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ABSTRACT. Let r: E — X and p : F = X be bundles of Banacn spaces, where X is a compact
Hausdorff space, and let V be a Banach space. Let I'(r) denote the space of sections of the
bundle . We obtain two representations of integral operators T : I(x) — V in terms of
measures. The first generalizes a recent result of P. Saab, the second generalizes a theorem of
Grothendieck. We also study integral operators T : I'(x) — I'(p) which are C(X)-linear.
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1. INTRODUCTION.

A bounded operator T : V — W between Banach spaces is called an integral operator (in the
sense of Grothendieck) if there is a bounded linear functional ¢ on the inductive tensor product
V&W* such that #(z®y*) = y*(T(z)) for all z€V and y* € W*. The integral operator T : V —
W carries a norm T, <ITI which is the norm of the functional rp. € (V@ W*)* , where
rT(:®y*) =y*(T(z)). In this paper, we study integral operators T : I'(r) — W, where » : E = X
is a Banach bundle and the base space X is compact Hausdorff. In Section 3, we obtain two
representations of such operators by means of measures. The first of these is described in
Theorem 3, which generalizes a result of P. Saab [1] for integral operators on C(X, V), the space
of continuous functions from X to a Banach space V. (Of course, C(X, V) = I'(x), when = is the
trivial bundle whose fiber space is X xV with its product topology.) The second representation
occurs as a corollary to Theorem 4, which itself generalizes a theorem of Grothendieck [2].
Finally, in Section 4, we study integral operators T : I'(x) — I'(p) which are C(X)-linear, where »
and p are Banach bundles with base space X.

In this paper, the base space X of a Banach bundle »: E — X is always assumed to be
compact and Hausdorff. The reader is referred to Kitchen and Robbins [3] for details about the

canonical bundle » : E — X of a Banach module M over C(X) and the Gelfand representation of
M as a space of sections in I'(x).

Our two representations of integral operators on I'(r) involve a compact Hausdorff space 8,
which we shall call the carrier space of the Banach bundle » : E — X. The space & was
introduced by A. Seda in [4], and is described in Section 2.

2. PRELIMINARIES.
Throughout the paper, we shall use B(V) to denote the closed unit ball of the Banach space



450 J.W. KITCHEN AND D.A. ROBBINS

V; that is, B(V) = {z €V: nzy < 1}. In particular, we shall use this notation in describing the
carrier space § of a Banach bundle » : E — X. If p € X, then we denote by E,, the fiber above p;
that is, E, = » “({p}). As a point set the space & can be described as the disjoint union of the
unit balls of the dual space of the fibers. Thus

= BE‘X
8 pgx ((Ep)*) x {r}

={(f,p) 1 reX, fe (Ep*,|f] < 1}
There are two important maps associated with 8: the obvious coordinate projection r : 8— X,
defined by =((f,p)) = p, and a map @ : 8 — B(I(x)*). The map & assigns to the point (f, p) in 8
the function F fp:Tm—C defined by
Fg p(") = f(o(p))
for all o € I(x). It is easily verified that F f.p is a bounded linear functional on I'(x) whose norm
is the same as the norm of f. As a result, & maps 8 into B(I'(x)*) as we already noted. We
topologize & by giving it the weakest topology which makes the maps r: & — X and &: § —
B(I'(x)*)) continuous, where B(I(x)*) is given its compact weak-* topology. It follows that a net
{(farPa)} in & converges to (f,p) if and only if
lim p, = p and lim f4(0(py)) = f(o(p)) for all ¢ in I(x).

