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ABSTRACT. Let M be a compact 3-dimensional totally umbilical CR-submanifold of a Kaehler
manifold of positive holomorphic sectional curvature. We prove that if the length of the mean

curvature vector of M does not vanish, then M is either diffeomorphic to $3 or RP3 or a lens space
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1. INTRODUCTION.

Totally umbilical CR-submanifolds of a Kaehler manifold have been considered by Bejancu [2],
Blair, and Chen [3]. Recently Deshmukh and Husain [5] have also studied these submanifolds. In
fact, they have proved a classification theorem when the dimension of the submanifold M is >5. In
this paper we consider 3-dimensional totally umbilical CR-submanifolds of a Kaehler manifold. For
this case we have obtained the following theorem:

THEOREM 1.1. Let M be a compact 3-dimensional totally umbilical CR-submanifold of a
Kaehler manifold M, of positive holomorphic sectional curvature. If the length of the mean
curvature vector of M does not vanish then M is diffeomorphic either to 53, RP3 or the lens space
By
2. PRELIMINARIES.

Let M be an m-dimensional Kaehler manifold with almost complex structure J. A(2p+gq)-
dimensional submanifold M of M is called a CR-submanifold if there exists a pair of orthogonal
complementary distributions D and 1L) such that JD = D and J'lL) C v, where v is the normal bundle
of M and dim 1’5 =¢[1). Thus the normal bundle » splits as v=JlL) @ p, where p is invariant sub-
bundle of v under J. A CR-submanifold is said to be proper if neither D = {0} nor ﬁ = {0}.

We denote by ¥,V, \J7 the Reimannian connection on M,M and the normal bundle

respectively. They are related by

Vx¥ =V Y +hX,Y) (2.1)

d

1
XN=—ANX+VXN‘ Nev (22)
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where h(X,Y) and Ay X are the second fundamental forms which are related by

y(h(X,Y),N) =g(ANX| Y) (23)

Now a CR-submanifold is said to be totally umbilical if

K(X,Y) = o(X,Y)H
where H = %(trace h) is the main curvature vector. If M is totally umbilical CR-submanifold, then
equations (2.1) and (2.2) become
VxY=VxY+gX,Y)H (2.4)
= 1
VxN=—-g(HN)X+V N (2.5)

For X,Y,Z,W € X(M), the equation of Gauss is given by

R(X,Y;2,W)=R(X,Y;2,W)+g(h(X,W),h(Y,Z)) - g(h(X, Z), WY ,W)) (2.6)

3. 3-DIMENSIONAL CR-SUBMANIFOLD OF A KAEHLER MANIFOLD.

(A) Let M be a compact totally umbilical 3-dimensional CR-submanifold of a Kaehler
manifold M. If dim D=0, then M will be totally real. Therefore, we assume that dim D # 0. Since
M'is 3-dimensional it follows that dim D=2. We can then choose a frame field {X,JX,Z} on M,
where XeDand Z € l+) We first have the following:

LEMMA 1. Let {X,JX,Z) be a frame field on M, X€ D, ZeD. Then ¥ ;2 =0. and H e Jb.

PROOF. Using (2.4) and (2.5) in the equation V ;JZ =JV ,Z, we obtain

-g(H.JZ)Jz+J%/ZJz = -V ,4Z-h2,2) (3.1)

Taking inner produce in (3.1) with W € D we have

oV z2,W)=0 wWeD (3.2)

L .
From (3.2) we have V ,Z € D. Since ¢(2,2) =1, we also have V ;Z € D. Therefore V ,Z =0.
Now for X,Y #0 in D we use (2.4) and the equation J¥ yY = ¥V xJV to get

JV xY +9(X,Y)JH =V yJY +9(X,JY)H (3.3)
Taking inner produce in (3.1) with N € u we have
9(X,Y)g(JH,N) = g(X,JY)g(H,N) (3-4)
In particular if we let Y = JX in (3.4) we get
| X||g(H,N)=0, Nep Therefore H € Jl'li . (3.5)
Consider the frame field {X,JX,Z} on M. Since M is totally umbilical the equation
h(Y,W) = g(Y,W)H for Y,W € X(M) implies that
h(X,JX)=h(X,Z)=h(JX,Z)=0
h(X,X)=h(JX,JX)=h(Z,Z)=H=alZ (3.6)

for some smooth function « on M, since He JD L.
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Using (2.3) with N =JZ we get
AX =aX, AJX =aJX, AZ =aZ (3.7)
So the frame field {X,JX,Z} diagonalizes A. Now using the equation (¥ xJ)(X)=0 and
(¥ yxJ)(X) =0 with the help of (3.6) we get
v ,2)=0, VJX,Z)=0 3.8
o(V xX,Z2)=0 o ¥ 5’( ) (3.8)
Also using the equation V ,Z =0 from Lemma 1 we have
9oV 2X,2)=0, 9(V zJX,2)=0 (3.9)
Then using the equation (¥ xJ)(Z) =0 and (3.7) we obtain
9oV xZ,X) =0, WV xZ,JX)=« (3.10)
and using the equation (¥ ; yJ)(Z) = 0 we have
WV x2,X)= -, 9(V;yx2,JX)=0 (3.11)

Using equations (3.8), (3.9), (3.10), and (3.11) one can write the following equations for the frame
field {x,JX,Z2}:

VXZ=uJX, VJXZ=-—aX, VZZ=0
V xX =alX, VixX=-bIX+aZ, V X=clJX (3.12)
VXJX=—-aX—aZ, VJXJX=bX, VzlX=-cX

for some smooth functions a,b and c.

Now we are ready to prove the following:

LEMMA 2. For the frame field {X,JX,Z} we have

() R(X,2;2,X)= || H||?

(i) R(X,IX;JX,X)=R(X,JX:JX,X)+ || H|?

(i) R(2,JX,JX,Z)= ||H|?

PROOF. Using equations (3.12) in the equation

R(X,2:2,X)=g(V xV 32 -V 5V 42, —[XYZ]Z’X)' we obtain (i) and (iii). (ii) follows from the
Gauss equation (2.6) and the equation A(X,Y) = g(X,Y)H.

PROOF OF THE THEOREM. Since R(X,JX:JX,X)>0 and || H || #0 it follows from (i), (ii),
and (iii) of Lemma 2 that all plane sections of M have strictly positive sectional curvature.
Therefore, the Ricci-curvature of M is strictly positive. Hence by Hamilton’s theorem (cf. [4]) it
follows that M is diffeomorphic to either $3, RP3 or the lens space L3 o
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