Internat. J. Math. & Math. Sci. 409
VOL. 16 NO. 2 (1993) 409-412

ON CERTAIN MEROMORPHIC FUNCTIONS WITH POSITIVE COEFFICIENTS

YONG CHANG KIM SANG HUN LEE SHIGEYOSHI OWA
Department of Mathematics Department of Mathematics Department of Mathematics

Yeungnam University Kyungpook National University Kinki University
Gyongsan 713-749, Korea Taegu 702-701, Korea Higashi-Osaka, Osaka 577, Japan

(Received October 24, 1991)

ABSTRACT. In this paper, we introduce a new class Tp(a) of meromorphic functions with positive
coefficients in D={z: 0< |z| <1}. The aim of the present paper is to prove some properties for the

class T y(a).
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1. INTRODUCTION.
Let Ay denote the class of functions of the form

[o.9)
f(z)=%+ Z anzn (p=13,5,--") (11)
n=p
which are analytic in D= {z: 0 < |z| <1} with a simple pole at the origin with residue one there.
A function f(z) € 4, is said to be meromorphically starlike of order o if it satisfies

2f'(2)
Re§ — W} >a (1.2)

for some a (0 < a < 1) and for all z € D.
Further, a function f(z) € Ap is said to be meromorphically convex of order « if it satisfies .

zf"(2)
Re{—<l+ 70 )})a (1.3)

for some a (0 <a< 1) and for all z€ D.

Some subclasses of 4; when p=1 were recently introduced and studied by Pommerenke [1],
Miller [2], Mogra, et al (3], and Cho, et al [4].
Let T, be the subclass of 4, consisting of functions

[e.9)
f(z)= %+ Z ayz" (ay, > 0). (1.4)
n'=p
A function f(z) € T, is said to be a member of the class Ty(a) if it satisfies

Pt lf(P)(z) +p!

o lf(p)(z) _p! <a. (1.5)

for some (0 < a < 1) and for all z € D.
In this paper we present a systematic study of the various properties of the class T yle)

including distortion theorems and starlikeness and convexity properties.
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2. DISTORTION THEOREMS.

We begin with the statement and the proof of the following coefficient inequality
THEOREM 2.1. A function f(z) € T, is in the class Tp(@) if and only if

Z: ()a,,_Ha (2.1)

where

(vl:)= n(n-1)- -p-!(n—p+ l)‘

PROOF. Assuming that (2.1) holds for all admissible a, we have

121 Pda)+ gt -l P+ 1P

(2:2)
[o.2] OO
Z az”+1|—a|2 pl- Z az”+l|
[o.9]
< L Gy (alenl s " -2t
Therefore, letting z—1~, we obtain
[o.]
Z (T_p)i(l""’)“n"%‘ p'<o (2.3)

which shows that f(z) e T p().
Conversely, if f(z) € T y(a), then

P+ lf(p)(z)+ P

P+ pi

<a (z € D). (2.4)
2.p!— go—P(nf_'p)'“n’ n+1

Since Re(z) < | z| for all 2, (2.4) gives

1
E?:p(_'.'f'_p)!anzn"‘l

<a (z€ D). (2.5)
_ Ego=p(n_2!p_)ianzn+l

Choose values of z on the real axis so that z? +1 f(p )(z) is real. Upon clearing the denominator in
(2.5) and letting z—1~, we have

E - p)' ——=(1+a)a, <2a-p!

(2.6)
which is equivalent to (2.1). Thus we complete the proof of Theorem 2.1.
Taking p =1 in Theorem 1, we have
COROLLARY 2.1. f(z) € T(a) if and only if
o 2
Z na, < l-}-_aa' (2.7)
n=1
THEOREM 2.2. If f(z) € Tp(a), then
() g pRa p-j
and I.f (Z)I 2> | |]+l (p ])'(l+(!)| I (28)

119 <

]. p.a p—J
Wi (e (29)
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. ip—J)
fOrZeD, Wher60§]§pa.nd0<a<;,2——(_—])'

Equalities in (2.8) and (2.9) are attained for the function

Sy =142 2P (2.10)
PROOF. 1t follows from Theorem 2.1 that
N1 +a) & -
- a)n;p ogrns X (P)1+ e <20 (211)
Therefore, we have
(), J! p2a p—J
| f (z)l?_lzlj Z(n ])r"nlzl | |J+l (p ])|(1+0)| z| (2.12)
and
(4) J!
| f (Z)l_l |]+l+ Z(n ])l“nl 2" ‘ |J+1 (p ])'(l+a)| (2.13)
Taking j =0 in Theorem 2.2, we have
COROLLARY 2.2 If f(z) € Tp(a), then
-1 <1l 4
H l+a T ‘ (2.14)
for z € D. Equalities in (2.14) are attained for the function f(z) given by (2.10).
Making j =1 in Theorem 2, we have
COROLLARY 2.3. If f(z) € Tp(a), then
e L Y O e - A Lk (2.15)

[z] |z |2

for € D, where 0 < a < iﬁ' Equalities in (2.15) are attained for the function (z) given by (2.10).
Letting p =1 in Theorem 2.2, we have
COROLLARY 24. If f(z) € T{(a), then

1
T2] 1+a '|_+l+a| z| (2.16)
and
1 2 1 2
lzlz—l—fc;5|f,(z)|<l |2+1fa (217)
for z € D. Equalities in (2.16) and (2.17) are attained for the function
1) =h+12 = (2.18)

3. STARLIKE AND CONVEXITY.
THEOREM 3.1. If f(z) € Tp(e), then f(z) is meromorphically starlike of order § (0<6<1) in

|z| <ry, where
( y1+a)(l 8) n+1
rl = lﬂf W - (3'1)

fy =1+ (—ﬁ-— M (n2p) (3.2)

PROOF. 1t is sufficient to show that

z;('(;)+ 1| <1-6 (3.3)

for |z| <r;. We note that
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2f(z) ]l Zn—p("+l)"nz

ZRep(rtlagls 2+l
f(z) f+ zn = p anzn (3‘4)

. 1-Y P paglz|™ 1

Therefore, if

[o.¢]
z"” Sanlzl®*1gn, (3.5)

then (3.3) holds true. Further, using Theorem 2.1, it follows from (3.5) that (3.3) holds true if

196!
"—1*_2—§i’|z|"“s(l)¥ (n>p), (3.6)
or . X
1+a)(1-6) |7 ¥T
|z] S{(—pg);(—nﬁ;)—} (n2p). (3.7

This completes the proof of Theorem 3.1
THEOREM 3.2. If f(z) € Ty(a), then f(2) is meromorphically convex of order § (0<é<1) in

|z] < ry, where
(;)(1+a)(1-6) 3
=il | Gamrz=0 | (3.8)

The result is sharp for the function f(z) given by (3.2).
PROOF. Note that we have to prove that

"
z;,(g)_'_2 <1-6 (3.9)
for |z| <ry. Since
zf"(z)+2|— T=pn (n+l)anz IR pnlnt Day 2"+ (3.10)
O N B A e L A '
we see that if
f: n+2 6)a |z +1<, (3.11)
Or
_ "Xl+0a)
w29 ner BEXD (3.12)

then (3.9) holds true. Therefore, f(z) is meromorphically convex of order § in |z| <r,.
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