When 8 is topologized in this way, the projection x : 8 — X is not only continuous, but open,
and for each p € X, the topology which B((Ep)*) inherits from & is its compact weak-* topology
as a subset of (Ep)* . (See Seda [4] or Kitchen and Robbins [5] for a further description of the
topology on 8.) The space C(8) can be viewed as a C(X)-module in a natural way. Given
a€ C(X) and g € C(8), we define ag to be the pointwise product (aox)g; thus, for all (f,p) €8

(ag)((£.p)) = a(p) o((f,P))-
Finally, there is an important embedding I : I'(r) —» C(8). Given o € I(x), I(o) is the
function ¥ : 8 — C defined by
7 ((f,p)) = Fy (o) = f(a(p)).
From our definition of the topology on 8, it is clear that ¥ is continuous. The most important
facts concerning § are contained in

PROPOSITION 1. Let » : E — X be a Banach bundle. The carrier space 8 is compact
Hausdorff and the map I : I(x) — C(8) is a C(X)-linear isometry.

PROOF. The compactness of § follows rather easily from the compactness of X and of
B(r(r)*)). (Seda [4] proves that & is locally compact under the assumption that X is locally
compact.) Let {(fq Pa)} be a net in 8. Since X is compact, there exists a subnet { pp} of {py}
such that py — p in X. Now, consider the subnet {(r B pp)} of {(for Pa)} - As before, define Tp
€ I(x)* by ?ﬂ(a') = fglo(pg)) = Ff palo)- Then ?ﬂ is a net in B(I(r)*) which converges
weak-* to some g € B(I'(x)*). But noge tgat for 0 € I'(r) and a € C(X), we have

9(a0) =lim Fg(a0) =lim a(pg) F5(0)
=a(p) 9(o);
i.e. (ag)(0) = a(p) g(s). It follows from e.g. Gierz [6] that ¢ = F for some f ¢ B((Ep)*) , and it
is clear that (f g pg) = (£, p) in the topology on 8.

The first part of the statement is obvious from the definition of the module operation
on C(8). DOO

The next result is known. We include its statement here for easy reference.

PROPOSITION 2. Suppose that ©:Z — V and ¥ : Y — W are bounded linear maps
between Banach spaces. Then the tensor product map ©®¥ : Z®Y — VoW extends uniquely
to a bounded linear map

0o¥: Z8Y - VEW
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such that @@ ¥|l< I6lll¥l. If © and ¥ are isometries, then © ® ¥ is also an isometry.

PROOF. The proof of the first assertion can be found in Diestel and Uhl (7, p. 228].

Suppos:a now thit © and ¥ are isometries. Theg oV = (idZ®\lr) ° (6®idw) , where
idyoWw: Z8&Y -~ Z&W and O0®idy : Z&W —~ V&W , and id7 and idyy are the identity maps
on Z and W, respectively. By Diestel and Uhl [7, p. 225], both idy®¥ and ©®idy are
isometries, and hence so is ©® ¥. 000
3. REPRESENTATION OF INTEGRAL OPERATORS BY MEASURES.

The first result of this section is a generalization of a result of P. Saab to operators on the
section space of a Banach bundle.

THEOREM 3. Let r : E — X be a Banach bundle. Let V be a Banach space, and let T :
I(x) — V be a bounded linear map. Then T is an integral operator iff there exists a regular V**-
valued Borel measure u on 8, the carrier space for , such that

(JoT)(e) = fg f(o(p)) du(f,p) (*)
for all o € I'(x), where J : V — V** is the natural embedding.

PROOF. Suppose that there is a measure u e M(8, V**) , the space of regular, V**-valued
Borel measures on 8, for which () holds. We will show that T is an integral operator.

Since the space M(8, V**) of all regular Borel V**-valued measures on & which are of
bounded variation is isometrically isomorphic to the space of integral operators from C(8) to V**
', it follows that if 4 € M(8, V**) is such that (x) holds, then the operator T : C(8) — V** defined
by

T(g) = /s g du, for ge C(8),
is an integral operator. Thus, if I : I'(x) — C(&) denotes the natural embedding described earlier,
that is
{I(0)}(£,9) = £(o(p))

for all (f,p) €8, then () states that (JoT)(c) = (T oI)(o) for all o € I(r), that is, the diagram

M) —L— 3V —J_v*=

I T

C(e)

commutes.

Since T ol is integral, it follows that Jo T is integral, and hence that T is integral, by Diestel
and Uhl [7, p. 233).

Now, suppose conversely that T is an integral operator. Then there exists a bounded linear
functional © on I'(x)& V* such that

6(c ®v*) = v* (T(0))
for all o €I(x) and v*€V*. Since I : I(x) - C(8) and id : V* — V* are isometries, the map
Ieid: I‘(r)éV' - C(S)éV* is an isometry, whose range, W, is a closed subspace on which the
linear functional ©0(I®id)~! is bounded. By the Hahn-Banach theorem, this functional can be
extended without increase in norm to a bounded linear functional & on C(S)gv*. Then for all
o €l(x)and v* e V*
8 (o) ® v*) = 8 (I ®id)(c ® v*)) = 6(c ® v*).

Since © belongs to the dual space of C(S)éV‘ ~ C(8,V*), there is a unique measure u€ M(8,
V**) such that for all g € C(8) and v* € V¥,
8(g@v*)= g g d(v* ),
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where (v*, ) is the C-valued Borel measure such that
(v*, m)(B) = {u(B)}(v*) = J"(v*){u(B)} = (J"(v*) o u)(B)
for every Borel subset of & (where J” is the natural embedding of V* into V***). We must now

show that
(JoT)o)= fg fla(p)) du(f.p)

for all ¢ e I(x). Now, for all v* € V*,
{ JoTYo}v*) = v*(T(0)) = B(e ®+*) = 6 (I(s) @ v*)
= [g Uo) dI"(w*)op) =T"(v*)([g Lo) dw) = ( [g (o) du)(v*).
Thus,
(JoeT)o)=fg o) du= [g f(o(p)) du(f,p). OOD

In the special case when I'(r) = C(X, V) for a Banach space V, 8 is the product space
X xB(V*), and we recover Saab’s result. The effect is to reduce the space on which the measures
lives to be as small as possible, and the result may find its relevance in the fact (see e.g.
Behrends [8]) that every Banach space is isometrically isomorphic to a space of sections over its
center.

Our next result generalizes a result of Grothendieck [2] to Banach bundles; our proof is
similar to that of Diestel and Uhl [7] for the special case of continuous bilinear maps from the
inductive tensor V&W of Banach spaces V and W to C.

THEOREM 4. Let r: E - X be a Banach bundle, and let 8 be its compact carrier space.
Let V be a Banach space, and give B(V*) its compact weak-+ topology. A bilinear functional ¢
on I'(r) x V defines a member of (I‘(ar)éV)* iff there exists a regular Borel measure y on’
8xB(V*) such that

o) = [ o pye) HEE) 1) d(ip)

for all o € I(r) and y € V. In this case the norm of ¢ as a member of (P(1)§V)‘ is the variation
lul(8xB(V*)) of 4.

PROOF. Suppose that ¢ extends to an element (which we will also denote by w) in
(I‘(x)éV)‘ . WeletI:TI(x) - C(8) andi: V — C(B(V*)) be the natural isometries. Thus,

{I(2)}(£,p) = f(o(p)) and {i(v*)}(y) = v*(v)
for all ser(r), yeV, (f,p)e8 and y*eB(V*). Now, the tensor product map
I@i: I(x)&V — C(8)& C(B(V*)) is an isometry such that
(Iei)eoy) =1(o)®i(y).
for all sel(r) and yeV*. If o: C(S)éC(B(V")) — C(8xB(V*)) is the natural isometric
isomorphism, then the map R = 6o(I®i): r(x)gv — C(exB(V*)) is an isometry which is
characterized by the equation
{R(e @ »)(f.p): ¥*) = f(o(p)) v*(v)

