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ABSTRACT. We derive new classes of infinite products taken over the primes, for example

H(l 2 )(1_ )—1

as an infinite produce of Riemann zeta functions, this product being taken over the set of rational

expressing

numbers a/B greater than zero with a relatively prime to 8

¢(m) [T ¢tam + o)/
o,f
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1. INTRODUCTION.
In a recent paper (Campbell [4]) a class of infinite products was derived.
The simplest of these is

: 1/(1 -
(l—y)/,Hj(l—z"yk)l/k=(1'_—q;) / z) (1.1)
z#1, |yl <1,|zy| <1. The notations ,[],;= I'[ I'I VEL = 2 ¥ , where ¢, is the set of
7€ k=2 JES

positive integers less than and relatively prime to k, are used henceforth and in (1.1). The theorem
given in [4] is the case n—oo of

THEOREM 1. If (a;) and (b,) are arbitrary sequences chosen so that, together with choice of
z, the following functions are all defined then

L 1—ezp(b, z) n [(n/m]
kX—:lak l_“p(b—kk’/k-)=( E ) mzz kzl ;2 2 8,k €2P(bny 3z/m),s (1.2)

where [n] denotes the greatest integer in n.
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The proof follows easily by induction on n, and resembles the proof for the infinite case given
in [4]. There is an interesting parallel between this theorem and the identity used by Ramanujan
([13] and [10]) to derive his summations which generate his arithmetic function c4(n) = ;cos(?rz\n/s)
where A€ ¢;. The rigorous proof of (1.1), and also of the infinite product identities in [4],
accounting for the branches of the fractional powers, can be approached easily from the finite (1.2)
as n—oo.

2.  PRIME PRODUCTS FOR INFINITE PRODUCTS OF ARITHMETIC FUNCTIONS.

There are many well known examples of functions definable in terms of an infinite or finite

product of rational functions of prime number powers. Such a function is, for instance, the

Riemann zeta function given by
H(l—p")'1=((s), Re s> 1. (2.1)
P

Products such as (2.1) lend themselves neatly to substitution into the new class of infinite products
in [4]. To illustrate this let us take (1.1) with z=p~ "™, y=p~ "™, Ren>1, Re m+n>1, and then
form the product over all primes p on both sides. Hence application of (2.1) yields

THEOREM 2.1. If Re n and Re m+n > 1 with m # 2rix(log p) ~ 1 for r € Z

_pm(mAmYi - pmmy =1
<(n),,II,-<(jm+kn)‘/"=1")[(l——l”_pT)( P

This is substantially the generalized form of
[0.°)
> vk~ log¢(kn) = Y (2" - 1)1, Ren>1,
k=1 p

which is given in Titchmarsh [15], where (k) denotes the Euler totient function. The method of
deriving (2.2) is applicable to the generalized form of (1.1) given in [4] as

L 1 m
ng 1- xfyk)]"'/km + =ezp{—¢(m+1,y)gm(z) + kz (T)((l +k,zy)g,(2)} (2.3)
=0

for z and y as in (1.1), m any positive integer, and

0
gm(z)zf—::in(l—ez)“llz ((n,y):kzlykk_?, lyl <1, (2.4)

=log 2’
for any complex number n. Hence we have
THEOREM 2.2. If reZ%, Renand Re m+n>1, m# 2sin(log p) ~ 1 for s € Z then

rar+1 - -
WL cGm o+ ET < ezp(Z{—c(m,p"")yr(p—mn > (Fka+ke ("‘+")>g,,(p"")})
P k=0
The manner of applying the Riemann zeta function to (1.1) and (2.3) works also for other
functions definable by prime products. For example, the sum of the Ath powers of the divisors of r,

defined by
s p(ai+1)A_ 5o
ay(r) =.H 'T_l—, where r =.H P4 (2.5)
i=1 P i=1

can be substituted with A = — (jm + kn) into (1.1) and (2.3) to obtain
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THEOREM 2.3. If Re n and Re m+n>1 with r and o as in (2.5) then

(r)\/*
+ kn
o _n(r) L-Hj {a—(jm+kn)(")}l/k Un(") H] (%)

