.X) be a t-semigroup;

(T,Y) be a sub t-semigroup of (S,X);
FcB(X) be a translation-invariant, norm-closed, G-introverted
subalgebra which contains the constant functions.
If T is G-thick in S, then Y is F.S-thick in X.

PROOF: Let feF(Y): 0sf<l, f=10onY. Then Te(yfeF(T) (VyeY). By Theorem 3.3.e
applied to L(S,G) 3ueM(G) such that 1 = D(LsTc(y)f) = p(Te(y)Tsf) = pe(y)Tfand 1 =
pTe(y)f = pe(y)f. Then pe(y)eM(F) has the properties required by Theorem 3.3.e for Y to be
F,S-thick. QED

Junghenn’s theorem of section 1 is obtained from Theorem 3.7 and Lemma 3.8 by letting
X =S, Y =T, and the action be left multiplication.

4. Multiplicative Means and Thickness
Several results connect multiplicative means with thickness. F is assumed to be an S-

invariant, norm-closed algebra <C(X) which contains the constant functions.
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Theorem 4.1 If F has an invariant multiplicative mean, then for any finite partition {A;}}
of X 3k such that A, is F.S-thick.

PROOF: Let veMM(F) be invariant. v induces a regular Borel probability measure ¢

n
dcfincd on MM(F), and E ¥ (Cl e(A)))21. Because v is multiplicative, for each i ¢ (Cle(Ay)
1

=0or 9(Cle(A)) = 1. Hence, 3k such that 9 (Cl e(Ay)) = 1. Therefore, v(f) = 1 (VfeF(A))
becausc XA, <fgl -Xc,e(Ak) sf<land1=%(Cl e(Ay)) = Ixa c(Ak)dG < Ifd\‘r =v(f)sl.

Then., by Theorem 3.3.d A, is F.S-thick. QED
Dcfinition 42. K(fs) = {peMM(F)|p(Tf-f) = 0}
Theorem 4.3. The following are equivalent:

a. F has an invariant multiplicative mean;

b. Itis not the case that MM(F) = |J K°(f.s):
feF

seS

n
c. Itis not the case that 3f),...f €F; 3s...5,€S: MM(F) = |J K°(f.s)):

i=1
n
d Vi f€Fi Vs ,..5,€S: V 850, Ixze(xg) Y | T f,—f]<8;
1=1 !

e ViL.feF Vs,,.,50€8: vV 8>0, 3 x¢ T, f(x5)—(x5)| <8 (i=l.....n):
f. V.. €F; Vs,..5.€S: Ihe MM(F): A|T - | =0 (i=l,....n);
g VI, feF; Vs, .5.€S: ke MM(F): A(T [[—f) = 0 (i=l...,n):
h. Ve>0; V f,,...[ €F; V 5,,....5,€S: 3¢;..c,€C I YeX: [ —c, | <e and

ITsl fy—cx| < € onY (k=l...n) and Y is F.S-thick in X.

PROOF: a = b: F has an invariant multiplicative mean «~31eMM(F): 1eK(f;s) (VfeFseS) -
the K°(f;s) do not cover all of MM(F).

~b = ~c: MM(F) is compact and the K(fs) are open.
~c = ~d: Let f;,..f eF and s,,...5,€S be as in the negation of (c). If for any 3>0 IxgeX

such that e(x;) Y lTskfk -fl =Y |Tskfk("s) - f(x;) | <8, then the net

(e(%5))5>0 = MM(F) contains a convergent subnet (e(x; )¢ 4 Of {e(x)) and

ws—lim, e(x; ) = Ae MM(F): thus, for any e>0 JageA: a2ap=|1) ) fil -
e )Y 1T, i~ || < % Let a €A be >aq and such that 8, < .;.,so that
et )X 1T fe— bl < ; Then 0 s AY | T f =l <e(xg ) 3 1T b= f |+

< _+

=€. Since e was arbitrary. 1) lTskl'k -l =0= lTskt"k -fi | =

N m
Nl m

€
2

n
0 (vk) = A(Tskfk —f,) = 0 (Vk). The last equation contradicts that A € H K°(f.s,)-
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~d =~ ~c: Suppose that 3 f,,...f eF and s,....5,€S and 3>0 such that
(W¥x) c(x) Z lTskfk —fi 123, Let xeMM(F), so that A = w*~lim e(x,) with x eX (Vv).
Then A Y | T, fi = fi| = we —lim e(x,) ¥ I T, f—f| 2 & = 3k° such that
]

M P 'Tskofk" = ol = IA(Tskofko —f0)] (x]gl = | Ag| because 1 is multiplicative)

n
= AT fpo = f0) » 0 = AeK(f0.50) = AeK (f0.50) = ;\ekU=l K(f .5y )

¢ =f: {e(x;))s>0 is a net in MM(F) so has a convergent subnet (e(xac))“ A Let 2

denote the w*—limit of {e(x; )). Then by the same reasoning as in -¢ = ~d, Ja; €A such
a

that 0 s A|T, f ~f | < e(x ) I T f—fl + % <€ + £ = €. Since e is arbitrary,
L]

€
2

N

MT, -6 | =0,

f =e: Since AeMM(F), A = w*~lim e(x,) for some net {e(x,)) with x eX (Vv). By the
d'eﬁnilion of w*-convergence, for any $>0 3 e(x,)e {e(x,)) such that
e(x‘)lTSlf‘—fil <3 (i=l...n).

a = h: Assume (a) and let f,,...,f €F; s,,...5€S: and € > 0.

Notation: L(ry,...rp) = £71(S,(r))nf, 1S, (rp))n..nf, (S (1)) N (Tslfl)"(S‘(r,)) NN
(Tsnfn)"(S‘(rn)) for ry,...1,€C, where S (r,) = {xeC| |x—r,| <€} (k=L1....,n). If some L(ry,...,r)
is F,S-thick, then it suffices for the Y of (h) with r; = c,,...r, = ¢,. Assume that no L(ry....rp) is
F,S-thick. A contradiction shall be deduced. For each non-empty L(r,.....r;) and for each
AeMM(F), 3seS, 3geZ(L(ry.....r;))) such that A(T(g)) * 0 by (k) of Theorem 4.3. In particular, if
A is invariant, then A(g) = A(Ty(g)) # 0. Let {e(x,)) be a net in MM(F) such that

A = ws—lim e(x,). Then for i=l...n, 3N, such that v > N, = |f(x;) — Af;] < € and
v

|Ts,f1(xv) — Af;| < e; this entails that v > N{,N,..N; = |f(x,) — Af, | < e and
IT 6 (x,) = Af| < e (i=l..n) = x,eL(Afy,...Af). For L(Afy,... ), IgeZ(L(AL,,—AEp)) with

A(g) = 0, as previously noted, so g(x,) = 0 for all vaN,,N,,...N;. Therefore,
A(g) = lim, e(x,)g = 0, a contradiction.

d=e e =d feg h=e Easy QED
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