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1. INTRODUCTION. The last two decades have produced a spate of articles which
propose generalizations and/or extensions of the Banach Contraction Principle, which
Principle states that a contraction f of a complete metric space (X,d) has a unique fixed
point. Typical approaches have been either to vary the contraction requirement that d(fx,
fy) <r d(x, y) for some r€(0,1) and all x,y € X, or to introduce more functions with
conditions appended. For example, in 1976 the following result appeared:

THEOREM 1.1. [1] Let f and g be commuting (gf=fg) self maps of a complete
metric space (X,d) such that f(X) C g(X) and g is continuous. If 3 r € (0,1) such that d(fx,
fy) < r d(gx, gy) for x,y € X, then f and g have a unique common fixed point a € X (i.e.,

fa=ga=a).

The above theorem and article promoted commutative maps as a tool for generalizing.
Subsequently, a variety of variations and generalizations of Theorem 1 which utilized the
commuting map concept appeared ( See, e.g., [2, 3, 4, 5, 6, 7,) ) . In 1982, Sessa [§]
introduced a generalization of the commuting map concept by saying that maps
f,g:(X,d)—(X,d) are weakly commutative iff d(fgx, gfx) < d(fx, gx) for x€X. In
response, variations on Banach and Theorem 1. appeared in terms of “weakly commuting
pairs f,g” — see, e.g., [9], [10]. Then, in 1986, the first author introduced the concept of
compatibility.

DEFINITION 1.1. ([11]) Self maps f and g of a metric space (X,d) are compatible iff
whenever {xp} is a sequence in X such that fxp, gxp— t € X, then d(fgxp, gfxp)— 0.
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Clearly, commuting mappings are weakly commuting and weakly commuting pairs are
compatible; examples in [8] and [11] show that neither converse is true. Articles already in
print demonstrate that known results can be generalized by using compatibility in lieu of
commutativity or weak commutativity. We refer the reader to [11, 12, 13, 14, 15 ,16, 17}; in
particular , we note [17] in which Rhoades, Park, and Moon obtain a very general fixed point
theorem by using Meir-Keeler type contraction maps in conjuction with compatibility.

The purpose of this paper is to further demonstrate the effectiveness of the compatible
map concept as a means of generalizing. We shall show that an appreciable number of fixed
point and coincidence theorems can be improved by substituting compatibility for
commutativity or weak commutativity. Such an effort seems to be in order, indeed, called
for, since —as the reader will see — the method of attack for one theorem is typically very
similar to that for another theorem. The approach becomes “standard” because the definition
of compatibility and one proposition regarding compatibility are the only tools needed. The
proposition we need is Proposition 2.2. in [11].

PROPOSITION 1.1. ([11]) Let f and g be compatible self maps of a metric space
(X,d).
1. If f(t)=g(t), then fg(t)=gf(t).
2. Suppose that limpf(xy) = limpg(xy) =t for some t € X and x, € X.

(a) If fis continuous at t, limpgf(xy) = (t).

(b) If f and g are continous at t, then f(t) = g(t) and fg(t) = gf(t).

2. GENERALIZATIONS VIA COMPATIBILITY.

We shall now state generalizations of published results, generalizations obtained in the
main by replacing the hypothesised commutativity or weak commutativity with
compatibility. Proofs of some of these results will be given in relative detail so as to
demonstrate techniques involved. Of course, in most instances goodly portions of the proofs
of results being generalized will pertain and will be appealed to so as to avoid repetition.

We have taken care to not to duplicate results already in the literature, such as the
general theorem of Rhoades, Park, and Bae, and Moon.

The first theorem is a generalization of Theorem 1. in [18], a 1986 paper by Diviccara,
Sessa and Fisher. We substitute compatibility for weak commutativity in the hypothesis.

THEOREM 2.1. Let S,T, and I be selfmaps of complete metric space (X,d) such that
for x,y € X either
(a) d(Sx, Ty) < (ad(Ix, Sx) d(Iy, Ty) + b d(Ix, Ty) d(ly, Sx)) D, where
D = ( d(Ix, Sx) + d(Iy, Ty)) ~1
if d(Ix, Sx) + d(Iy, Ty) #0, where 1 <a< 2 and b>0, or
(b) d(Sx, Ty) =0 if d(Ix, Sx) + d(Iy, Ty) = 0.
Suppose S(X)UT(X) CI(X). If either Iis continuous and compatible with one of S,T, or
one of S or T is continuous and compatible with I, then I, S, and T have a unique common
fixed point z. Further, z is the unique common fixed point of S and I and of T and I.