=TI #la;+ 1)/p(1), with p(z) =(1
i=1

and if h is any positive integer then
hh+1
hyph+1 T(jm+ ;m)(") 1k
1L im 4 kn)Y / =¢I1; (—r( Fm+ En)
S
= [[ wle;+1)/w(1), with
i=1

h
wf(2) = eep{ = C(h+ 1,57 g (07 ™)+ Y (Bktk+ 1,87 F g7 ™),
k=0

g, and ¢ defined as in (2.4). (Assuming p}* £ 1).
For example, take m =n and r =6 and then h =1 so that

O CRPPN ) W CRIP O L 3),,(6»‘/ Yo_uy 4),,(6»1/ 4

92n

2"
_(2he1pr g9 2n 3"+1 1 32" 7
BN 92 3" 32n _

? 2
(U _ (1 + 2)n(6))l/2 (0’ _ (1 + 3)11(6))1/32(6 _ (2 + 3)n(6))2/32(0' _ (1 . 4)n(6))1/4 .

on 92n 3n 32n
22”_1 24"! 2n_l 327!_1 n_ 34" fn_l CA
92n 2411 _1 32n gdn_ ’

with A = £(22™) — £(27) + £(3%™) — £(3™), such that £(z) is defined by

€@z =¢@z " a(z-1) "2
Let us next consider the Jordan’s totient function Ji(r). This is the number of ordered sets of
k elements chosen from a complete residue system (mod r) such that the greatest common divisor of
each set is prime to r. It is known ([14], p. 92) that

T =r [Ta-p~
plr

Hence, again applying (1.1) and (2.3) we have
THEOREM 2.4. If m, n, and r are as in Theorem 2.2 then

1/k
(") (m+kn)(r) 1-p 1-p—m -1
n HJ( ij+kn) =;I|Ir(l _ —(m+n)>( ) » and

hh+1
J(im+kn)(r) pert o
| lj ~ Gk , is for any positive integer h, equal to

ezp(zj{ C(h+1,p " Mgn(p ™™+ Z("‘)«Hkp (m+m) (p-")})
plr
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The main interest in the theorems of this section appears twofold. Firstly, they are examples
of a new kind of infinite product taken over the primes for which an additive property for the
primes is implied. That is, products of form [] f(p)y(p ) suggest for the first time an additive quality
for the g(p) function. Secondly, the operators ,], and ¥, define mappings from the set of
rational numbers in (0, 1) 1-1 and onto functions where, to some extent, independent variables are
associated with numerator and denominator for each fraction when it is reduced into its Farey
fraction form. Evidently then, Theorem 2.1 does for the set of Farey fractions in (0, 1) what the
classical identity (2.1) does for the positive integers. Combinatorially, Euler’s product (2.1) is
equivalent to the statement that every positive integer is factorable into a unique product of
primes. We might suspect that (2.2) implies an analogous statement for the set of Farey fractions
in (0, 1). What hampers our making such a statement is the occurrence of fractional powers on the
left side of (2.1). This issue of powers is equally serious for the right side since (1—p~ ™)~ ! will be
generally not a positive integer. However, we may start the process of understanding the left side
of (2.1) by considering the function f .k where

] 1k e 1k & f N
CGm + km)t/ =(A§=:1 ;1_51_;5) =A§1V_'z"—+_""- , (2.6)

for 'positive integers k and j € ¢;. Clearly, (2.6) is equivalent to

fors ol 0 0 i ADF g(Ag)- - - f (Ap) 0
. 2 L > = . S 2.7
,\12_.21 A2z=: 1 Z= ,\kz-: 1 (/‘1*‘2)\3 CEED ) )Jm+ kn ,\Z Am+ kn

Since j and k are relatively prime in the case of (2.1) we may, in (2.7), deduce that A = ]'I ); and
that all such cases of this are included with the occurence of same factors in different ' orders
counted as distinct. Furthermore, from (2. 7), IT £ ) is the reciprocal of the number of ways A
can be split into k factors in positive 1ntegers “such that same factors rearranged are counted as
distinct. It is evident from (2.7) that f 5,k is most easily evaluable when ) has fewest divisors.
For example, it is easily deduced that for any prime p we have f i, (p)=1/k.

