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ABSTRACT. Some results on fixed points of involution maps in 2-Banach spaces have been
obtained. These are extensions of those proved earlier by Goebel-Zlotkiewicz, Sharma-Sharma,
Assad-Sessa and Iseki.
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1. INTRODUCTION.

Gahler ([1)-[3]) initiated the concepts of 2-metric and 2-Banach spaces in a series of papers.
These new spaces have subsequently been studied by several mathematicians in recent years.
Like other spaces, the fixed point theory has also been developed in the frame work of these
spaces. It was ISeki ([4], [5]) who for the first time, obtained basic results on fixed points in 2-
metric and 2-Banach spaces. Since then quite a number of authors have extended and
generalized fixed point theorems of ISeki and various other results involving contraction type
mappings. For an extensive bibliography one is referred to Iseki ([6]).

In this note, some fixed point theorems for certain involutions in 2-Banach spaces have been
obtained which can be viewed as a 2-Banach space extension of a result due to Assad and Sessa
(7], which in turn generalizes a fixed point theorem of Goebel and Zlotkiewiez (8] concerning an
involution of a closed convex subset of a Banach space. The work of Assad and Sessa (7] was
inspired by the contractive condition introduced by Delbosco [9]. Our result also generalizes a
theorem of Sharma and Sharma [10]. It is important to note that in our proof continuity of the
map under consideration is not essentially needed, and hence the same is unnecessarily stringent
in Sharma and Sharma [10] and Iseki [5].

2. PRELIMINARIES.

We assume the familiarity with the basic theory of 2-Banach spaces as given in White [11].

But for the sake of completeness we present here some pertinent definitions.
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The following notions are essentially due to Gahler [1].

DEFINITION 2.1. Let X be a linear space, and ||.,.|| be a real-valued function defined on
X. Then the pair (X||.,.||) is called a linear 2-normed space if, for a,b,c € X,

(i)  lla,b|| =0 if and only if a and b are linearly dependent,

(i) llabll = lball,

(i) llaBbll = 18] llasll, B being real,

(iv) llab+cll < llabll + llacll.

Here ||.,.|| is called a 2-norm and is a non-negative function.

DEFINITION 2.2. A sequence {z,} in a linear 2-normed space X is called a convergent
sequence if there is an element z € X such that the lim |z,—z,y|| =0 for all ye X. I {z}
converges to z, we write z,—z and call z the limit of {z,}. Of course, here dimX >2 otherwise
every sequence of points in such a space would converge to every point of the space.

DEFINITION 2.3. A sequence {z,} in a linear 2-normed space X is called a Cauchy
sequence ifml'i'r.er | 2y — 2,y || =0 for every y € X.

DEFINITION 2.4. A linear 2-normed space in which every Cauchy sequence is a convergent
sequence is called a 2-Banach space.

We also need the following notion from Assad and Sessa [7).

Let @ be the family of continuous functions ¢:®% —® ., (where ® , stands for the set of non-
negative reals) satisfying the following conditions:

(i) #(,1,1)=k<?2,

(ii) for s >0,t >0, the inequality s < 4(¢,2¢t,s) implies that s < kt.

3. RESULTS.

Throughout this section, X stands for a 2-Banach space with dimX >2, and I denotes the
identity map on X.

THEOREM 3.1. Let T be a self-mapping of X and ¢ € ® such that

(A) T2=1 y

(B) |ITz-Ty,al| <é(llz-y.all,||z-Tza]|l,||ly-Ty,al]l), for all z,y,a in X. Then T has at
least one fixed point.

PROOF. Let z be an arbitrary point in X. Put y=%(Tz+z), z=Ty and u=2y—2 It is
easy to observe that

2| Tz—yal| = ||z=Tz,a|| =2||z-y,al|.
Now we have
lz-za| = || T2 - Ty,a||
<#(ITz-yall, | Tz=T*al|, |y Ty.all)
=¢(“z—y7a"$2"z'yva"’ Hy—Ty,alI
and also
lu—=zal|l = |2y~ Ty—z,a| = || Tz-Ty,al|,
<é(llz=y.all, |z=Tzal|l, |ly-Ty,all)

=é(llz-yall,2lz-yall, lly—-Tyall
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On the other hand, we have

fu—zall =2|ly-Tyall

Hence
fy-Tyell <o(llz-yall,2l|z-y,all,lly—Ty,all)

By the hypothesis (ii), we obtain
ly-Tyall <kllz-yall =Ez-Tza].

