

INVOLUTIONS WITH FIXED POINTS IN 2-BANACH SPACES

M.S. KHAN

Department of Mathematics and Computing
College of Science, Sultan Qaboos University
P.O. Box 32486, Alkhod, Muscat,
Sultanate of Oman

and

M.D. KHAN

Department of Mathematics, Faculty of Science
Aligarh Muslim University, Aligarh - 202002, India

(Received January 28, 1992 and in revised form April 2, 1992)

ABSTRACT. Some results on fixed points of involution maps in 2-Banach spaces have been obtained. These are extensions of those proved earlier by Goebel-Zlotkiewicz, Sharma-Sharma, Assad-Sessa and Iseki.

KEY WORDS AND PHRASES. Involutions, 2-Banach spaces, coincidence points, fixed points.
1991 AMS SUBJECT CLASSIFICATION CODE. 54H25.

1. INTRODUCTION.

Gähler ([1]-[3]) initiated the concepts of 2-metric and 2-Banach spaces in a series of papers. These new spaces have subsequently been studied by several mathematicians in recent years. Like other spaces, the fixed point theory has also been developed in the frame work of these spaces. It was Iseki ([4], [5]) who for the first time, obtained basic results on fixed points in 2-metric and 2-Banach spaces. Since then quite a number of authors have extended and generalized fixed point theorems of Iseki and various other results involving contraction type mappings. For an extensive bibliography one is referred to Iseki ([6]).

In this note, some fixed point theorems for certain involutions in 2-Banach spaces have been obtained which can be viewed as a 2-Banach space extension of a result due to Assad and Sessa [7], which in turn generalizes a fixed point theorem of Goebel and Zlotkiewicz [8] concerning an involution of a closed convex subset of a Banach space. The work of Assad and Sessa [7] was inspired by the contractive condition introduced by Delbosco [9]. Our result also generalizes a theorem of Sharma and Sharma [10]. It is important to note that in our proof continuity of the map under consideration is not essentially needed, and hence the same is unnecessarily stringent in Sharma and Sharma [10] and Iseki [5].

2. PRELIMINARIES.

We assume the familiarity with the basic theory of 2-Banach spaces as given in White [11]. But for the sake of completeness we present here some pertinent definitions.

The following notions are essentially due to Gähler [1].

DEFINITION 2.1. Let X be a linear space, and $\|\cdot\|$ be a real-valued function defined on X . Then the pair $(X, \|\cdot\|)$ is called a **linear 2-normed space** if, for $a, b, c \in X$,

- (i) $\|a, b\| = 0$ if and only if a and b are linearly dependent,
- (ii) $\|a, b\| = \|b, a\|$,
- (iii) $\|a, \beta b\| = |\beta| \|a, b\|$, β being real,
- (iv) $\|a, b + c\| \leq \|a, b\| + \|a, c\|$.

Here $\|\cdot\|$ is called a 2-norm and is a non-negative function.

DEFINITION 2.2. A sequence $\{x_n\}$ in a linear 2-normed space X is called a **convergent sequence** if there is an element $x \in X$ such that the $\lim_{n \rightarrow \infty} \|x_n - x, y\| = 0$ for all $y \in X$. If $\{x_n\}$ converges to x , we write $x_n \rightarrow x$ and call x the limit of $\{x_n\}$. Of course, here $\dim X \geq 2$ otherwise every sequence of points in such a space would converge to every point of the space.

DEFINITION 2.3. A sequence $\{x_n\}$ in a linear 2-normed space X is called a **Cauchy sequence** if $\lim_{m, n \rightarrow \infty} \|x_m - x_n, y\| = 0$ for every $y \in X$.

DEFINITION 2.4. A linear 2-normed space in which every Cauchy sequence is a convergent sequence is called a **2-Banach space**.

We also need the following notion from Assad and Sessa [7].

Let Φ be the family of continuous functions $\phi: \mathbb{R}_+^3 \rightarrow \mathbb{R}_+$, (where \mathbb{R}_+ stands for the set of non-negative reals) satisfying the following conditions:

- (i) $\phi(1, 1, 1) = k < 2$,
- (ii) for $s \geq 0, t \geq 0$, the inequality $s \leq \phi(t, 2t, s)$ implies that $s \leq kt$.

3. RESULTS.

Throughout this section, X stands for a 2-Banach space with $\dim X \geq 2$, and I denotes the identity map on X .

THEOREM 3.1. Let T be a self-mapping of X and $\phi \in \Phi$ such that

- (A) $T^2 = I$,
- (B) $\|Tx - Ty, a\| \leq \phi(\|x - y, a\|, \|x - Tx, a\|, \|y - Ty, a\|)$, for all x, y, a in X . Then T has at least one fixed point.