A more fundamental prime product is given by

THEOREM 2.5. If Re n and Re m > 1 then

—my—1 .
H(l - )(1 =P L ((m+m) I cGm+ kn)!/E¢(in + km)1/d., (2.8)

Our proof of this involves the following definition and lemma.

DEFINITION 2.6. Let ¥ denote the set of all extended Farey fractions a/8 such that o and
B are relatively prime positive integers. Furthermore, let %(a,] be the subset of ¥+ in the rational
interval (a,b). Let this convention be adopted for any open or closed such interval.

LEMMA 2.7.

Ft = UE (F(i-1,i), (2.9)
g+ =F(0,1)UF(1,00)U {1}, (2.10)
F(1,00) = {a/B € F T :8/a € F(0,1)}. (2.11)

Whilst not rigorously proving this lemma, we note that its truth is linked to appropriate

operations on %(0,1). Specifically, for
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1/2

1/3 2/3

1/4 3/4

1/5 2/5 3/5 4/5 (2.12)
1/6 5/6

1/7 2/7 3/7 4/7 5/7 6/7

1/8 3/8 5/8 7/8

etc.,

in this case of (2.9), we add a positive integer i to each term in (2.12) to translate the sequence
F(0,1) onto F(i,i + 1), and then iterate. For (2.10) and (2.11) we note that the set of reciprocals of
(2.12) terms is precisely the set of elements of ¥(1,00).

PROOF OF THEOREM 2.5. The factors on the left side of (2.2) which are subject to the
operator ], may be thought of as elements listed thus

{(m+ 2n)1/2

(m+3n)3  ¢@m+3n)l/3

C(m +4n)1/4 ((3m +4m)1/4 o)
2.13

¢m+5m) % cem+sn)® (Bmasn)® (m+sn)/P

((m-+6m)'/® . ¢(5m + 6n)1/6

m+m)YT ememT BmemT (am+m)T (Gmam)/T em+ )T
etc.,

of a set which is the result of an isomorphic mapping from %(0,1). This is immediately seen by
comparison with (2.12). Let P(m,n) be the left side of (2.1) so that the term factors of P(m,n +rm)
for r any positive integer will correspond exactly to the elements of ¥(r,r +1]. Hence, applying (2.2)
and (2.9) to the product []7Z1P(m,mi+n) we have

_ = (rm+n)\ - p—my-1
L_p_zn—n)(l PU T e + ) T Cam + pm) /5, (2.14)

H( 1-p~ "

p

where []’ is over a, B respective numerators and denominators of the fractions in F(0,r]. If we let
r—oo in (2.14), the right side product is then over all a/p being elements of ¥+ . It remains for us
to establish that this product taken over ¥+ is equivalent to the right side product in (2.8). (2.10)
and (2.11) show exactly this as required and so Theorem 2.5 is proved.

We note that if m = n in Theorem 2.5 we have

COROLLARY 2.8. If Re m>1 then

_,—m—-1 ¢ -1
I;I(l_;_m)(l ™ =kHlC(km)k2(aﬂ) , (2.15)

where " is over all positive integers o, 8 which are relatively prime and whose sum is k.
It is worth noting that (2.16) and (2.17) are equivalent expressions for the left side of (2.8): -

ezp{zm} , (2.16)
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where the summation is over all primes p, and all positive integers A + 1, 4.

. 1
which is the prime product decomposition of r, and with the left-most product over all positive
integers A+ 1, p.
3. DIRICHLET SUMMATIONS AND A GENERALIZED TOTIENT FUNCTION.

In this section we examine the identity which arises from equating coefficients of like powers of
z in the expansion of Theorem 1. Without loss of generality we let b, =1 for all positive integers k,
and use the following

DEFINITION 3.1. For all positive integers k—1 and m, let
vmk) = D (/E)™ (3.1)
AEY

We note that if m were zero in (3.1) it would define the Euler totient function for k> 2.

Theorem 1 expanded as power series in z leads to
THEOREM 3.2.