Let us put Gz = %(Tz +1z), for any z in X. Then by the foregoing inequality, we get

1G% - Gz,a|l = || Gy~ y,all
=4ly-Ty.all
<kllz-Tza|
<kllz-(2Gz-2),q]
=§||Gz-z,a||.
for all z,a in X.
Now, for an arbitrary point z, in X, let 2, =G"z, =Gz, _,n=12,--. If m2n>1, then
lz2m—2znall = |G™2,~ G zp0a|

< NG™z,-G™ zpall + - - + |G"F 1z, — G"zp0a|

= 'Z‘:(%)' Gz, - zpall

EY? 1
< (g) (m) IGzo—zo0all.
From this, it follows that {z,} is a Cauchy sequence which converges in X. Put z*=lim z,.
—00
Now consider
llz*-Gz* all < |2* -2, all + || Gz, —Gz*ia|
<Nt -2,y ol +3llen—2*all +§1I Tz T<*al|

< ”'“’3".;.1’“" +%||zn—z‘,a" +%¢( If ”n_Z*,“iIv | zp~Tzpall, ""‘“‘Tt‘va")

<llz* -z, pall +5lza—2%all +36(l 2 - =" all,2[| (Gzp = zn)all 2]l (=* = Gz*)a ).
Letting n—oo, we get
2||z* - Gz*,a]| < #(0,0,2] * - Gz*,a|).
So again by condition (ii), we get
||z —Gz*,a|| =0, for all ain X.

Hence, (z*-Gz*) and @ are linearly dependent for all a in X. Since dimX >2, the only way
(z*—Gz*) can be linearly dependent with all a in X, is that z*—-Gz*=0. Hence z*=Tz* as
required. This completes the proof.
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COROLLARY 3.1 (Sharma and Sharma [10]). Let 7:X—X be such that T2 = I and
Tz -Ty,a| <allz-y,all +B(llz-Tz,a|| + ly-Ty,all), (3.1)
for all z,y,a in X, where a >0,8>0 and a+48 <2. Then T has at least one fixed point.
PROOF. The condition (3.1) implies that
Tz~ Ty.all <(§)-2lz-vall +28-}(|z=Tz.all + lly-Ty.al)

<(§+28) mazi2liz~yall .z llz=Tzall + lly=Ty,all)}
<(§+26) maz{2llz-y.all, | z=Tzall, |y~ Ty,all}.

Now if we assume that
#(pa,7) = (% + 2!’) maz{2p,q,r},

then, by Theorem 3.1, T has at least one fixed point. This completes the proof.

REMARKS.

(a) A critical observation of the proof of the main theorem in Sharma and Sharma [10],
reveals that they have used the continuity of the involution map but failed to mention the same.
However, in our proof this additional condition is not required.

(b) When X is the usual Banach space, Corollary 3.1 reduced to a theorem of Iseki [5]. In
a private communication Professor Iseki agreed that the continuity of the involution map is
essentially needed for his proof to hold.

COROLLARY 3.2. Under the hypothesis of Theorem 3.1, suppose, in addition, that at least
one of the following strict inequality holds:

|| z* = Tz,a|| < || z*-z,a| + ||z~ Tz,a],
(3.2)
|z* —z,a|| < ||2*-Tz,a|| + || Tz -z,a]|
for all @ and z( # z*) in X. Then z* is the unique fixed point of T.
PROOF. By Theorem 3.1, Tz* =z*. Suppose also that Ty* = y* for some y* € X. A -ume
that z* # y*. Then using (3.2), we have

Iz*—y*all = ||z*-Ty*a|l < |2* -y all + lly* - Ty*a|l = ||z*-y".all,

which is impossible. Therefore, z* =y*. Similarly, other condition in (3.2) also implies that
z* =y*.

Now, we apply Theorem 3.1 to obtain a coincidence theorem.

THEOREM 3.2. Let T and S be the self-mappings of X, and ¢ € ® such that the following
hold:

(i) T2=1,52=1TS=S5T,

(ii) ||Tz-Ty,a|l <¢(||Sz—Sy,all, || Sz-Tz,all,||Sy—Ty,al|), for all z,y,a in X. Then
there exists at least one point z, in X such that Tz, = Sz,

PROOF. 1t follows from Theorem 3.1 that TS has at least one fixed point z,. Then clearly
Tz, = Sz, This completes the proof.

REMARK. In case, one assumes some additional conditions on T'S, as in Corollary 3.2, then
z, in Theorem 3.2 becomes the unique fixed point of TS. Then, commutativity of T,S and the
uniqueness of z, can be used to show that z, is actually a common fixed point of § and T.
Further, if S and T satisfies conditions similar to one in Corollary 3.2, then their common fixed

point z, is also unique.
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