for all  €T(x), y€ V, (f,p) €8, and y* € B(V*). If we let W be the range of R, then W is a closed
subspace of C(8xB(V*)) and R: I(x)&V— W is a bijective linear isometry. Thus, the bounded
linear functional ¥oR ™! on W can be extended without increase in norm to a bounded linear
functional ¢ on C(8xB(V*)). Moreover, |¢|=]woR~1|=|¥| . By the Riesz representation
theorem, there exists a Borel measure s on &§xB(V*) such that ¢(g)= [g dp, for all geC
(8xB(V*)). Thus, for all ¢ € T(r) and y € V, we have

Woy) = o ®y)=(WoR ™ )(R(e®y) = $(R(c ®v))
= [exn(vey Reen du= [ g 160D v*0) du(r.p) o).
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Moreover, the norm of ¥ as an element of (l‘(r)éV)‘ is equal to ||¢||=|ju|| = the variation of u on
8xB(V*).
Suppose conversely that there is a Borel measure p on &8 x B(V*) such that

¥, y) = /SxB(V‘) R(e®y) du
for all sel(x) and yeV. If we let ¢ be the bounded linear functional on C(8xB(V*)) which
corresponds to u, then according to the above equation,
¥o, y) = ¢(J(c®y)) -
for all ¢ €(r) and y eV, which is to say that ¢oR is a bounded linear functional on I'(r)dV
which extends the bilinear functional ¥. 000
COROLLARY 5. Let r: E — X and V be as above. If T : I'(x) — V is an integral operator.

then there exists a Borel measure 4 on &xB(V**) such that

P = [ ¢ pryry Hote) 16" du(s.p) 0

for all ¢ € () and y* € V*.

PROOF. Because T : I'(r) — V is an integral operator, the continuous bilinear functional v
on I'(x)x V* defined by y(o, y*) = y*(T(c)) determines a bounded linear functional on I‘(ar)éV‘,
so the theorem guarantees the existence of a Borel measure x4 on 8xB(V**) with the required
properties. 000
4. THE SPACE OF INTEGRAL C(X)-MODULE OPERATORS AS A C(X)-MODULE.

We turn now to the study of the space of integral operators T between sections spaces of
Banach bundles which also have the property that T is a C(X)-module homomorphism. That is
if x: E—= X and p:F — X are bundles, then T : I'(r) — I'(p) will satisfy the equation (aT)(¢) =
a-T(¢) = T(ao) for each a € C(X) and ¢ € I'(x).

LEMMA 6. Let = : E — X be a Banach bundle, and let V be a Banach space. The space

M=r(x)éV
can be made into a C(X)-module which is C(X)-locally convex. If ¢ : G — X is the canonica!
bundle for M, then for each peX, the stalk G, = ¢~ 1(p) can be identified with Epé\'
Moreover, if ev,, : I[(r) —E, is evaluation at p and id : V — V is the identity map, then evp®1d .
I(x)®V — E, 8V is a quotient map whose kernel is I,M={ am : me M, a € C(X), and a(p) = 0}.

PROOF. Given a€ C(X), we let p,: I'(x) — I'(x) be pointwise multiplication by a. The

tensor product of u, with id : V — V then yields a bounded linear operator
pa®id : r(x)év - r(x)év
on M, and |pu,®id| < |ug|llidll = nan. We make M into a C(X)-module by defining
am = (pg®id)(m)
for all a € C(X) and m e M. Then
tami < ug@id|imn <nanumy

and we have

a(0®f) = (4g®id) (0 ® f) = pa(o)®id(f) = (ao)® f
for all ae C(X), s €I'(r) and fe V. It is then straightforward to complete the verification that in
this way M becomes a C(X)-module.

We next apply Theorem 4.2 of Kitchen and Robbins [9]. We can view V as the section
space I'(ly), where ly denotes the Banach bundle whose base space is the Eingleton setA {1} and
whose one stalk is V. Then, a‘.\ccording to the theoiem cited, M = I(n)8V = I‘(ar)él‘(lv) is
isometrically isomorphic to I'(r & lV)'A The bundle =& 1y has X x {1} as its base space, i.nd, for
peX, the stalk above (p,1) is EP@V. The isometric isomorphism © : M — I'(»& IV) is
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characterized by the equation ©(c ®y) = ooy for all ¢ € I'(x) and y € V, where

(cou)p.1) = o(p)®y(1) = o(p)®yY.
(In other words, we 1dent1fy an element y € V with the section in I(1y)) whose (one and only)
value is y.) Now, I(r& 1y) is a Banach module over C(Xx {1}). By identifying X x {1} with X
in the obvious way, we can view I'(x & ly) as a C(X)-module. ~

We will now show that our isometric isomorphism €: M — I‘(x<§lv) is C(X)-linear. It
suffices to show that

6(a(c®f) = a ©(c®f)
holds for all a € C(X), o € I'(r), and f € V. But
O(a(c® f)) = (a0)®f = {a(p) o(p)}® f = a(p) {o(p)® f},
sothat a0 O f = a(c©f) = aO(0c® f). Thus,
O(a(c®f)) = a O(a®f).

Hence, M and I‘(wélv) are isomorphic as C(X)-modules. Since I‘(xélv) is C(X)-locally
convex (because of identification of C(X) with C(Xx{1}) ), M is C(X)-locally convex. It follows
that the canonical bundle ¢ : G — X is bundle isomorphic to 3 ly - Thus, for p € X, the stalk
G, can be identified with E, &V, in which case the Gelfand representation of an element m e M
is given by

A(p) = {6(m)}(p) -
Thus, if ce(r) and f€V,
(@®f) (p) = {8(e@N)Hp) = (c0f)p) =0(p)®f = (evp®id)(e ®f),
where ev, : I(x) —» Ej is evaluation at p and id : V — V is the identity operator. By linearity
and continuity it follows that
i(p) = (evy®id)(m)
for all me M.

Of course, i(p) is actually y(m), where n,: M - % = Gp is the natural surjection.

Thus, we have a commuting diagram i

n, evp®id
Gp—5— E,8V
where ¢ is an isometric 1somorph1sm Thus, ker (evp®id) = ker M, = I;M , and since I, is a

quotient map, ev,®id: M - E, &Visa quotient map also. DOO

THEOREM 7 Let r : E = X and p: F — X be Banach bundles. Let T : I(x) — I'(p) be a
bounded C(X)-homomorphism, and for each pe X, let Tp: Ep — Fp be the induced fiber map
which results in the commutative diagram

I(x) —L L 1(p)

Ep—————F,
TP
where ev,, denotes the evaluation of sections at p. If T : I(r) — I'(p) is an integral operator, then,
for each pe X, T, : E, — Fy is an integral operator.
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PROOF. Because T is an integral operator, the map ev,oT : I(x) — F is also an integral
operator. Thus, there is a unique bounded linear functional r, on I'(x) & (Fp)* such that
0@ f) = f((evpoT)o) = f({T(e)}(p))

for all ¢ € I(r) and f € (Fp)*.
According to Lemma 6, M = I‘(x)é(FP)‘ can be made into a C(X)-module in such a way
that
a(c®f) = (a0)®f
hold for all a € C(X), ¢ € I(x), and f € (Fp)*. Also, according to Lemma 6, by taking the tensor
product of ev, : I(r) — Ep and the identity map id : (Fp)* — (Fp)* we get a quotient map
evp: M — E, ®(Fp)* whose kernel is I;M.
Observe now that if a € C(X) , o € I(x), and f € (Fp)*, then
7p(a(o ® f)) = 75((a0) @ f) = f({T(ac)}(p))
= f({aT(e)})(p) (since T is C(X)-linear)
= f(a(p{T(o)}p)) = a(p) FUT(2)}(P))= a(p) Tp(c ® f).
Because elements of the form ¢ ® f span a dense subspace of I‘(r)é(FP)‘ = M, and because 7, is
a bounded linear functional on M, it follows that
Tplam) = a(p) p(m)
holds for all a € C(X) and all meM. It follows that the kernel of r,, contains I;M. He;lce there
is a bounded linear map ¢ : p% — Csuch that r, = ¢or, = ¢oll, where 1: M — I;Mls the

natural surjection. Since evp®id : M — Epé(FP)* is a quotient map whose kernel is I, M, there
is a surjective linear isometry © : M~ E,8(Fp)* such that ev,®id = ©oll. If we let
4 = ¢00~ ! thend is a bounded linear functional on Epé (Fp)* and

§ o(evp®id) = (400 1o (00l = goll = 1
Thus, we have the commutative diagram

p-

,
M i c
n
M
evp®id I;M ?
E,8(Fp)*

Now, let e € Ej, and f € (F)*, and choose a section ¢ € I'(x) such that o(p) =e. Then

¢enN=3(renN=%(evpeidcer)

=1p(0®f) = f((evpoT) o)) = f((Tpoevy)(a))

= f(Tp(a(2))) = £(T ple)).
Since ¢ is bounded, this identity shows that T is an integral operator. OOO

Let X be a compact Hausdorff space, let C € X be closed, and let Io = {ae C(X) : a(C) =

0}. Let ¥ be the system of open neighborhoods of C. An approximate identity for IC is a
collection of continuous functions {if, : X — [0,1] : V € ¥} such that ij,(C) = 0 and i,(X \V) = 1
for each V e ¥. If I(x) is the section space of the Banach bundle » : E — X, then lim iy, 0 = ¢ for
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each o € I[I(r). It is known (see e.g. Gierz (10]) that for each closed C ¢ X, InI(r) is an M-ideal
in I(r), i.e. there is an L'-projection PC: I(x)* — (ICI‘(x)) Lcepm*t In particular, for peX,
there is an L'-projection Py: I(x)* - (Ipl‘(r)) 1 ~(Ep)* € I(x)*. We note that for ¢ e I(r)* ,
¢ € (I,I()) L if and only if ag = a(p)é for each ae C(X). The next lemmas let us reach these
L!-projections P, as weak-* limits via approximate identities.

LEMMA 8. Let X be compact Hausdorff, let u e M(X), let p€ X, and let {i, : V € ¥} be an

approximate identity for I, . Then

lim ((1-iy)p,a) = lim fx (1-iy) adp = a(p) u({r})
for all ae C(X). That is, the net {(1-1y)u} converges weak-» in M(X) to u({p}) é,, , where &, is
the unit point mass at p.

PROOF. We may assume that u is a positive measure. Let ¢>0 be given. By the
regularity of 4 , there is an open neighborhood V,, of p such that u(V,) < u({p}) +e¢. Then for any
open neighborhood V of p with vV CV, , we have

#{ph) = [ () (1-iy)dp < [y (1-iy)dp

<SSy 1de=uv) <u(Vo) < u({p) +e.
Thus, | [y (1-iy) du—s({PD)] <<, and lim ((1 - ip)p 1) = s({p})-

Let ae C(X) be given, and consider now b=a-a(p)el, C C(X). Since bel, , we have
(¥'=iy)b — 0 uniformly, so that (1 —iy)u b) = Jx =iy)b du— 0. Hence,

lim ((1-iy)pae) = lm ((1-iy)n, (a-a(p)+a(p))
lim (1 -éy)p, b)+1him (1 —iy)p, a(p))
a(p)p({p}) = (6, a) u({p}).000

LEMMA 9. Let M = I(x), let ¢ eM*, and suppose that peX. Let {ij, : V€¥} be an
approximate identity for I,. Then the net {(1 —iy)é} converges weak-x to an element
P,(¢)e(IM) L ~(Ep)* .