[n/2) [n/3] [n/4]
$m(2) E gp + ¥m(3) 2 agg +¥m(4) Z ag+ -

n [n/7]
=Y | v Y oy (3:2)
N=2 E=1

-5 {kak AEO (m+1 —A)k’\ (m)}

where B, are the Bernoulli numbers and (a;) is any sequence for which all the functions are defined.
This theorem leads simply to many corollaries; often analogous to the identities in Ramanujan
[13]. Of particular interest is the case n—oo, a, =k ™%, yielding
COROLLARY 3.3. (Lossers [12])

x _ o By{(s+A-1)
k;;bm(k)k 5= ((s) 1;::0(7\-)_"':1TA_., Re s>2. (3.3)

If, in this, we note that

C(s)-‘c(sn-l)—ﬂ 1= -s—,\—1+ S -A[T (- pA e,
1-r! k=1 plk
we get the closed form of ¥,,(k) in terms of the prime divisors of &,

COROLLARY 3.4.

m B.kl—A m
Gp(k) = Z( )m'\+1- I a-»"bH= Z(T)BAJI_A(k)(l—A+m)_l.
A0 plk A=0

From Definition 3.1 we see that

k
Y tm@ = Y (k™ (3.4)
d|k A=1
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Some simple cases of Theorem 3.2 are given by
COROLLARY 3.5.

Pm(2)[n/2] + bm(3)n/3] + bpp(4)n/4] + - - - (3.5)
m\ Bo n(n+1) B B, & _ B, & _
~(§) s (D) e () S (B e
bn(Dn/2] + o (3)n/31 + ¥p(D)n/a + - - - (3.6)

=2{(0)l§omn(n+lé(2n+l) (1)%n(n2+1)+(2) Bl""’( )m 2Zk_l+"'}

() T () (B S (B Sk

[n/2] [n/3] [n/4]
¥m(2) Z (2k)° + ¥y (3) E (3k)° + ¥pp(4) Z (4k)* + (3.7

2[n/2]

o 1= 3[n/3] A[n/4]

+¥m(®ed L=y m(4)‘“1’— (38)

B z—(ﬂ+1)z"+l+nrn+2 By z_ n+1 B, & _
_(m 0 m\B1z—=z m 2 1k
—(0)1+m (1-2)?2 +(1)m -z ( )m—lzk T+
for any value of s and z except for |z| =1; each series being finite to n—1 terms on the left sides,
and to m+1 terms on the right sides.

A notable case of Theorem 3.2 is with n—oo, ap = ykk -1 yielding
COROLLARY 3.6. (Campbell [4]) If |y| <1 and f(k,¥)= 5%, jkyd

o8] mm+1 m
JLa- PN § YR {kz (',’;)ka(k,y)}. (3.9)
= = 0

This result is unusual since the functions o(k) and B(k) defined by

T a-hym®/k - R a(k)y"={k§f ﬂ(k)y'“}‘l,
k=2 k=0 =0

are easily computed in finite form from (3.9). Elaborate classical methods are normally applied to
such problems. For example, asymptotic estimates for the generated coefficients of the function
e, -y ~% with a; non-negative real numbers are treated in Andrews [2], ch. 6. Thus, A(k)
can be found exactly from Corollary 3.6, whilst the theorem of Meinardus will yield an asymptotic
estimate. We leave a comparative study of these results for a later paper.

Let the Definition 3.1 extend to include all complex numbers m. Then

THEOREM 3.7. If Re m and Re n> 1 then

2 ¥ _mlB)+ ¥ _nk) _ (m)(n)
Y (ED) (310
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PROOF. If Re m and Re n > 1 then

¢(m) ((n)

=S4T MH2T MR TR AT 42T 3T TR (1T M2 T 3T M T M TR )
F(I4(1 T 427 M2 M (1T 2 TR 3T T M (1T 42T 3T R4 TR T ML)
—¢{(m+n)

=(m+n){(1+9_m(22 " T 4+ _yBB T T Y (44T T )
+A+Y_ 227" T4y BB T T Y (@ TN )} = ((m ),

so that (3.10) follows trivially. End of proof.
Next we consider the case of Theorem 1 with n—oo and b, =z~ Liog g
COROLLARY 3.8. If (ak) and g are suitably chosen then

[o.¢] . 0.9
Y oL 1/k-51+ Z Sm X /™), where 5= Y ap (3.11)
k=1 1- m= JE€Edp, k=1
In particular, for positive integers n, if ¢ = ezp(2xin),
Z qj/kz E cos(@):ck(n),
j€¢ JE ¢
namely, Ramanujan’s trigonometrical function. (see [13] primarily, also [9], [11], [14], and [15]).
Hence, substituting this value for ¢ into (3.11) and applying the well known summation,

