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ABSTRACT. Some results on fixed points of involution maps in 2-Banach spaces have been

obtained. These are extensions of those proved earlier by Goebel-Zlotkiewicz, Sharma-Sharma,
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1. INTRODUCTION.
Ghler ([1]-[3]) initiated the concepts of 2-metric and 2-Banach spaces in a series of papers.

These new spaces have subsequently been studied by several mathematicians in recent years.

Like other spaces, the fixed point theory has also been developed in the frame work of these

spaces. It was Ieki ([4], [5]) who for the first time, obtained basic results on fixed points in 2-

metric and 2-Banach spaces. Since then quite a number of authors have extended and

generalized fixed point theorems of Ieki and various other results involving contraction type

mappings. For an extensive bibliography one is referred to Ieki ([6]).*
In this note, some fixed point theorems for certain involutions in 2-Banach spaces have been

obtained which can be viewed as a 2-Banach space extension of a result due to Assad and Sessa

[7], which in turn generalizes a fixed point theorem of Goebel and Zlotkiewiez [8] concerning an

involution of a closed convex subset of a Banach space. The work of Assad and Sessa [7] was

inspired by the contractive condition introduced by Delbosco [9]. Our result also generalizes a

theorem of Sharma and Sharma [10]. It is important to note that in our proof continuity of the

map under consideration is not essentially needed, and hence the same is unnecessarily stringent
in Sharma and Sharma [10] and Ikeki [5].
2. PRELIMINARIES.

We assume the familiarity with the basic theory of 2-Banach spaces as given in White [11].
But for the sake of completeness we present here some pertinent definitions.
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The following notions are essentially due to Ghler [1].
DEFINITION 2.1. Let x be a linear space, and .,-II be a real-valued function defined on

x. Then the pair (x II-,. II) is called a linear 2-normed space if, for a,b,c C X,

(i) a,b -0 if and only if a and are linearly dependent,

(ii) a, b b, a II,
(iii) a,b I1 a,b II, being real,

(iv) Ila, b+cll_< Ila, bll+lla, cll.
Here .,-II is called a 2-norm and is a non-negative function.

DEFINITION 2.2. A sequence {Zn} in a linear 2-normed space X is called a convergent
aequence if there is an element z e X such that the I,/ xn- z, 0 for all

converges to-z, we write zn---,z and call z the limit of {xn}. Of course, here dimX _> 2 otherwise

every sequence of points in such a space would converge to every point of the space.

DEFINITION 2.3. A sequence {zn} in a linear 2-normed space X is called a Cauchy
sequence if m,limn--,o tm in, 0 for every X.

DEFINITION 2.4. A linear 2-normed space in which every Cauchy sequence is a convergent
sequence is called a 2-Baaach apace.

We also need the following notion from Assad and Sessa [7].
Let be the family of continuous functions :ta+--.+, (where t+ stands for the set of non-

negative reals) satisfying the following conditions:

(i) @(1,1,1) k < 2,

(ii) for s _> 0,t _> 0, the inequality s <_ (t,2t, s) implies that s _< :t.

3. RESULTS.
Throughout this section, X stands for a 2-Banach space with dimX >_ 2, and I denotes the

identity map on x.
THEOREM 3.1. Let T be a self-mapping of X and such that

(A) T2= I,

(B) Tz- Ty, a < @( z- y,a [[, z Tz, a [[, y- Ty, a ), for all z,y,a in X. Then T has at

least one fixed point.

PROOF. Let z be an arbitrary point in X. Put y Tz + z), z Ty and u 2y- z. It is

easy to observe that

Now we have

2 Tz I1, a Tz, a 2 ,, II.

and also

z,. T2: T!l,a

< ( Tz -//,a II, Tz T2z, a II, V- Tll, a [[)

( = Y, a II, 2 = Y, a II, Y- Ty, a

< ( - y,. II, Tx, a II, v- Ty, a II)

( y,. II, 2 - y,. II, v- Ty, a
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On the other hand, we have

Hence

By the hypothesis (ii), we obtain

Let us put Gr (Tr + t), for y z in X. Then by the foregoing inequMity, we get

Y T, a

for M1 ,. in X.