PROOF. Given ¢ € M* and o € M, we can define a functional ¢ € C(X)* = M(X) by setting
(¢°,a) = (¢,a0). We must show that lim ((1-iy)é, o) exists. But for any ae C(X), we have
lim ((1-ip)é, ao) = lim (4, (1-i})ac) = lim (#°. (1-iy)a) = a(p) ¢”({p}), by the preceding
lemma. Taking a=1, it follows that lim ((1-iy)é, o) exists. Define this to be Pp(4) € I(m)* ; it
clear that P, is a bounded linear functional with |Po(4) |<l¢ll. Moreover,

(aPp(¢)) o)= (Pp(é) , a0) = lim (1 "iv)¢ , a0) = a(p)¢"({p}) = a(p) (Pp(¢)a o);

that is, aP 5(4) = a(p)P p(#) for all a € C(X). Thus Py(4) € (I,M) L. ooo

LEMMA 10. For peX, themap P : I(x)* — [(x)* is the unique L'-projection of I'(x)* onto
(1M L.

PROOF. Clearly, P, is a norm-decreasing linear map whose range is contained in (I,M) i,
To show that it is a projection onto (I,M) L it suffices to show that Pp(¢)=¢ for all
¢ € (I M) 1. For such ¢, however, :

Pp(¢) =lim (1-iy)é =lim (1-iy)p) 6=,
since (1—iy)(p)=1forall Ve¥.

To show that P, is an L'-projection, it suffices to show that I#1>|Pp(®)|+]é—Pp(4)| for-
each ¢ € T(r)*. Let ¢ >0 be given, and as before let {iy: V € ¥} be an approximate identity for I,
Choose sections ¢, and o, such that o, || = o, =1 and such that

(Pp(¢) y o) He> “Pp" and (¢-Pp(¢)’ a9) +e >“¢—Pp(¢)“ .

We may also choose V€ ¥ such that
(9 iyog) +e=(o-(1=ip)d, ag) +e >[4 =Pp9)|
for all V € ¥ with V C V. For any such V, set 7 =iyog+(1-iy)oy - Then 1< 1, and
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2+ (¢, ) =2+ (6 —Pp(¢), 7)+(Pp(e), 1)
=2¢+ (8- Py(9), iyog+(1—iy) o) +(Pp(4), )
> e+ (8, iyog) —(Pp(8), iyag) +(6-Pp(9), (1 —iy) o1) +|Pp9)|
> |6 - Pp(d)|+|Pp(d)|+(# = Pp(s). (1-iy) ey)

(because (Pp(9), iyoq) = 1y(p) (Pp(9), 79) = 0). Thus,
2¢+[¢]> |6 - Pp(d)|+|Pp|+ (- Pp(®) (1-iy)ay)

for all v € ¥ with v c V. Since
lim (¢ -Py(¢), (1-iy)ey) = lim ((1-iy)(¢ - Pp(e), 0y)
= (Pp(6 - Py(9)), o)) = (Pp(¢) =Pp(9), o1} =10,
it follows that
2¢+|6]1>[Pp(@)|+]¢-Pp(¢)| . OOO

(Actually, more is true than this string of lemmas would indicate. It can be shown that we
actually have (1-iy)¢ — P(¢) in the norm topology of I(r)* whenever C C X is closed and {iy}
is an approximate identity for Ic ¢ C(X). However, our proof uses the preceding lemmas, and
we do not need this more general result in what follows.)

We may regard the space M = Intx(l‘(r), I'(p)) of integral operators from I'(r) to I'(p) which
are C(X)-module homomorphisms as a Banach space under the integral norm (Diestel and Uhl
[7]) ; that M is a C(X)-module follows because, for T € M, a € C(X), and o € I'(x) we have (aT)(0)
= aeT(s)= (pg0T)(c), where p, is the operator r — ar on I'(p). Our final result involves the
fibers of the canonical bundle of M as a C(X)-module.