PROOF. The argument in the proof of Theorem [18] on page 278 pertains and we
have a sequence {x;} and w € X such that
(*) Ixp, Sxgp, Txqy 1— W.
We first consider the case (i) dp#0, where dy, ;= d(Txg,;, Sxy,) and dy =
d(sx2n'Tx2n+l)'
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Now assume that I is continuous and compatible with S.  Then ISxg,, IIxg, — Iw
by continuity, and SIxy, — Iw by Proposition (1.1)2(a) since I and S are compatible and I
continuous. We assert that Iw=Tw. Otherwise, (a)in the hypothesis implies
d(SIxy, . Tw) < ( a d(IIxy,. SIxy,) d(Iw, Tw) + b d(IIxg,, Tw) d(Iw, SIxy,)) D~ 1 where

D = d(Iw, Sw) + d(Iw, Tw).
But as n— oo we obtain d(Iw,Tw) <0, a contradiction. Thus, Tw=Iw. The argument
given in the third paragraph of page 279 in [18) shows that, in fact, Iw=Sw=Tw.

The case in which I is continuous and compatible with T follows from the above
becaunse of the symmetric roles of S and T; i.e., In=Sw=Tw in this case also.

Next, suppose that S is continuous and compatible with I. Then (x) above and
Proposition(1.1)2(a) imply that SIxq , SSxo — Sw and ISxy, — Sw. Since S(X) C I(X),
there exists w' € X such that Iw'=Sw. In fact, the line of reasoning at the bottom of page
279 and top of page 280 is valid for us because the above sequences do converge to Sw, and
we have Iw'=Sw'=Tw'=Sw. As above, we can appeal to “symmetry” to conclude that
12=Sz=Tz for some z when T is continuous and compatible with I.

We have considered all possibilities to show that Iw=Sw=Tw for some w € X when
dy # 0. The case in which dp=0 for some n is covered in (ii) and (iii) on page 280 and holds
for us. Thus, in any case, Iw=Sw=Tw fox some w € X.

As we now show, Iw is a common fixed point of I, S, and T. Note that the argument
given depends on compatibility without any reference to continuity. If I and S are
compatible, then Tw=Iw=Sw and .Proposition (1.1) 1. imply that SSw = SIw = ISw =
Ilw. But then d(Ilw, SIw) + d(Iw, Tw) = 0, so that d(SIw, Tw) = 0 by (b) of the
hypothesis. Therefore, Iw=Tw=SIw=IIw, and z=Iw is a common fixed point of I and S.
Moreover, Tz = z. For if not, (a) of the hypothesis yields d(z,Tz) = d(Sz, Tz) < (a
d(1z,Sz) d(1z,Tz) + b d(Iz,Tz) d(1z,5z)) (d(Iz,Sz) + d(Iz,Tz)) —1_0; ie., d(zTz)<0 — a
contradiction. Thus, z=Iz=Sz=Tz. The other case, namely, I and T compatible, follows in
a similar fashion.

We have shown that, in any case, I, S, and T have a common fixed point. The
uniqueness assertions follow immediately from (b) of the hypothesis. O

The next theorem generalizes Theorem 1. [19] of Imdad, Kahn, and Sessa by
replacing the weakly commuting requirement of the hypothesis by compatibility. Note that

our approach simplifies the argument give in [19] on pages 31-32.

THEOREM 2.2. Let X be a uniformly convex Banach space and K a nonempty closed
subset of X. Let A, S, and T be self maps of K satisfying:
(i) S and T are continuous, and A(K) C S(K)U T(K).
(i1) {A,S } and {A,T} are compatible pairs on K.
(iii) There exists an upper semi-continuous function f:IR:_—»IR + which is non-
decreasing in each coordinate variable such that for any x,y € K:
[Ax—Ay] < £1Sx~ Ty} 19x - Axl [Sx - Ay || Ty — Ax|, | Ty - Ay]),
where f also satisfies:
(iv) for t >0, f(t,t,0, at, t) < Bt and f(t, t, at,0,t) < Bt where 8 < 1 for
a <2, and ﬂ:lfora:Q,a,ﬂ€R+,
(v) f(t,0,t,t,0) <t fort > 0.
(a)  Then there exists a point u € K such that u is the unique common fixed point of
A,S,and T, and
(b)  for any xo €K, the sequence {Axp} defined by Txy = Axy ; and Sxon41=
szn for n=0, 1, 2, ... . converges strongly to u.
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PROOF. One follows the proof of Imdad, Khan, and Sessa ([19]) through page 31,
line 11, and we thus have  Axp—u, Sxg,,.;—u, and Txy —u. Since T is continuous,
TAxy,—Tu. But A and T are also compatible, so Proposition (1.1)2(a) implies that
ATxy,—Tu. Similarly, since S and A are compatible and S is continuous, SAxy,, —Su and
ASxy, 41 —Su.