PROOF. Let x be an arbitrary point in X . Put $y = \frac{1}{2}(Tx + x)$, $z = Ty$ and $u = 2y - z$. It is easy to observe that

$$2\|Tx - y, a\| = \|x - Tx, a\| = 2\|x - y, a\|.$$

Now we have

$$\begin{aligned} \|x - z, a\| &= \|Tx - Ty, a\| \\ &\leq \phi(\|Tx - y, a\|, \|Tx - T^2x, a\|, \|y - Ty, a\|) \\ &= \phi(\|x - y, a\|, 2\|x - y, a\|, \|y - Ty, a\|) \end{aligned}$$

and also

$$\begin{aligned} \|u - x, a\| &= \|2y - Ty - x, a\| = \|Tx - Ty, a\|, \\ &\leq \phi(\|x - y, a\|, \|x - Tx, a\|, \|y - Ty, a\|) \\ &= \phi(\|x - y, a\|, 2\|x - y, a\|, \|y - Ty, a\|) \end{aligned}$$

On the other hand, we have

$$\|u - z, a\| = 2\|y - Ty, a\|$$

Hence

$$\|y - Ty, a\| \leq \phi(\|x - y, a\|, 2\|x - y, a\|, \|y - Ty, a\|).$$

By the hypothesis (ii), we obtain

$$\|y - Ty, a\| \leq k\|x - y, a\| = \frac{k}{2}\|x - Tx, a\|.$$

Let us put $Gx = \frac{1}{2}(Tx + x)$, for any x in X . Then by the foregoing inequality, we get

$$\begin{aligned} \|G^2x - Gx, a\| &= \|Gy - y, a\| \\ &= \frac{1}{2}\|y - Ty, a\| \\ &\leq \frac{k}{4}\|x - Tx, a\| \\ &\leq \frac{k}{4}\|x - (2Gx - x), a\| \\ &= \frac{k}{2}\|Gx - x, a\|, \end{aligned}$$

for all x, a in X .

Now, for an arbitrary point x_0 in X , let $x_n = G^n x_0 = Gx_{n-1}, n = 1, 2, \dots$. If $m \geq n \geq 1$, then

$$\begin{aligned} \|x_m - x_n, a\| &= \|G^m x_0 - G^n x_0, a\| \\ &\leq \|G^m x_0 - G^{m-1} x_0, a\| + \dots + \|G^{n+1} x_0 - G^n x_0, a\| \\ &= \sum_{r=n}^{m-1} \left(\frac{k}{2}\right)^r \|Gx_0 - x_0, a\| \\ &\leq \left(\frac{k}{2}\right)^n \left(\frac{1}{1-k/2}\right) \|Gx_0 - x_0, a\|. \end{aligned}$$

From this, it follows that $\{x_n\}$ is a Cauchy sequence which converges in X . Put $x^* = \lim_{n \rightarrow \infty} x_n$. Now consider

$$\begin{aligned} \|x^* - Gx^*, a\| &\leq \|x^* - x_{n+1}, a\| + \|Gx_n - Gx^*, a\| \\ &\leq \|x^* - x_{n+1}, a\| + \frac{1}{2}\|x_n - x^*, a\| + \frac{1}{2}\|Tx_n - Tx^*, a\| \\ &\leq \|x^* - x_{n+1}, a\| + \frac{1}{2}\|x_n - x^*, a\| + \frac{1}{2}\phi(\|x_n - x^*, a\|, \|x_n - Tx_n, a\|, \|x^* - Tx^*, a\|) \\ &\leq \|x^* - x_{n+1}, a\| + \frac{1}{2}\|x_n - x^*, a\| + \frac{1}{2}\phi(\|x_n - x^*, a\|, 2\|(Gx_n - x_n), a\|, 2\|(x^* - Gx^*), a\|). \end{aligned}$$

Letting $n \rightarrow \infty$, we get

$$2\|x^* - Gx^*, a\| \leq \phi(0, 0, 2\|x^* - Gx^*, a\|).$$

So again by condition (ii), we get

$$\|x - Gx^*, a\| = 0, \text{ for all } a \text{ in } X.$$

Hence, $(x^* - Gx^*)$ and a are linearly dependent for all a in X . Since $\dim X \geq 2$, the only way $(x^* - Gx^*)$ can be linearly dependent with all a in X , is that $x^* - Gx^* = 0$. Hence $x^* = Tx^*$ as required. This completes the proof.

COROLLARY 3.1 (Sharma and Sharma [10]). Let $T: X \rightarrow X$ be such that $T^2 = I$ and

$$\|Tx - Ty, a\| \leq \alpha \|x - y, a\| + \beta (\|x - Tx, a\| + \|y - Ty, a\|), \quad (3.1)$$

for all x, y, a in X , where $\alpha \geq 0, \beta \geq 0$ and $\alpha + 4\beta < 2$. Then T has at least one fixed point.