2,‘.,,,]) {r if r|n,

0 otherwise,

to the left side of (3.11), we arrive at
COROLLARY 3.9. If () is suitably chosen then

[o.]
Sira.= kz S} cx(n), where S, -zla'"f (3.12)
] =

rin

Many of the summations in Ramanujan’s [9] are simple cases of this, including, for
akzk'—’_l, the classical result

0.2
¢7_,,(n)((.s+l)‘1 = E ck(n)k_s—l, Re s> 1. (3.13)
k=
We may, of course, select (a) such that S, of (3.12) is a finite sum with a; =0 for k greater than a
certain integer j. In that case, S, will be summed over [j/m] terms. Another simple case of (3.12)
is
Zy} H 1- Ck(n)/k ly] <1 (3.14)
rin
As with Corollary 3.6, the coefficients generated from the infinite product of (3.14) are easily
calculated in finite form.
The results of this section work out most neatly wherever the summations S, together with
the functions q,;, are simply and finitely evaluable. It is well known that if f(k) is a multiplicative
function, that is, f(mn)= f(m)f(n) whenever (m,n) =1, then any existing £°f(k)k ~° is a product of
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Riemann zeta functions. In that case, if m is any positive integer then E°f(mk)k ™% can be

evaluated. For example, a; = o (k)k ~ % with Re s—a > 1, leads to
P k a
1 a—s (0,""1)0 psai+l)a—s

9

(o, %]
Sm= 35 aqlmk)mb)~* = C(e)(s - aym ~* [T =
k=1 i=1 o

where m=[[!_, p;*. This is derived from taking the product over primes p; for the associated

a +k, _
)p ke

The transform which maps the function a; onto its image function S, appears to be most

function " P_ ¢ o4(pit

easily found when: -

(i) ap=f(k)k~° so that S, is found from the theory of prime products and their Dirichlet
series.

(i) ap= y(k)q" so that evaluating S,, depends on some application of the Hecke operator (see
Andrews [2], p. 161)

o) m=1 .

Un{F@}= Y o dF=m~ 1Y Figt/™),
k= —o00 j=0

where w = ezp(2ri/m) and F(q)= Y- _ o aqu, this latter mermorphic around ¢ = 0.

Thirdly, but less generally, a combination of (i) and (ii) has led to the infinite products in
Campbell [4].

4. LAMBERT SERIES AND ARITHMETIC FUNCTIONS.

So far we have considered Theorem 1 for cases where b, =1 or b, =k. Now we examine cases
with (b) an increasing sequence of positive integers other than the b, = k already considered. We
especially consider cases of Theorem 1 where a; =1 so that convergence of the infinite series cases
depend on the (b;) sequence. The results of greatest interest in this section come apparently from
cases of Theorem 1 with n—co. However, the convenience of the finite form of Theorem 1 is that all
of the infinite versions of the theorem can be rigorously proven by elementary processes. The
following theorem is simply a restatement of Theorem 1 with n—oco.

THEOREM 4.1. If (a;) and (bg) are arbitrary sequences of functions which, with the variable g,

are chosen for convergence of the following, then
s

> a z gt 3 Y oy tmhy, (4.1)

=S m=2 j€on,

This theorem is the key to the results of this section. In order to use (4.1) with a; = 1 we note
that it may be rewritten as

Za

LS

kb e kb
5 D et ™= 3 md e ™ (4.2)
—-q lc=1m=2 JEdm k=1

using the notation of §1. When b, =k in Theorem 4.1 or the (4.2) version of it, the identities
resulting often involve Jacobi theta functions. Many such related identities are relevant also to the
theory of partitions. For example,

THEOREM 4.2. For z#0and |q| <1, |zq| <1with |z] >1,

Z(z +z—")

-AZ,, T -1y, (4.3)
where

30 kST - D04 ag a4 LR D) - (g, (4.4)

k oo k=0
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PROOF. Let a, = k.= Fand b, =k in the (4.2) form of Theorem 4.1. The left side of (4.3)
compares for convergence with °(zF + 2 _k)q which converges only if lim (z +z7 k)¢ =0. Clearly
then z and ¢ must fulfill the conditions |zf¢F|—0 as k—oco assuming | | >1 with |¢| <1. End of
proof.