Suppose Su # Tu. From (iii) in the hypothesis, | ASxy, ) — ATxy, | <

£ |SSxgn41— TTxgn| » | SSxpn41— ASxgny| » [ SSxan41 — ATxpn| | TTxgn — ASxgyya ] »
| TTxp, — ATxp, |).
Taking the limit as. n—oo yields |Su—~Tull <f(Su—Tull,0,|Su—Tull,ISu—=Tul,0) <
ISu—Tull, by (v). This contradiction demands that Su = Tu.
Likewise, Su = Au. For suppose Su # Au. From (iii), ||ASx2Il +1 — Au || <

£( ISSx2n+1 - Tu|| , ISSx2n+l - Aszn“H s uSSx2n+l - Au|| , ||Tu — ASxg, 41 " M Tu—Aul).
As n—00 we obtain,
Su— Aull < £(ISu—Tull, ISu—Sull, Su—Aull, | Tu-Sull, ITu - Aul) =

= £(0,0,ISu—Aul,0,|Tu—Aul)

< f(ISu—Aul, [Su—Aull, |Su—Aull, 0, |Su— Aul)

< |Su—Aull, a contradiction.

We have, Au = Su = Tu. The remainder of the proof is the same as that in [19],
beginning on the second line from the bottom of page 32 and continuing to middle of page 33,
the end of the proof. O

Our next theorem generalizes Theorem 1. ([20]) of Devi Prasad by relaxing the
requirement that hf=fh and gh=hg by merely requiring that each of the pairs fh and gh
be compatible.

THEOREM 2.3. Let f, g, and h be self mappings of a complete metric space (X,d)
which satisfy: f(X)Ug(X) Ch(X), f and h are compatible and g and h are compatible.
Suppose further that
() dx, &) )% < o( d(bx, ) d(by, gv), d(bx, gv) d(by, £x), d(bx, £x) d(bx, ), d(by, %)
d(hy, gy))
for any x,y € X, where ¢: R‘_’,’_—»R + is upper semi-continuous and nondecreasing in each
coordinate variable and satisfies ¢( t, t, a;t, agt ) <t for any t>0, where a; € {0,1,2} with
a; + ag = 2. If his continuous, then f, g, and h have a unique common fixed point.

PROOF. Follow the proof of Prasad to the bottom of page 1074. Then we have
{fxg,}, {#%9n41}, and {hxp} converging to u. Since h is continuous , hzxn—» hu and
hfxy,— hu, and since h and f are also compatible, fhxy — hu, by Proposition(1.1)2(a).
Similarly, the continuity of h and the compatibility of h and g imply that hgx,,  ;— hu
and ghxy, , 1— hu.
Now (i) implies:
d(fhxy,, gu)? < ¢( d(hhxyy, fhxy,) d(hu, gu), d(hhxy,, gu) d(hu, thxy,),

d(hhxy,, fhx, ) d(hhxy,, gu), d(hu, fhxy ) d(hu, gu) ).
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Takiﬁg the limit as n—cc yields: d(hu, gu)? < ¢( 0,0,0,0) = 0. Therefore, hu = gu.

Appeal to (1) again to obtain:
d(fu, ghx2n+1)2 < ¢ ( d(hu, fu) d(hhxy, , ghxe, ;) , d(hu, ghxo, ;) d(hhxg, 4, fu) ,

d(hu, fu) d(hu, ghxy, ) , d(hhxy,, fu) d(hhxy, 1, ghxg, 1) ).

As n—oo we obtain, d(fu, hu)2 < ¢(0,0,0,0) =0. Thus fu=hu.
The remainder of the proof is the same as in the proof of Theorem 1. of Prasad. D

The next theorem is a generalization of a Theorem 1. in [21] by S. L. Singh on L-
spaces. L-spaces utilize semi-metrics d (See (21]). We extend our definition of compatibility
to L-spaces by saying that self maps P and Q of an L-space (X,—) are compatible relative to
a semimetric d on X iff whenever {xp} is a sequence in X such that Pxp— t and Qxp— t for
some t € X, then d(PQxp,QPx,) — 0. Also note that in a separated L-space d is continuous.