THEOREM 11. Let r: E - X and p : F — X be Banach bundles, and M = Intx(l‘(x)‘ I(p))-

If TeM, then |T+IM| jpp = |Tp| jp¢ = inf  {IT+aT'l j, : a€lp T'eM} , where
Tp : Ep — Fp is the induced map described in the statement of Theorem 7. Thus, the map T —
T, is a quotient map, and if ¢ : G — X is the canonical bundle for M, then for each p € X there
is a isometry ap from Gp , the fiber over p, to Int(Ep, F,), the space of integral maps from E,
toFp, withay(T+I,M)=T,.

PROOF. In this proof, all norms of operators in M are assumed to be the integral norms,
and norms of cosets are arrived at by taking infima of integral norms.

Let T, T'eM, ac€ Ip, and let e> 0 be given. We may choose an element
Y o ®yf€ I‘(x)él‘(p)‘ such that ﬂ b %Wiﬂ " =1 and such that

IT + oT'| < | £ (v}, (T+aT')op) )+ €.

Let {iy/} be an approximate identity for I, . For any V € ¥, we have
IT+aT" | < |y} (1-ipXT + aT') o) | + | EwE iy (T +aT') (o)) ) | + ¢
<S1E wh (=ip) T+aT) o) | +[iy(T +aT")|+e
SIE Wh Q=i TE) | + 1k Q=ip)@T) o) + [|ip(T +aT) |+
Hence,
|T+ M| = inf{ IT+aT'|: a€l,, T'eM}

gig% , in‘t; { I E (ks A=) T |+ (v, (1—iy)aT’) o) )|
+ |IiV(T+aT')||+c},

where of course the choice of - o} ® y} € T(r) & I'(p)* depends on our choice of aT".
Now, denote by P, : I(p)* — (Fp)* the L1-projection; from Lemma 10, for each y* € I(p)* we
have (1 -iy)y* — Pp(y*) pointwise on I'(p). For a fixed but arbitrary oT'€ I,M, we may choose
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Vg = Vo(aT’) such that
[ vk (l—ivo)T(Uk))|< [Z(Pplyp), Tplop(p) ) +e¢
and such that
IZ i =iy JTY o) | < IE(Ppp) @T')op(p) )| +e = e,
since {(¢T')(o)}(p) = a(pX{T{o)}(p) = 0.
Hence,
“T +I,M “
in{r, inf {Iz: Wi 1-iy) T+ | Top 0 —ip)aT)op) M+ |ip(T +aT')||+c}
a
in%, inf { | S(Pph) Tplopp)| +e+e+]iy(T +aT|+ z}
a
‘=inf, inf {IZ®pw}), Tplopp] +]ip(T +aT)]+3¢} .
But [T (Pp(wf), Tplop(p)) < ||T,,|| , since the map ev,®P,: I(x)&I(p)* — E,&(Fp)*,
o®y* — o(p)®Pp(y*) has norm <1. Thus, .
IT+M] < inf, inf {1 Py Tplepe | +]iy(T +aT")|+3¢}
inf, inf {ITp|+}iv (T +aT"]+3c}
= m‘i; 1:1%, {“Tp"+uiV(T+aT )H+3c}
= in‘f, {“Tp | + “ivT +I,,M”+ 3c}
= “Tpn+ 3e .
Since ¢ was arbitrary, we have ||T+IPM" < "Tp" . ooo
In much the same fashion as above, it may be shown that if V is a Banach space and r : E
— X is a Banach bundle, then the space M = Int(V, I'(r)) of integral operators from V to I(x) is
a C(X)-module. The fiber over p of the canonical bundle for M then turns out to be ev ,oT.
This is analogous to the result in Gierz [11], regarding compact maps from V to I(r).
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