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ABSTRACT. This article deals with thickness in topological transformation semigroups

(x-semigroups). Thickness is used to establish conditions guaranteeing an invariant mean on a

function space defined on a x-semigroup if there exists an invariant mean on its functions

restricted to a sub-x-semigroup of the original x-semigroup. We sketch earlier results, then give

many equivalent conditions for thickness on :-semigroups, and finally present theorems giving

conditions tbr an invariant mean to exist on a function space.
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Mitchell introduced the concept of left-thickness in a semigroup [Mitchell, 1%5]: a subset T

of semigroup S is left-thick in S ’’ finite U S, ::it,S: Ut T.

Any left ideal of a semigroup is left-thick, but not conversely. The complete relationship

between left ideals and left-thick subsets is this: Let I(S) be the Stonc-ech compactification of

semigroup S endowed with the discrete topology, and let T S. Then T is left-thick in S the

closure of T in I(S) contains a left ideal of I(S) [Wilde & Witz, 1967, lemma 5.11. (See Theorem

4.3.g infra for a more general formulation of this result.)

It can be shown that in the definition can be taken in T or U can be a singleton.

Let B(S) the set of all bounded complex- or reiii-valued functions on semigroup S. For

any sS and feB(S), Tsf denotes the function in B(S) defined by Tsf(t fist) (VtS).

A mean on B(S) is a member of the dual space B(S)* of B(S) which satisfies (1)

I11. Mean I is invariant -i(Tsf If (VsS,fB(S)).
The importance of left-thickness for our subject is because of this theorem [Mitchell, 1965,

theorem 9].
Theocmrt Let T be a left-thick subsemigroup oJ’ semigroup S. Then B(S) has a left-

invariant mean -B(T) has a left-invariant mean.
H. D. Junghenn generalized Mitchell’s concept of left-thickness [Junghenn, 1979, p. 38].

First it is necessary to define more terms.

Subspace F of B(S) is left.translation invariant TsfF (VsS,fF). Let IF*, the dual space

of F; define Tf (VfF) by Tgf(s) la(Tsf (VsS). Then T: F--B(S). F is left-introveed
T(F)F (VtF*).

Definition. Let S be a semigroup; F:B(S) be a Icft-translation invariant, left-introverted,

norm-closed subalgebra containing the constant functions: T:S be non-empty;

F(T) {gFIXTggI}. Then

T is F-left thick in S V>0,geF(T), and finite U {Sl,S2 Sn}=S sS: g(ss) > l- (i=l n)

If XTF, then Junghenn’s definition of F-left thickness reduces to Mitchell’s definition of left-

thickness: let g =’XT, then for 0<<1, 1-<g(ss) XT(SS) ssT (i=l n).
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Junghenn generalizes Mitchell’s theorem thus:

Thammt If T is a left-thick subsemigroup of S, then F has a ieft-invariant mean
F[ T has a left-invariant mean.

Thickness can be defined in the more general setting of a transformation semigroup. This

section defines such scmigroups and other necessary terms.

Dcl’mition 2.1. A transformation semigroup is a system (S,X,t) consisting of a semigroup S,

a set X. and a mapping x: SxX -.X which satisfies

1. x(s,(t,x)) x(st,x) (Ws,teS,xX);
2. x(c,x) x (xeX) whcncvcr S has two-sided identity c.

If (s,x)=sx expresses the image of (s,x) under g, then condition (1) becomes s(tx)=(st)x and

condition (2) becomes cx=x.

The abbreviated notion (S,X) will denote a transformation scmigroup whenever the

mcaning of x is clear or whcncvcr x is generic.

CI’,Y) is a subtmnsformation semigroup of (S,X) T is a subsemigroup of S. YX. and

TYY.
Dcf’mition 2.2, Let scmigroup S and set X both be endowed with Hausdorff topologies.

Transformation semigroup (S,X,g) is a topological transformation semigroup, or r-semigroup

x is separately continuous in the variables and x.

Again, a x-semigroup will be denoted briefly by (S,X).

Let C(X) denote the set of continuous and bounded complex- or real-valued functions on X.