THEOREM 2.4. Let (X,—) be a separated L-space which is d-complete for a
semimetric d. Let P, Q, T be continuous selfmaps of (X,—) such that the pairs P.T and
Q,T are each compatible relative to d and satisfy P(X)UQ(X) C T(X). If there exists
h € (0,1) such that for all x,y € X:

d(Px, Qy) < h max { d(Px, Tx), d(Qy, Ty), d(Tx, Ty),}

then P, Q, and T have a unique common fixed point.

PROOF. The proof of Theorem 1. in [21] up to the bottom of page 92 is valid under
our hypothesis. We thus have, Txp— z, Pxy — z, and Qx2n+l_’ z. The continuity of
T, P, Q and of d, in conjunction with the compatibility of the T and P and of T and Q imply
that Pz=Tz and Qz=Tz. Therefore, by compatibility ( let x;, = z for all n in the definition),
PTz = TPz = TTz = TQz = QTz = PQz = QPz = QQz. But then

d(PQz, Qz) < h max {d(PQz, TQz), d(Qz, Tz), d(TQz, Tz) }

= h max {0, 0, d(PQz, Qz)},
so that PQz = Qz. By the above equalities we Qz is a common fixed point of P, Q, and T.

Uniqueness follows immediately from the contractive definition. O

In the above proof we veritably showed that two compatible self maps of a separated
L-space commute at coincidence points of the maps. This fact is noted for metric spaces in
Proposition (1.1) 1. However, Proposition (1.1)2.(b) says that if E and F are compatible
and continuous self maps of a metric space and Exy, Fxp—t, then Et=Ft and EFt=FEt. The
proof of the following theorem, which is a generalization of Theorem 2. in [22] by Yeh,
appeals to this fact. We again generalize by replacing the hypothesised commutativity of
pairs of maps by hypothesising compatibility for the corresponding pairs.

THEOREM 2.5. Let E, F, and T be continuous self maps of a complete metric space
(X,d) such that E,T and F,T are compatible, and that E(X) UF(X) C T(X). Suppose that
d(Ex, Fy) <a(d(Tx, Ty)) d(Tx,Ty) + b(d(Tx, Ty))[ d(Tx. Ex) + d(Ty. Fy)] +
(d(Tx, Ty)) [ d(Tx, Fy) + d(Ty, Ex)])
for all x,y € X . x#y. where a.b. and c are mappings from R, into [0, 1) satisfying the
following: If A =a + 2b + 2c where 0 < A(t) < 1forte R,. and {tn} is a monotone
increasing sequence in R, for which A(ty)— 1 asn—oo, then t)— 0 asn— oo. Then E,

F, and T have a unique common fixed point.



422 G. JUNGCK AND B.E. RHOADES

PROOF. Proceed as in the proof of Theorem 2. of Yeh until line 5 of page 119. We
have: Txp, Exg,, Fxg,,;— x € X. Since Txy,,Exy —x and the continuous functions E and
T are compatible, Ex = Tx and ETx=TEx by Proposition(1.1)2.(b.). Similarly, Fx=Tx
and FTx=TFx. Thus, T(Tx) = T(Ex) = E(Tx) = E(Ex) = T(Ex) = F(Tx) = F(Ex) =
F(Fx).

The remainder of the proof is as in [22]. O

In (23], Diviccaro, Fisher, and Sessa prove a common fixed point theorem of the
“Gregus” type. However, as was communicated to us by Sessa, a very recent paper (1991) by
Davies ( [24]) subsumes the “Gregus” type theorem in [23]. We now appreciably gencralize
Davies’ result — Theorem 1. in [24] — by replacing the nonexpansive requirement on the
linear map I by continuity, and the weakly commuting hypothesis by compatibility.

THEOREM 2.6. Let I and T be compatible self maps of C, a closed convex subset of a
Banach space X, satisfying :

ITx-Ty| < aflx-1Iy| + B max {ITx-Ixll, |[Ty-Iy|} +

+ ymax {|Ix—Iy], ITx—Ixl, | Ty - Iy| }
for x,y € C, where a, 8,7 >0 and a+B+v = 1. If Iis linear and continuous in C and
T(C) CI(C), then T and I have a unique common fixed point w and T is continuous at w.