Theorem 4.3 resembles Theorem 4.2. We follow this with a definition and some simple theta
function identities.

THEOREM 4.3. For z#0 and |¢| <1,Re a >0,

Z(Z +2 ket l_——H(z,q J-14, 3, (TP Wy 1

$ +z"‘)q““ "’ =y L (P00
k=1

DEFINITION 4.4. For |q| <1, let
00 00
0,(z,9) = Z qkzcos 2kz, ©y(z,9)= Z qkzsin 2kz,
k=1 k=1
1 00
0z =0 =2 Y. (=DF FEHD sin (26 4 1),
k=0

THEOREM 4.5. If |q| <1, and in (4.5) z # (n+ )~ for integers n,

o) 2k2 \(2) 23k
kz 1"75 sin 2kz = 1 'el(_)‘ cot z +k21 0,(kz,¢%7*), (4.5)
=11-
ook SR "
kz_:l 1—‘{-_—;5 cos 2kz = (kz - cos 2kz> ij 0, (kz,¢7%). (4.6)

PROOF. To obtain (4.5), (4.6), respectively substitute in Theorem 4.1 the values a, = sin 2kz,
cos 2kz, and b, = 2k, k, then use the fact that

o'(z
6,(x) -

~—

cot z2+4 Z k sin 2kz.

Use of the notation in Definition 4.4 concludes the proof.
The identity (see [1], 16.30.1)

Z 2" 9,(0 + B)sin(a —

1,
. 2k sin 2ka sin 2k = 3 W—W’
lends itself neatly to Corollary 3.8 rather than to (4.1) or (4.2). In that case it seems worth noting
that if |q] <1, zl/";el, then

11—z : .
ezp| 4 sin 2ka sin 2k3 4.7
( kz—:lE 1-¢%F 11/ ) (&)

?r-l'-'

’

_0,(a+8) sin(a—p) & [6y((a+ Bk, F) sin(a— p)k Y H/E
" 8,(a=p) sinla+B), 11 | @,((a - B)k, ¢2F) sin(a + )k

where fi(z)= ¥ z**. In particular for positive integers n with z = ezp(2rin) we have
A€ L

273 (4 E —-E sin 2ka sin Zkﬂ) (4.8)
k| nl
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_8y(a+p) sin(a—p) % (e,«« +B)k, ¢%*) sin(a - ﬂ))%"‘)/ k

~ 6,(a-pB) sin(a+ ﬂ)k =1\O((a =Bk, 2lc) sin(a + f)

where c;(n) is Ramanujan’s trigonometric function as in §3.
The following generalization of Theorems 4.2 and 4.3 seems of combinatorial interest.
THEOREM 4.6. If |¢q| <1, a>0, m any positive integer, z any complex number except for the
case a =0, m = 1, which is essentially Theorem 4.2,
1
[o.°] m+1 km - km + - '\m A
p) lzk g0k q 1_:1:"‘ =3, 2, (Mg (aX+u)) (4.9)

& m+1
where Z,,(z,¢) = E quk .
k=1

PROOF. We require (4.2) with substitutions e} = Kezp(ak™+1 log ¢), b, = k™ with the
conditions specified for the theorem. Note that convergence for cases with m integers greater than
1, the ¢ powers dominate. For m =1, (4.9) is closely related to Theorem 4.3, and its proof is only
trivially different in content. However, for m = 2,3,4,... we see that

m m+1
f koak™t1 & -
! E
k=1 1-4

o0 m+1 ., omm+1 m+1 mm+1 m;m+1
- {zqua(ﬂ:) L2 gk a@m L (gl o gmm+1)
k=1

m+1 mym+1 mym+ 1
+z4lcqa(4k) (q1.4 3 434k )+}

o0
- Ak A™(ad + pk™ +1
= Ak
3 ”kgl
=224 Emlz, R ). End of proof.