Definition 2.3. Let (S,X) be a x-semigroup. Tsf denotes, for any sS and fC(X), the

function in C(X) defined by Tsf(x)=f(sx (xX). If F is a linear subspace of C(X), then F is S-

invariant TsfeF (’sS,fF). Notation: Ts {TsiseS} and T.F {Tsf[feF}.
Observe that TtT Tst (Vs,teS).
Definition 2.4. Let (S,X) be a -scmigroup: F be a linear space C(X) which is norm-

closed, conjugate-closed. S-invariant, and contains the constant functions; GC(S) a linear space.

and et l:*. tne "rr (1=3 by T,f(s) ,O’t) (WseS). Then T,: I:-.B(S). is e-
introverted T,(F)-G (’v’lF*).

In the preening definition F* may be replaced by C(X)* since every functional in F* can be

extended to a functional in C(X)*. Also it can be shown that F* can be replaced by M(F), the

set of all means on F.
Definition 2_5. Let F be G-introverted, pF*, and keG*. The evolution product of J, and

denoted .p, is def’med by J-If (Tsf) ([’F).
Note that leF* and that if G is norm-closed, conjugate-closed, and contains the constant

functions, then .M(G) and IeM(F) imply ,IM(F).
A mean on FC(X) is defined in the same way as a mean on B(S) was defined in section 1.

If F is an algebra under pointwisc multiplication, then mean I is multiplicative Is(fg) p(f)P(g)

(,ge’).
Let M(F) set of all means on F, and MM(F) set of all multiplicative means on F. M(F)

and MM(F) are both w*-compact, being closed subsets of the unit ball in F*.

Mean IeM(F) is invariant I(Tsf) I(f) (feF.sS). Note that I is invariant --e(s)T
"r, (sS).

An evaluation at xeX is defined by e(x)f f(x) (l’eF): clearly an evaluation is a mean. A

finite mean on F is a convex combination of evaluations.

A mean is multiplicative if and only if it is the w*-Iimit of evaluations.
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A special case of transformation semigroup is furnished by letting X S and g ,(.)
where a.s: S--S is defined for any fixed sES by .s(t) st (S). If GgC(S) is a linear space, then

Lsg(t g(st) (Vs,tES.gEG); also, X,IM(G) klaeM(G). If FgC(X) is a linear space then LsT
TuT (VsES.IEM(F)). Mean IEM(G) is left-invariant p(Lsg I(g) (VgG).

Junghenn’s generalization of F-left thickness carries over in a straightforward way to

transformation semigroups. The corresponding concept is defined in Definition 3.1, and a

plethora of alternative characterizations is given by Theorem 3.3.

Assumptions:

(S,X) is a transformation semigroup;

G=C(S) is a subalgebra;

F=C(X) is an algebra which is norm-closed, S-invariant, G-introverted, and contains the constant

functions;

YX.
Notation:

F(Y) (gFIgy,:gl} {gFI0,:gl, g-=l on Y}

Z(Y) {gFIg---0 on Y}.

Definition 3.1. Y is F,S-thick in X V>0,gF(Y), and finite U {sl,s2 sn},.S, :lxX:

g(slrx)>l-E (k=l n).
Remark 3.2. If X S and the action is left multiplication, then the definition is identical to

Junghenn’s.

Relative to Theorem 3.3 b,h,i,j infra it is necessary to recall that a norm-closed subalgebra F

of C(X) is also a closed lattice, so that, in particular, fEF Ill tF [Simmons, p. 159, lemma].
Theorem 3.3. The following statements are equivalent:

a. Y is F,S-thick in X;
b. ’e>0, finite D {gl,g2 gm}gF(Y)

finite U {Sl,S2 Sn}r.S
lxX: inf {gt(slt.x)[giD,s:U) >

c. Ve>0, finite D {gl,g gm}=F(Y)
finite U {sl,s2 sn}=S

n m
lxtX: -1 gi(skx)>1_ (i=1 m) and _1 g,(sx)>l- (k=l n);

n k=l m ill

d. :IJLMM(F), VseS,geF(y): ;t(Tsg and a.(g) 1;

c. teM(F), VseS,geF(Y): i(Tsg and (g) 1;