Now, for bitry int % i X, le ao a_ 1,n 1,2, I] m n 1, then

=m- =.,a Gmzo-Gnzo, a

IIGmzo-Gm-Zo, all +... + G"+ ;zo-G%o, all

5 /2 Go .o,a II.
From this, it follows that {} is a Cauchy sequence which converges in x. Put z*= Iz,.

ow consider

z* -Gz*,a II <- z* . + ,a + II Gzn-Gz*,a
_< IIx*-xn+ 1,all +1/211xn-*,all +1/211Tn-Tx*,all
< I1*-%+ 1,11 +ll=.-t*,all +(ll.-t*,all, II.Tzn, all, II*-T=*,all)

I1=*-=+ ,11 +11=-*,11 +(ll==-=*,ll,211(G=-=),ll,211(=*-G=*),ll)-
tting n, we get

2 *-G=*,all 5 (0,0,2 II =*-G=*, II ).

So agn by condition (ii), we get

-G*,a 0, for fll a in X.

Hence, (z*-Gz*) d a e linely dependent for M1 a in X. Since dimX 2, the only way

(r*-Gz*) c be linely dependent with M1 a in X, is that z*-Gz*=0. Hence r*= Tz*

required. This completes the prof.
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COROLLARY 3.1 (Sharma and Sharma [10]). Let T:X--,X be such that T2 I and

I[Tz-Ty, a[ <_a[[z-y,a[I +/(l[z-T,all + Ily-Ty, al[), (3.1)
for all z,y,a in X, where a _> 0,/ > 0 and a+4/ <2. Then T has at least one fixed point.

PROOF. The condition (3.1) implies that

_< +

( + 2)2 ,-y, II, II -T, II, Y- Ty, }.

Now if we sume that

then, by Theorem 3.1, T h at let one fixed point. This completes the prof.
REMARKS.
(a) A critical observation of the prf of the mMn threm in Sharma d Shma [10],

reveMs that they have used the continuity of the involution map but fMled to mention the se.

However, in out prf this additioaM contion is not required.

(b) When x is the usuM Bh space, Corolly 3.1 reduced to a threm of Ieki [5]. In
a private communication Profesr Ieki agrd that the continuity of the involution map is

essentiMly nded for his prf to hold.

COROLLARY 3.2. Under the hypothesis of Threm 3.1, suppose, in addition, that at let

one of the following strict inequMity holds:

* T,a < * , a + T, a II,
(3.2)

* ,a < * T,a + Tz ,a

for all a and { *) in x. Then * is the unique fixed point of T.

PROOF. By Theorem 3.1, T* *. Suppose also that Ty* y* for some y* X. A .ume

that * y*. Then using (3.2}, we have

II*-y*,=ll II*-Ty*,=II < II*-y*,=ll + IlY*-Ty*,all

which is impossible. Therefore, *=y*. Similarly, other condition in (3.2) also implie., that

x* y*.

Now, we apply Theorem 3.1 to obtain a coincidence theorem.
THEOREM 3.2. Let T and 5’ be the self-mappings of x, and such that the following

hold:

(i) T2 I,S2 I, TS ST,

(ii) 11T Ty, a < ( S-Sy, II, S- T,a II, Sy- Ty, a ), for all t,y,a in X. Then

there exists at least one point to in x such that Tto Sto.

PROOF. It follows from Theorem 3.1 that TS has at least one fixed point %. Then clearly

T% S%. This completes the proof.
REMARK. In case, one assumes some additional conditions on TS, as in Corollary 3.2, then

to in Theorem 3.2 becomes the unique fixed point of TS. Then, commutativity of T,S and the

uniqueness of to can be used to show that Zo is actually a common fixed point of S and T.

Further, if S and T satisfies conditions similar to one in Corollary 3.2, then their common fixed

point to is also unique.
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