PROOF. The condition (3.1) implies that

$$\begin{aligned} \|Tx - Ty, a\| &\leq \left(\frac{\alpha}{2}\right) \cdot 2 \|x - y, a\| + 2\beta \cdot \frac{1}{2} (\|x - Tx, a\| + \|y - Ty, a\|) \\ &\leq \left(\frac{\alpha}{2} + 2\beta\right) \max\{2 \|x - y, a\|, \frac{1}{2} (\|x - Tx, a\| + \|y - Ty, a\|)\} \\ &\leq \left(\frac{\alpha}{2} + 2\beta\right) \max\{2 \|x - y, a\|, \|x - Tx, a\|, \|y - Ty, a\|\}. \end{aligned}$$

Now if we assume that

$$\phi(p, q, r) = \left(\frac{\alpha}{2} + 2\beta\right) \max\{2p, q, r\},$$

then, by Theorem 3.1, T has at least one fixed point. This completes the proof.

REMARKS.

(a) A critical observation of the proof of the main theorem in Sharma and Sharma [10], reveals that they have used the continuity of the involution map but failed to mention the same. However, in our proof this additional condition is not required.

(b) When X is the usual Banach space, Corollary 3.1 reduced to a theorem of Iseki [5]. In a private communication Professor Iseki agreed that the continuity of the involution map is essentially needed for his proof to hold.

COROLLARY 3.2. Under the hypothesis of Theorem 3.1, suppose, in addition, that at least one of the following strict inequality holds:

$$\begin{aligned} \|x^* - Tx, a\| &< \|x^* - x, a\| + \|x - Tx, a\|, \\ \|x^* - x, a\| &< \|x^* - Tx, a\| + \|Tx - x, a\| \end{aligned} \quad (3.2)$$

for all a and $x (\neq x^*)$ in X . Then x^* is the unique fixed point of T .

PROOF. By Theorem 3.1, $Tx^* = x^*$. Suppose also that $Ty^* = y^*$ for some $y^* \in X$. Assume that $x^* \neq y^*$. Then using (3.2), we have

$$\|x^* - y^*, a\| = \|x^* - Ty^*, a\| < \|x^* - y^*, a\| + \|y^* - Ty^*, a\| = \|x^* - y^*, a\|,$$

which is impossible. Therefore, $x^* = y^*$. Similarly, other condition in (3.2) also implies that $x^* = y^*$.

Now, we apply Theorem 3.1 to obtain a coincidence theorem.

THEOREM 3.2. Let T and S be the self-mappings of X , and $\phi \in \Phi$ such that the following hold:

$$(i) \quad T^2 = I, S^2 = I, TS = ST,$$

(ii) $\|Tx - Ty, a\| \leq \phi(\|Sx - Sy, a\|, \|Sx - Tx, a\|, \|Sy - Ty, a\|)$, for all x, y, a in X . Then there exists at least one point x_o in X such that $Tx_o = Sx_o$.

PROOF. It follows from Theorem 3.1 that TS has at least one fixed point x_o . Then clearly $Tx_o = Sx_o$. This completes the proof.

REMARK. In case, one assumes some additional conditions on TS , as in Corollary 3.2, then x_o in Theorem 3.2 becomes the unique fixed point of TS . Then, commutativity of T, S and the uniqueness of x_o can be used to show that x_o is actually a common fixed point of S and T . Further, if S and T satisfies conditions similar to one in Corollary 3.2, then their common fixed point x_o is also unique.

ACKNOWLEDGEMENT. The first author is grateful to Professor S. Sessa for supplying the preprint of [7], which motivated the present study.

REFERENCES

1. GÄHLER, S., Lineare 2-normierte Räume, Math. Nachr. **28** (1965), 1-43.
2. GÄHLER, S., 2-metrische Räume und ihre topologische Struktur, Math. Nachr. **26** (1963), 115-148.
3. GÄHLER, S., Über die uniformisierbarkeit 2-metrischer Räume, Math. Nachr. **28** (1965), 235-244.
4. ISÉKI, K., Fixed point theorems in 2-metric spaces, Maths Seminar Notes, Kobe Univ. **3** (1975), 133-136.
5. ISÉKI, K., Fixed point theorems in Banach spaces, Maths Seminar Notes, Kobe Univ. **2** (1976), 11-13.
6. ISÉKI, K., Mathematics on 2-normed spaces, Bull. Korean Math. Soc. **13** (2) (1977), 127-135.
7. ASSAD, N.A. & SESSA, S., Involution maps and fixed points in Banach spaces, Math. J. Toyama Univ. **14** (1991), 141-146.
8. GOEBEL, K. & ZLOTKIEWICZ, E., Some fixed point theorems in Banach spaces, Colloq. Math. **23** (1971), 103-106.
9. DELBOSCO, D., A unified approach to all contractive mappings, Jñanabha **16** (1986), 1-11.
10. SHARMA, P.L. & SHARMA, B.K., Non-contraction type mappings in 2-Banach spaces, Nanta Math. **12** (1) (1979), 91-93.
11. WHITE, A.G., 2-Banach spaces, Math. Nachr. **42** (1969), 43-60.

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from "Qualitative Theory of Differential Equations," allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk