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ABSTRACT. In this paper, we introduce a new class Tt,(a) of meromorphic functions with positive
coefficients in D {z: 0 < [z[ < 1}. The aim of the present paper is to prove some properties for the

class Tp(a).
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1. INTRODUCTION.
Let At, denote the class of functions of the form

.f(z)= l+ E anzn (t,=I,3,5,--.) (1.1)
n=t,

which are analytic in D {z: 0 < z[ < 1} with a simple pole at the origin with residue one there.

A function f(z) At, is said to be meromorphically starlike of order a if it satisfies

R f(z) J > c (1.2)

for some a (0 _< a < 1) and for all z D.

Further, a function f(z). At, is said to be meromorphically convex of order a if it satisfies

lie 1+ if z ,]J >
a (1.3)

for some a (0 _< a < 1) and for all z D.

Some subclasses of A when l0 were recently introduced and studied by Pommerenke [1],
Miller [2], Mogra, et al [3], and Cho, et al [].

Let Tp be the subclass of At, consisting of functions

f(z) 1 + , anzn (an > 0). (1.4)
n--p

A function f(z) Tt, is said to be a member of the class Tt,(a) if it satisfies

zp + lf(P)(z + p!

zp + lf(P)(z p!
< .. (1.5)

for some a(0 _< a < 1) and for all z e D.

In this paper we present a systematic study of the various properties of the class Tp(a)
including distortion theorems and starlikeness and convexity properties.



410 Y.C. KIM, S.H. LEE AND S. OWA

DISTORTION THEOREMS.
We begin with the statement and the proof of the following coefficient inequality.

THEOREM 2.1. A function l{z) Tp is in the class Tp(a) if and only if

an<- l+a’

where
..(n-p+l)

(2.1)

PROOF. Assuming that (2.1) holds for all admissible a, we have

I + I()() + !1 - I + lI()()- !1 (2.2)

n! (I 4- )art z_< (.- p)

Therefore, letting z-l -, we obtain

oo

E -p). (l+a) an-2a’p!<-O
n=p

(2.3)

which shows that f(z) e Tp(a).
Conversely, if f(z) Tp(a), then

zp + lf(p)(z) + p![ EO0 n! +
n p (n p)! anzn

zp+II(p)(z) p! 2.p! r n! +1
n p (n- p)! anzn <a (zD). (2.4)

Since Re(z)<_ zl for all z, (2.4) gives

n (n_ P)! .nnR n! < a
2.p! yo + 1 (z D). (2.5)

n p (n- p)! anzn

Choose values of z on the real axis so that zp+ l/(P)(z) is real. Upon cleating the denominator in

(2.5) and letting z--*l-, we have

n= p(. _n!p)!(1 +a)an <_ 2a. p! (2.6)

which is equivalent to (2.1). Thus we complete the proof of Theorem 2.1.

Taking p in Theorem 1, we have

COROLLARY 2.1. I(z) Tl(a) if and only if

2a

n--1
(2.7)

and

THEOREM 2.2. If f(z) Tp(a), then

j! p!2af(J)(z)l >
-izli+l (p-)!(l+O

f(J)(z) _< j! p!2a

izlJ+ + (p- j)!(1 +,)
Izlp-j

(2.s)

(2.9)
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for z D, where 0 < j < p and 0 < o < J!(P- j)
p!2 j!(p-

Equalities in (2.8) and (2.9) are attained for the function

(z) 1+__ z.
PROOF. It follows from Theorem 2.1 that

(2.10)

an <_ + a)an <_ 2a.
B----p n--

Therefore, we have

and

J! n! j! p!2af(J)(z)l > [z p- j

-[z[ j+l n=p(n-J)wanlz[n-j>- izlj+ (p-j)!(1

f(J)(z)] <_ J! n! j! p!2a

]zlj/ + (p 1)!(1 /)
]zIp-j"

(2.12)

(2.13)

Taking j 0 in Theorem 2.2, we have

COROLLARY 2.2 If f(z) Tp(ot), then

2a p la P]ST-Izl _< If(z)l <-]-/ (2.14)

for z e D. Equalities in (2.14) are attained for the function f(z) given by (2.10).
Making j in Theorem 2, we have

COROLLARY 2.3. If f(z) e Tp(a), then

2ap 2ap (2.15)

for z e D, where 0 < a < --_. Equalities in (2.15) are attained for the function (z) given by (2.10).
Letting p in Theorem 2.2, we have

COROLLARY 2.4. If f(z) Tl(a), then

and

2 (2.16)Izl- 1-- Izl If(z)l <--l-/

2a 2a
i;12--- _< If’()l _< i-/l/ (2.17)

for z e D. Equalities in (2.16) and (2.17) are attained for the function
2as() + ,---z . (2.18)

3. STARLIKE AND CONVEXITY.
THEOREM 3.1. If f(z) e Tp(a), then f(z) is meromorphically starlike of order 6 (0 < 6 < 1) in

< r1, where

l( /)1 +a)(1-6) n+l

rx=infp(n>_ -"r7"(:6) J (3.1)

The result is sharp for the function

PROOF. It is sufficient to show that

n (n>_p). (3.2)

zff(z)
f--- + <1-6

for [z[ <rl. We note that

(3.3)
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n= p (n + 1)anzn
+ , nC= p anzn

< E n_- p (n+ 1)anlzl n+ (3.4)
1- En= p anlzl n+

Therefore, if

n+2-6
1- anlzln+l <l’ (3.5)

n=p

then (3.3) holds true. Further, using Theorem 2.1, it follows from (3.5) that (3.3) holds true if

n+2-6 (Xl+a)
1- Izln+l < 2a (n>p), (3.6)

or

/(X +a)(1-6)/n (n>_p). (3.7)

This completes the proof of Theorem 3.1

THEOREM 3.2. If f(z)_ Tp(a), then f(z) is meromorphically convex of order 6 (0 < 6 < 1) in

zl < r2, where

+a)(1-6) n+

2 i"l.>_ 2-a-ff( =-i J (3.s)

The result is sharp for the function l(z) given by (3.2).
PROOF. Note that we have to prove that

for zl < r2. Since

zfu(z)
if(z) + 2 _< 1-6 (3.9)

, n= p n(n + 1)anzn-_.. + y] n= P nanzn < End= p n(n+ 1)anlZl n+

1- Yn= p nanlzl n+
(3.10)

we see that if

Or

+ 2 6)
1-6 an zln+ < 1, (3.11)

n(n+2-6) (Xl+a)
1-6 [z in + _< 2a (n > p), (3.12)

then (3.9) holds true. Therefore, f(z) is meromorphically convex of order 6 in zl < r2.
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