f. =llzeM(F), VwM(G),gF(Y): vp(g) 1;

g. CIe(Y) contains a compact MM(G)-invariant set;

h. Ve>0,geZ(Y), finite U {Sl,S2 sn}=S lxeX: [g(st.x)[ < (k=l n);
i. Ve>0, finite D {gl,g2 gm}..Z(Y), finite U {sl,s2 sn}-.S;
X: sup{ Igj(sx)l IgjD,skU} <:

j. V>0, finite D {g,g2 gm}Z(Y), finite U {s,s2 sn}gS:
n rrl

txX: -1 ig,(skx) < (i=l m) and _1 Ig,(s#)l < (k=l n);
n k=l m

k. tMM(F), S,gZ(Y): X(Tsg 0 and X(g) 0;

1. IxM(F), S,gEZ(Y): P(Tsg 0 and I(g) 0;

m. IM(F), VveM(G),geZ(V): v.(g) 0.
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PROOF: a b: f(x) inf {g,(x)lg,eD} is in FOr) because 0<gi<l, g,-1 on Y (i=l m).
By (a) xeX: f(skx)> l-e (k=l n). Because U is finite, inf {f(skx)lskeU)> l-e.

n
b c: inf {g,(skx)lg,eD.skeU} > l-e g,(skx)>n [inf {g(skx)}l>n(1-e)

k=l

m

and g,(skx)>m [inf {g,(skx)}l>m(1-).
I=l

n
c d: For each (,U,D) in (c) choose x x(,U,D) so that _1 g(skx

n k=l

>1 -- (VgD). Let rU,gCD. Then g(skx)<l (k=l n) g(skx)n-I g(skx)
n

ktt

n
>-n+ g(rx) g(skx g(skx)> 1--e. Define (e,U,D) (’,U’,D’)

k=l

e>e’,U=U’,D=D’. The net (e(x(e,U,D))) = MM(F) has a subnct (e(Xm)) which w*-

converges to some .’eMM(F), since MM(F) is compact. For/>0 and (e,U,D) > (/,{s},{g}) it

follows that 1-/,:l-e<g(sx(e,U,D)) e(x(e,U,D)) Tsg by the earlier inequality. Therefore,

1-/i<limm [e(Xm)(Tsg)] [limm e(Xm) (Tsg) .’(Tsg). Since/ was arbitrary, <.’Tsg.

Because 0<g<l, Tsgl, and so 7.’(Tsg)<l. Thus, the first part of (d) is proven. Let veMM(G);
then X=vT.’eMM(F) and (Tx,Tsg)(t) .’ lTtWsg ;t’(Tstg 7.(Tsg vT.’(Tsg)
v[Tx,Tsg vl 1; also vX’(g) v[T;.,g] vl 1.

d e: MM(F)M(F).
e f: Let veM(G) and It be as in (e), so that (T,g)(s) (ttTsg) 1; then

vii(g) v(Tg) v(1) I.

f a: We prove (not (a)) (not (f)). Suppose ::le>0, heF(Y),U
n

{sl,s:2 sn}=S such that VxX, :lsxCU: h(sxX) <l -. Define v= e(sk). Then (VxeX)
n k=l

rl

[ve(x)]h _1 h(SkX)l_e/n because 0<h<l and, for some sk Sx, h(skx)l--e. This
n k=l

inequality, valid for all evaluations c(x), also holds for all finite means, and so for all limits

iteM(F) of finite means: vl(h)<l- e_.. Therefore (f) is impossible.
n

d g: Choose .eMM(F) as in (d). MM(G). is then an MM(G)-invariant set.

Since Cl[c(Y)] is closed, it suffices to show that c(s).Cl[c(Y)] for X/sS. Suppose that Iso:
e(s0)X X31[e(Y)]. Then, since MM(F) is compact Hausdorff and so completely regular,

:IheC(MM(F)): 0<h<1, h(c(s0)X 0, and h(Cl[c(Y)]) I. g h,ceF(Y) because for yCY

g(y) h(c(y)) I. Then X(Ts0g [c(s0).]g h(c(s0). 0, contradicting (d).

g --d: Let bc an MM(G)-invariant sct =CI(c(Y)). If Xel, then

e(s)eICI(e(Y)) (VsS). Therefore, .(Tsg [e(s).] g (VgeF(Y)). Clearly .(g)

(VgaF(Y)).
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a h: Assume Y is F,S-thick in X. Let >0, gZ(Y), finite U.S. If g-O,

glF(Y)- Consequently. iixX:result is trivial: hence, assume that g,,0. Then 1- Igl---

Ig(sx)l > 1- ,whence Ig(sx)i< (k=l n).

h a: Assume (h). Let >0, gF(Y), finite U..S. Then 1-gZ(Y).
Therefore, xX:] 1-g(skx)l < -<l-g(slrx)< --g(skx)< -1+-g(slrx)> 1- (k=l n).

h -i: sup (IgjI [gjeD}Z(Y), because gj=-0 on Y (j=l m).

k: For each (e,U,D) in (i) choose x x(,U,D). Define

(,U,D)(’,U’,D’) >’, UU’, DD’. The net <e(x(,U,D))>MM(F) has a subnet

(e(Xm)) which converges to some XMM(F) since MM(F) is compact. Let/ >0. If (,U,D)

(/,{s},{g}), then/>>sup ([gj(skx(,U,D)) [gjCD,skCU}>lg(sx(,U,D))[. Ergo

limm[C(xm)lTsgll [limme(xm)lITsg .[Tsg I. Since/ was arbitrary, the first part of (k) is

proven. The second part is shown in the same manner as the second part of (c) (d).

j" Trivial.

n

-i: In the first part of (j), replace by -" - > _1 [gj(skx)
n n n k=l

> Ig(sx)l > sup Igj(skx)l IgjCD,skCU}.
k=l

k i, m: Trivial.

m h: We show (not (h)) (not (m)). Suppose q>0, heZ(Y), finite U=S

such that VxX,::tsU: Ih(s)l a. Define v=- C(Sk). Then VxX: [v(e(x))llhl
rl k=i

n

]h(SkX)] a/n because [hl > 0 and for some k x, [h(skx)] >. Hence, replacing e(x) by
n k=l

any finite mean, then for any pM(F), vlxlhl >e/n. Therefore (m) is impossible. QED

Remark 3.4. Parts d., e., k., and 1., of Theorem 3.3 suggest that S beha,ves with regard to

thickness as though it contained an identity. In fact, if S1 denotes the semigroup S with a discrete

identity adjoined, then Y is F,S-thick in X Y is F,Sl-thiek in X where S acts on X in the

natural way.

Corollary 3.5. If the characteristic function ,yF, then the following statements are

equivalent:

a. Y is F,S-thick in X;

b. V finite U {sl,s2 sn)=S,txX: skxtY (k=l n);
c. ’’ finite U {sl,s2 SnJmS,:lyY: skyeY (k=l n);

d. The family {s-lyIsS} has the finite intersection property;

e. [")Cl e(s-ly) ,0 where e(s-ly) {e(x)lsxeY}.
s

PROOF: e a: Let iessCI e(s-1)Y; also let seS, geF(Y). Then eC! e(s-ly), so !

net (xn) such that tx =w*-lim e(Xn) and sxnCY (Vn); whence IxTsg [w*-limn e(xn) Tsg

limn [g(SXn) limln 1. Now let .M(G). Then XIXM(F) and ixTsg X[T(Tsg)]
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a.[LsTug k[Lsl 1: also a.it(g)= .[T,g]-- .[itT(.)g .[1] 1. Therefore by 3.3.e Y is

F,S-thick. QED

Results for transformation semigroups comparable to the theorems of section can be

generalized in the same way as in [Junghenn 1979, p. 40, theorem 2].
Theorem 3.6. Let (S,X) be a transformation semigroup;

(T,Y) be a subtransformation semigroup of (S,X): and

F.B(X) be a translation invariant, conjugate-closed, norm-closed

subalgebra which contains the constant functions.

If F has invariant mean it with respect to (T,X)such that inf {it(g)lg(F(Y)} >0, then

has invariant mean with respect to (l’,Y).

PROOF: X is embedded in the compact set MM(F) by e(o), and F-C(MM(F)) by the

Gelfand representation theorem. Also C! e(Y)=MM(F). By the Riesz representation theorem,

the invariant mean it defines a regular Borel probability measure I on MM(F) such that it(f)

iM(F)[’dfi(Vf’tF).
Invariance of is reflected in ]l as follows:

A
fMM(F)T(,)i’d fMM(F)T, d (T,f) (f) fMM(F)td (i:T).

Since it is regular, fI (C! e(Y)) inf{ fi (U)IU open, CI e(Y)=U}. Now let U be any open
set such that CI e(Y)=U. Because MM(F) is normal, by Urysohn’s lemma, ! (C(MM(10)-F
such that (CI e(Y))=l, (UC)-=0, and 0 1: thus Xu and g, the correlative of , is in

F(Y). g) fMM(10dfi fMMfl0xudfi U). Therefore by hypothesis 0 <

inf {it(g)[g(F(Y)} < inf fI (U)[U open, CI e(Y)=U} 2 (C! e(Y)). Ergo,

v(f)
Cl e(Y)) fcI e(Y)fdt is a mean on F.

Define v0 on F[y by v0(fly v(f). v0 is well-defined because f[y

(f_g) 0 on CI e(Y) -0 v(f-g) v(f)-v(g). Also v0(M(F]y).

To show that u0 is invariant it suffices to prove that fcl e(y)Te(t)dft fOe(y)dO (VtE T).

Fix tET. Define E e(t)-l(cI e(Y))\CI e(Y), En e(t)-l(En_l) (nz2).
The En are pairwise disjoint: iteE2 -e(t)iteE -e(t)itcCI e(Y) it fE1, so Ett’2 0. Assume

that Em and En are pairwise disjoint (lm<n). Then iteEn+ e(t)iteEn e(t)tt,Em (lm<n)

itf-e(t)-lEm Era+ Ep (2p=m+l<n+l), so En+lC 0. Also IXEn+ e(t)nlttEt
(by induction) e(t)nit fCI e(Y), but itEE e(t)itCI e(Y) e(t)nitCL e(Y) (by invariance of

Y), so En+ lt’tE1 0. The En are Borel sets since it e(t)it is w* =continuous for VtteMM(F).

Because (Vnz2) Te(t)XE,_ (IX) XE,_t(e(t)ix) Xe(t)-tE,_t (Ix), it follows that

fi(En) fi(e(t)-lEn_l) fMM(F)Xe(t)-E_dt fMM(1oTe(t)XE,_d) fMM(1OXE,_td En_l).

rl

Therefore, lz I (EloE2o...oEn) [ I (Ej) n fl (E,). Since this holds for arbitrary n,
l;l

I (El) 0.

Because Y is invariant, e(T)CI e(Y)=CI e(Y), whence Cl e(Y) e(t)-lCl e(Y) . Since

CI e(Y)Ae(t)-Cl e(Y) [CI e(Y) e(t)-Cl e(y)]oE El, I [CI e(Y)Ae(t)-ICI e(Y)] 0, so

fcI e(y)Te(t) d fe(t)-I cI e(y)Te(t) dO fMMtF)TettI[i’XCI e(vlld fc! e(Y)
do" QED
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Theorem 3.7. Let (S,X) be a x-semigroup;

(T,Y) be a sub r-semigroup of (S,X);

FeB(X) be a translation invariant, norm-closed, G-introverted

subalgebra which contains the constant functions.

1. If F has an invariant mean with respect to if,Y) and T is G-thick in S, then F has an

invariant mean with respect to (S,X).

2. lf G has a left-invariant mean and Y is F,S-thick in X, then Fly has an invariant mean with

respect to (T,Y).

PROOF: 1. Functional " in Fly* defines a functional I in F* by If ’flv (Vt’F), thus

iTtf --Ttt" y (’fF,tT). Therefore, because F is G-introverted, Fly is G I-r-introverted.
Relative to the algebra FI defined on (T,Y): Let " be an invariant mean of FI ; then

e(t)=(Tso)= (’tT) where e(t)eMM(GIT). Let XeC! e(T). MM(GIT), and let

(e(t))c(T)=MM(GIT) be a net such that - w*-lim e(ta). Ergo,. Iw.-lim e(ta)l lim [e(ta)] iima . That is, . (’’k CI e(T) ).