PROOF. Define Ky = { x€C: ITx—Ixl|l <1/n} for all n € N, the set of positive
integers. The proof in [24] holds for our hypothesis through to (13), page 240, where we have
{w}=A=n{c(I(Kp)) : n €N} and we use cl to denote “closure”. Since w € A, for each
n€N 3 yp €I(Kp) such that d(yp, w) <1/n. Then 3 vy € Kp such that yp= Ivy; thus
d(Ivp, w) <1/n and we infer that Ivp— w. But vy €Kp for n€N, so that | Tvp —Ivy|

<1/n and we also have Tvy—w. Since I is continuous, ITvp—Iw and Ilvp— Iw.
Moreover, TIvy— Iw by Proposition(1.1), since I and T are compatible and I is continuous.
Now by hypothesis,
[TIvp — Tw| < a|llvg —Iw|+ B max { | TIvy — IIvy |, ITw —Iwll } +
5 max { |IIvy —Iw|, | TIvy — vy |, I Tw — Iw| }
forn € N. Asn—oco we obtain:
IlIw—Twll < 0+ BITw—Iwl +y I Tw—Iwl = (B+7) I Tw —Iwl.
Therefore, since (8+7) < 1by hypothesis, Iw = Tw. Moreover,
[Tva—Tw| < a}lvy—Iw| + B max {|Tvy—Ivy|,ITw—Iwl} +
y max { |Ivy — Iw|, | Tvp —Ivp ||, ITw—Iwl }
for n € N. Taking the limit as n— oo yields:
Iw—Twl < allw-=Twl+ 0 + ylw—Twl = (a+7) lw - Twl.
As above, since (a+7v) < 1, we conclude that w = Tw and we have w=Tw=Iw.

That w is that unique common fixed point of I and T follows from the fact that any
common fixed point of I and T is in A, and A is a singleton. However, Davies appeals to the
nonexpansiveness of I to prove T continuous at w. Since we are only asssuming that I is
continuous, we proceed as follows.

Let xp— w. Since I is continuous, Ixp— Iw = Tw. Now by hypothesis, using
Iw=Tw,

||Txn—Tw]L$ a||Ixg —Iw| 4+ B max { | Txy — Ixp |, 0} +

v max { |Ixy — Iw|, | Txp — Ixp |, 0 }.
Since |Txp—Ixp| <|Txp—Tw|+ |Tw—Ixg| =|Txp—Tw|+ |Iw—Ixp|, we then have
ITxp = Tw| < a|lxp—Iw|+ (B8+7)( | Txp — Tw| + |Iw —Ixp| ), so
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|Txp —Tw| < (1/a)|Ixy —Iw],

for n € N. Therefore, since Ixp— Iw, Txp— Tw, as desired. O

The next Theorem is a generalization of Theorem 3. in [25], a paper published in 1986
by Fisher and Sessa. We generalize by substituting compatibility for weak commutativity.

THEOREM 2.7. Let {S,I} and {T,J} be two pairs of compatible self maps of a

complete metric space (X,d) such that
d(Sx, Ty) < g( d(Ix, Jy), d(Ix, Sx), d(Jy, Ty) )

for any x,y € X, where g: IR?‘_——» R, is continuous, and satisfies:

(1) g(1,1,1)=h <1, and

(i1) whenever u,v >0 and either u< g(u, v,v), u< g(v,u,v), or

u< g(v,v,u), thenu < hv.

If T(X)CI(X), S(X)CJ(X), and ifone of I, J, S, or T is continuous, then I, J, S,
and T have a unique common fixed point z. Further, z is the unique common fixed point of
I'and S and of J and T.

PROOF. Follow the proof of Theorem 3. by Fisher and Sessa to line 6 on page 48.
We then have: szn—> z, szn +17 % TxZn-l—' z, and Ix2n—v Z.

Suppose that I is continuous. Then ISxp— Iz, and Ixg, — Iz. But Slxy — Iz
also, by Proposition (1.1) 2.(a), since I and S are compatible. Then as in [25], line 10, page
48, to line 5, page 49, we obtain Iz =z and Sz = z.

Since S(X) € J(X), 32 such that Jz' = z. Asin [25], line 9, page 49, to line 12, page
49, we have Tz' = z. But Jz'= Tz’ implies that T and J commute at z’, by Proposition
(1.1)1. This implies Tz = TJz' = JTz' = Jz. That Tz = Jz = z follows from the last five
lines of page 49, [24]. Therefore, I, S, T, and J have a common fixed point z if I is
continuous.

The proof for the case in which J is continuous is analogous to the preceding proof. In
fact, the remainder of the proof in [25] beginning with line 6, page 50, holds if the phrase, “
Since __ and __ are compatible” is substituted for every appearance of “ Since __ and
— - weakly commute”, with one exception. Beginning with the fifth line from the bottom of
page 51, we would say, “ Since S and I are compatible, the fact that Sz” = z = Iz" implies
Iz = ISz" = SIz''= Sz. We thus have Iz = Sz and z = Tz = Jz from above. But then,

d(Sz, z ) = d(Sz, Tz) < g( d(Iz, Jz), d(Iz, Sz), d(Jz, Tz) )

= g( d(Sz,z),0,0) < hd(Sz z),
and this implies that Sz = z. Thus, z is a common fixed point of I,J, S, and T.” O

The following theorem generalizes Theorem 3.1 of M. S. Kahn and M. Swaleh in [26].
The only change in the statement of theorem is to require {A,S} and {A,T} to be compatible
pairs as opposed to weakly commuting pairs.

THEOREM 2.8. Let A, S, and T be self maps of a complete metric space (X, d).
Furthermore, suppose that
(a) d(Sx, Ty) < a,d(Sx, Ax) + a9d(Ty, Ay) + a3d(Sx, Ay) + a4d(Ty, Ax) +
agd(Ax, Ay) for x,y € X, where each a; >0 and max{ ay + a4, agtaytag} <1,

(b) A is continuous,
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(c) {A, S} and {A,T} are compatible pairs, and
(d) 3 a sequence which is asymptotically S — regular as well as T — regular with
respect to A.
Then A, S, and T have a unique common fixed point.

PROOF. The proof is the same as the proof of Theorem 3.1 in [26] down to ten lines
from the bottom of page 986. Now since Axp— z and Sxp— z, A2xp— Az and ASxp—
Az since A is continuous. But then ( Proposition (1.1)), SAxp—Az since {A, S} is a
compatible pair. Similarly, we conclude that ATxp— Az and TAxp— Az. The remainder

of the proof is as in [26] . O

We now consider compatibility and/or generalizations thereof in the context of multi-
valued maps.
3. MULTI-VALUED FUNCTIONS AND COMPATIBILITY.

We shall consider three papers involving multi-valued functions. The first two let
B(X) denote the set of bounded subsets of a complete metric space (X,d) and define a
function é: B(X)xB(X)—[0,00) by &(A,B) = sup { d(a, b): a€ A and b€ B }. See [27] or
(28] for a discussion and listing of properties of §. We do note that 0<é(A, B) <
5(A, C) + 6(C, B) for AB,C€eB(X), and 6(A, B)=0 iff A=B={a}. Ifx€X, we write
é(x, A) for 6({x}, A) when convenient and confusion is not likely.

If {Ap} is a sequence in B(X), we say that {Ap} converges to A C X, and write
Ap—A, iff
(i) a€ A implies that a=xli'né° ap for some sequence {ap} with ap € Ay forn €N, and
(i) for any e>0 I m € N such that Ay C A= {x€X: d(x, a) <e for somea€ A} for n>
m.

We need the following lemmas.

LEMMA 3.1 ([27]) Supposé {Ap} and {Bp} are sequences in B(X) and (X, d) is a
complete metric space. If Ap— A € B(X) and Bp— B € B(X), then §(Ap, By) — 6(A, B).

LEMMA 3.2 ([28]) If {Ap} is a sequence of nonempty bounded sets in the complete
metric space (X,d) and if lim 6(Ap,{y}) =0 for some y € X, then Ap— {y}.

n—00

To define “compatibility” in this context, we say the following.

DEFINITION 3.1. Let (X, d) be a metric space. Let I:X— X and F: X— B(X).
F and I are é-compatible iff IFx € B(X) for x € X and §(IFxy, FIxy) — 0 whenever {xg}
is a sequence in X such that Ixp— t and Fxp—{t} for some t € X.

Observe that even though the conditions of the above definition are satisfied non-
vacuously, F need not be single valued. Consider, e.g., I:IR—R and F: R— B(R) defined by
Ix = x/3 and Fx = [0, x/2], where R denotes the reals with the usual topology.

The following result regarding é-compatibility will prove useful. Note that by
definition, a function F:X—B(X) is continuous iff xp— z in (X,d) implies Fxp— Fz in
B(X).

PROPOSITION 3.1. Let (X,d) be a complete metric space. Suppose I:X—X,
F:X—B(X), and I and F are é-compatible.
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(i) Suppose the sequence {Fxp} converges to {z} and {Ixp} converges to z. If Iis
continuous,
then Flxp— (Iz}.
(i1) If {Iu} = Fu for some u € X, then Flu = IFu.

PROOF. We first prove (i). Suppose that I is continuous. Since Fxp— {z}, IFxp,—
{Iz} by the definition of convergence of sets, and therefore §(IFxy, {Iz})—é({Iz},{Iz}) = 0
(Lemma 3.1). But

6(FIxp, {Iz}) <6(FIxg, IFxy) + 6(IFxy, {Iz}) , forn € N.

Since it is also true that Ixy— z and the pair {I, F} is é-compatible, &(FIxp, IFxy) — 0
as n—oo. Consequently, the above implies that 6(FIxp, {Iz}) — 0. Therefore, FIxp—{Iz}
by Lemma 3.2.

To see that (ii) also holds, let xp=u for n€N. Then Ixp— Iu and Fxp—
Fu={Iu}, so that §(Flu, IFu) = §(FIxy, IFxp) — 0 by é-compatibility; i.e., IFu = Flu, a

singleton. O

We now state and prove the first theorem, which extends Theorem 1. of Fisher in [27]
by replacing commutativity of maps :X—X and F:X—B(X) by §-compatibility. Note that
in the following we use UF(X) to denote { y € X: y € F(x) for some x € X. }.

THEOREM 3.1. Let I and J be selfmaps of a complete metric space (X,d), and let
F,G:X—B(X). Suppose 3 c € (0,1) such that for all x,y € X:
§(Fx, Gy) < ¢ max { d(Ix, Jy), é(Ix, Gy), 6(Jy, Fx) }. (3.1)
Suppose the mappings F and I are §-compatible and G and J are é-compatible, that
UF(X) CI(X) and UG(X) C J(X). If For I and G or J are continuous, then F, G, I, and J
have a unique common fixed point. Moreover, Fz=Gz={z} is the unique common fixed
points of F and I and of G and J.

PROOF. Follow the proof of Theorem 1. by Fisher ([27]) from page 16 to line 4 page
18. Note that we have Ixp, Jyp— z€ X and Fxp, Gyp— {z}.

Now suppose that I is continuous. Then IIxp— Iz. But I and F are é-compatible
and I is continuous; therefore, FIxpy— {Iz} by Proposition 3.1 (i). © Consequently, since
(3.1) yields

6(FIxp, Gyn) < ¢ max { d(Ilxp, Jyp), 6(Ilxp,Gyn), 6(Jyn, Flxq) }
for n € N, as n—oo we obtain 6(Iz, z) < ¢ §(Iz, z2) by Lemma 3.1. Thus Iz = z. Then
follow Fisher to obtain, z = Jz = Iz, and Fz = Gz = {z}.

Next suppose that F is continuous. Then FIxp— Fz since Ixp— z. And by

construction, Ixp € Fx ;, so Ilxp € IFx ; for all n. The inequality (3.1) thus implies:
§(FIxp, Gyp ) £ ¢ max { d(IIxp, Jyn), 6(1Ixp, Gyn), 8(Jyn, Flxg) }

< cmax { 6(IFxn_1, Jyn), 5(1Fxn_1, Gyn), §(Jyn, FIxp) }
< cmax { §(FIx _;, Jyn) + 6n, 8(FIx, y, Gyn) + én, 6(Jyn, Flxy) },

for n € N, where 6= 6(IFxp, Flxy) — 0 as n—oo by compatibility. Thus 6(Fz, {z}) <c
§(Fz, {z}); i.e., Fz = {z}.

Now follow Fisher ([27]) to the sixth line from the bottom of page 18. We have a
point u such that Iu = z and Fu = {z}. Since I and F are é-compatible, IFu=FIu by
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Proposition 3.1(ii). Thus, {z} = Fz = Flu = IFu = {Iz}. The remainder of the proof follows
as in [27]. O

The other paper we consider and which utilizes the function §: B(X)xB(X)— [0, o0)
for which the above definitions and lemmas pertain, is the paper 28] by Imdad, Kahn, and
Sessa. (X,d) is assumed to be a complete metric space and I: X— X, F:X — B(X).

The authors introduce a generalized commutativity by saying that F and I slightly
commute iff IFx € B(X) and 6(FIx, IFx) < max { 6( Ix, Fx), §( Fx, Fx) } for x€eX. If F
is single-valued, the inequality reduces to d(FIx, IFx) < d(Ix, Fx) for x € X, so that F
and I are weakly commuting. As noted in the introduction, weakly commuting pairs are
compatible, but the converse need not hold. And it is clear that if F and I slightly commute,
then F and I are é-compatible; thus é-compatibility does generalize slight commutativity.

We generalize Theorem 5. in [28] by substituting é-compatibility for slight
commutativity. Note that :[0,00) — [0, co) , is nondecreasing, right continuous, and
satisfies (t)<t for t>0.

THEOREM 3.2. Let the maps F:X— B(X) and I: X— X satisfy for x,y € X:

§( Fx, Fy) <v(max { d(Ix, Iy), 6(Ix, Fx), é(1y, Fy), é(Ix, Fy), é(1y, Fx) }).

If there exists xo € X such that sup { é(Fxp, Fx;) : n=0,1,2,... } < +oo, if F and I are é-
compatible, if UF(X)CI(X), and if F or I is continuous, then F and I have a unique

common fixed point z; furthermore, Fz = {z}.

PROOF. Begin as in the proof of Theorem 5 in [28]. Then replace the second
paragraph of the proof (page 294) by the following. “As in [2], we have Ixp—z€ X and
Fxp—{z}. Consequently, compatibility implies that &(FIxy,IFx;)—0 as n—oo”, their
property (4.2).

Then continue as in [28] until lines 1 and 2 of page 295, which we replace by the
following observation “Since {Iw}={z}=Fw, F({z}) = FIw = IFw = {Iz}, by Proposition
3.1(ii) and compatibility. Thus {z}=Fz={Iz}.”

The rest of the proof is as in [28]. O

The third and final paper involving multi-valued functions is the paper [29] by Singh,
Ha and Cho. The authors consider multi-valued functions S:X— CL(X), the family of closed
subsets of X, where (X, d) is a metric space. They utilize the “generalized Hausdorff
metric’, H, on CL(X). We refer the reader to [29] for the definition of this and other
relatively standard concepts used, except to note that the functions f:X— X and S:X—
CL(X) are said to commute weakly at z iff H(fSz, Sfz2) < D(fz, Sz). If f and S commute
weakly at each point of X, then they commute weakly on X. Of course, D(a,B) = inf{
d(a,b): beB}, for a€X and BCX. Observe that the definition of H and weak
commutativity imply that fSx € CL(X) for x € X.

In this context we shall give the following “compatibility” definition.

DEFINITION 3.2. Mappings f:X— X and S:X— CI(X) are “H — compatible” iff
fSx € CL(X) for x€ X and H(Sfxp, fSxp)— 0 whenever {xp} is a sequence in X such that
Sxp— M in CL(X) and fxp— t € M.

The Definition 3.2 is basically the definition of compatible maps S:X— CB(X) and
f:X— X given in ]29] in the context of closed and bounded subsets of X. Therein, Sessa and
Kaneko prove a lemma which is valid for CL(X), and which we find useful.

LEMMA 3.3. [29] Let S: X— CL(X) and f:X— X be compatible. If fw € Sw, then

fSw=Sfw.
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We now state a variation of the main theorem in [29] obtained by replacing “weakly
commuting” at a point by “ H — compatible”. The statement refers to a family F, which is
the family of mappings ¢:[0,00)— [0, co) which are upper-semicontiuous and nondecreasing.

THEOREM 3.3. Let S and T be multi — valued mappings from a metric space (X,d)
into CL(X). If 3 a mapping f:X—X such that S(X)UT(X) C{(X), and for each x,y € X
and ¢ € F

H(Sx,Ty) < ¢ (max {D(fx, Sx), D(fy, Ty), D(fx, Ty), D(fy, Sx), d(fx, fy)}),

#(t) < qt for all t>0 and some fixed q € (0,1),

3 xo € X such that the pair (S,T) is asymptotically regular at xo,

and if f(X)is (S,T;f, xo) — orbitally complete,
then f, S, and T have a coincidence point. Furthermore, if z is a coincidence point of f, S,
and T, and fz is a fixed point of f, then (a) fz is also a fixed point of S (resp. T) provided f
and S (resp. T) are H —compatible, and (b) fz is a common fixed point of S and T
provided the pairs {f,S} and {f,T} are H — compatible.

PROOF. The proof is the same as in [29], except substitute “H-compatible” for
“commutes weakly at z” in lines 8 and 10, page 253 of [29].

4. RETROSPECT.

The preceding may suggest to the reader that any metric space fixed point theorem for
commuting mappings obtained by using “contractive conditions” can be generalized by
substituting the compatibility requirement for commutativity. The papers [30, 31, 32, 33]
contain results for which this is not the case. In particular, the papers [32] and [33] by
Fisher, provide examples which happen to be weakly commuting and therefore compatible for
which the featured theorems are false. The question as to how far we can go in substituting
compatibility for commutativity in the context of compact metric spaces is commented on in
(13].

Added in Proof: The theorem of B.K. Sharma and N.K. Sahu [Common fixed points of three
continuous mappings, Math. Student 59 (1991) 77-80] can also be extended to compatible
mappings.
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