Relative to the algebra F defined on (S,X): ::! left-ideal K of CI e(S) in CI e(T)=MM(G)
[Wilde & Witz, 1967, lemma 5.1]. Choose k0lC Then e(s).0K=Cl e(T)MM(G) (sS).

Any , CI e(T)=MM(G) gives rise to a CI e(T)=MM(GIT in the following way:

.’=w*-lim e(ta)MM(G). Now (e(ta))is a net in e(T)=MM(GIT) so has a convergent subnet

(e(tt0) with =w*-lim e(t#)MM(GIT). X may not be unique. For ’FIv* define IF* by

if=fl y (Vt’F) as we have done earlier. Then for all fF . y ;t (T y)

limt [c(t)T Iyl limt Ttlf Iv 1’ also. .lf .(T,f) lira [Tt.fly 1" ergo tl(f)

Xg(fly), regardless of the choice of - which is assocmtcd with ..
Finally, choose " to be an invariant mean of FIv, and define IM(F) as before. Then kl.t(f)

Xg(fly) ’(fly) ,(f), that is, .t=lx (VXCI c(T)MM(G)). In particular, c(s)X01,t

I (VsS), so that .01 is invariant.

2. Because Y is F,S-thick in X, then by Theorem 3.3.f ::ItM(F) such that

vl(f) (’’vM(G),fF(Y)). Let v be an invariant mean of G. Then vl is an invariant mean

of F such that vt(f) (VftF(Y)). By Theorem 3.6 Fly has an invariant mean with respect to

if,y). QED

In the preceding theorem the thickness condition on T in (1) implies the thickness condition

on Y in (2) according to the following lemma:

Lemma 3.8. Let (S,X) be a -semigroup;

if,Y) be a sub x-semigroup of (S,X);

F=B(X) be a translation-invariant, norm-closed, G-introverted

subaigebra which contains the constant functions.

If T is G-thick in S, then Y is F,S-thick in X.

PROOF: Let fF(Y): 0fl, fl on Y. Then Te(y)fF(T (yY). By Theorem 3.3.e

applied to L(S,G) ::IIM(G such that g(LsTe(y)f) (Te(y)Tsf) Ie(y)Tsf and

lxTe(y)f te(y)f. Then lae(y)eM(F) has the properties required by Theorem 3.3.e for Y to be

F,S-thick. QED

Junghenn’s theorem of section is obtained from Theorem 3.7 and Lemma 3.8 by letting

X S, Y T, and the action be left multiplication.

4. Multiplicative Mean. and

Several results connect multiplicative means with thickness. F is assumed to be an S-

invariant, norm-closed algebra =C(X) which contains the constant functions.



500 T. HAYNES

Theorem 4.1 If F has an invarian! multiplicative mean. then for any finite partition {A}
of X Ik such that Ak is F,S-thick.

PROOF: Let vMM(F) be invariant, v induces a regular Borel probability measure 9

defined on MM(F), and (CI e(A))>I. Because v is multiplicative, for each 9 (CI e(Ai)

0 or 9 (el e(Ph) 1. Hence. 3k such that 9 (el e(A))= 1. Therefore, v(f)= (Vf(F(Ak))

because XA < f< 1--Y.le(A0 <i" and , (C! e(A)) Xc e(Aa)d < .[:d v(f)<l.

Then. by Theorem 3.3.d Ak is F,S-thick. QED

Definition 4.2. K(f,s) {I,(MM(F)II(Tsf-f 0}

Theorem 43. The following are equivalent:

a. F has an invariant multiplicative mean;

It is not the case that MM(F) : U KC(f,s):
fCF
sES

n

It is not the case that :if fn(F; 3s sncS: MM(F) : U KC(f,,st)
i=l

n

V fl fnEF; V s snS; V/$ >0; =:l x,: e(x,) E Ts, ft-f,I <

e. Vf fn(F;Vs Sn(S;V6>(),3x: Ts, f,(x)-f,(x)l</t (i=l n);

f. V fl fn(F; Vs snS: X MM(F): XIT,, l-f,l 0 (i=l n);

g" fl fnF;Vs snS;MM(: (Ts, f,-f,) 0 (i=l n);

h. >0;f fnF;s snS: Bc cn S Y: ]fa-ck]< and

ITs, fa-ck] < on Y (k=l n) and Y is F,S-thick in X.

PROOF: a b: F h an invariant multiplicative mean --MM(: K(f) (F,sS)
the KC(f,s) do not ver all of MM(.

-b : MM( mpact and the Ke(f,s) are on.
-c : t f fnF and s snS m in the negation of (c). If for any $ >0X

such that e(xa) ITs, fk fk ]Ts, fk(x) f(x < $, then the net

(e(x))>0 MM( contains a convergent subnet (e(x,)),, A of (e(x)) and

w.-lim= e(x=) XMM(" thus, for any >0 0A: au--I Ts,fa fa]

e(x,=) ]Tstfi fk < - Let ,t,(A be >t0 and such that /t., < ,( so that

e(,,s.,) IT,,f,-q, <$2" Then 0.E lT,t,f, -fkl < e(xs.,,)" T,.,f,-f,

(. Since ( was arbitrary. ).y Ts,f fk 0 T,, fk fk
2 2 2

0 (Vk) .(Tstf fk) 0 (Vk). The last equation contradicts that X U KC(fi.s,)
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-d -c: Suppose that :ifl fneF and sneS and >0 such that

(Vx) c(x) Tstfk fkl - Let XeMM(F), so that w*-lim e(xv) with x,eX (Vv).

Then X ITsfk--fk[ w.--lim c(xv) ITsfk--fkl tt ::ik0 such that

-n X TsofkO. fko X(TsofkO fo) (xlgl -gl because X is multiplicative)

n

(TsofkO- fko , 0 .K(fko,sko XCKC(fko,sko)- .J KC(fk,sk).

c f: (e(xs)>s>0 is a net in MM(10 so has a convergent subnet (e(xsa))aA. Let X

denote the w*-limit of <e(xs=)). Then by the same reasoning as in -c -d, ]a A such

+_ +_ . Since is arbitrary.that 0 ’[Ts
k. fk fk < e (xs,,, [Ts fk fk] 2 < -2 2

k lTst fk- fl 0.

e: Since kCMM(F), k w*-lim e(xv) for some net (e(xv)> with xvCX (Vv). By the

definition of w*-convergence, for any >0 e(xt) (e(xv)) such that

e(xs) lTs,ft-fi{< (i=i n).
a =,h: Assume(a) andletfl fneF;s snS;and > 0.

Notation: L(r rn) f-l(S,(rl))Cff2-1(S,(r2))ct..t’ffn-l(S,(rn)) c (T fl)-l(S,(rl))
(Tsnfn)-l(S,(rn)) for rnC, where S,(rk) {xCI [x-rl<} (k=l n). If some L(r rn)
is F,S-thick, then it suffices for the Y of (h) with r c n cn. Assume that no L(r rn) is

F,S-thick. A contradiction shall be deduced. For each non-empty L(r rn) and for each

.MM(F), =:lsS, =:lgCZ(L(r rn) such that X(Ts(g)) , 0 by (k) of Theorem 4.3. In particular, if

X is invariant, then L(g) .(Ts(g)) , 0. Let (e(x,)) be a net in MM(F) such that

). w, lim e(x,). Then for i=l n, :IN, such that v z N, Ift(x,) .fil < and

ITs, f,(xv) kfi < " this entails that v z N1,N2 Nn [f(x) Xft < and

[Tsft(xv) Xf < (i=i n) xvCL(kf Xfn). For L(Xf ’fn), --tgtZ(L(.f ’fn)) with

X(g) , 0, as previously noted, so g(x) 0 for all v zNI,N2 Nn. Therefore,

X(g) iim, e (x,)g 0, a contradiction.

d e, e d, f-. g, h e: Easy QED
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