We now consider some combinatorial inferences from the theorems in this section. It may also
be of interest to interpret identities (4.7) and (4.8). However, the theorems of this section yield
simple relations between the generated coefficients, so for brevity we focus on these only. Examples
of such relations are found in, for instance, [10] and [11].

THEOREM 4.7. Let (a;) and (b,) be sequences of positive integers such that for |¢| <1,

+ b b

S CET R ja-g'ky (4.10)

E>1
converges. Also, let a(A), B(B), v(C) be respectively the number of solutions of the independent
Diophantine equations, A=ay+n b, B=ap+(n—1+kby, C=a_,+ijk b, for fixed positive
integers A, B, C, and various positive integers m—1, n, j € ¢,,, k. Then for each positive integer h
we have a(h) = B(h) + v(h).

PROOF. Select (a)—ezp((a;) log ) in (4.2). Then we have

a, +by aj + kb o, +jkb
A g + Y gomk 7 b, (4.11)

)y

1-gk 1-gk
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where the first two sums are taken over the positive integers k, whilst the third summation is over
m, j, and k as defined in Theorem 4.7. We also see that (4.10) must converge for us to expand
(4.11) to obtain

Eqak +nb, _ ank+(n- 1+k)b, + anmk"'jkbmk'

which is equivalent to, for summations over positive integers h,

Za(h)q" =Y B(h)g" + Z-y(h)qh. End of proof.

Although (a;) and (b;) of Theorem 4.7 are arbitrary enough to include the prime numbers and
some arithmetic functions, the theorem is best applied to sequences whose mkth term is neatly
specified. Such a function is £” with r > 1. If a is any constant positive integer it cancels from the
identity, and the (b;) sequence becomes all-important. Hence, choice of b, = k" with a, = constant
yields

COROLLARY 4.8. For every positive integer h,

a(h) = B(h) +(h),
where a(h) = N{h=nk"}, B(h) = N{h=(n—1+k)E"}, 7(h) = N{h = jk" + Im" with j € ¢,}, with N{- .-}
the number of positive integer solutions of - - -, and r any positive integer.

A further notable example of Theorem 4.7 with its Theorem 4.1 counterpart is the case
a, = constant, b, = (k- 1)}, yielding

COROLLARY 4.9. If |¢| <1 then

oo (k—1)_ Kk ) -
kz=:1 q—l_——q(_"'_f)T = mdy kglq(mk)‘ o (#12
so that
N{h=n(k—1)1} = N{h = (n—1)(k — 1)! + K} + N{h = (mk)lj/m with j € ¢}.

Clearly, there are numerous other identities examinable using the methods of this section. A
further way of obtaining Lambert series from Theorem 4.1 is adopt a similar approach to that of
Section 3. Since any Dirichlet summation has a Lambert series counterpart, the method outlined at
the end of Section 3 for Dirichlet series S,, will also yield Lambert series transformations. An
adjunct to this may be the work of Apostol and Zuckerman [3] on the functional equation for
multiplicative functions,

F(mn)F((m,n)) = F(m)F(n)f((m,n)).

However, generally the Lambert series is less manageable than the corresponding Dirichlet

summation.
5. MORE INFINITE PRODUCTS, AND WEIGHTED VECTOR PARTITIONS.

The method of Section 2 which takes us from Theorem 2.1 to Theorem 2.5 is applicable to the
more fundamental identity (1.1). An “isomorphic” line of reasoning involving iteration on (1.1)
with y replaced successively by zy, 22y, 209, . z™y; forming the finite product of these cases, then
letting n—oo, yields

THEOREM 5.1 If |z]| and |y| <1,

(=)t -29) T ; - It kb = (1 )t/ =), (5.1)
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The left side of this theorem clearly contains all factors of the left side of (1.1), hence the
companion identities
THEOREM 5.2. For |y| <1, |zy] <l,z#1, y )
. 1- 1-
-9 I1; (1~z-’yk)l/k=(lT:§) (-2 (5.2)

whilst for |z| <1, |zy| <1,
(1= 2y), T (0 - kyi) T = (1 gyt (=), (5.3)

We note that Theorem 5.1 leads to Theorem 2.5 if we suitably substitute z=p~™,y=p"",
and form the Euler product over primes p on both sides. This technique and similar variations on
it will give, from (5.3), companion identities for Theorems 2.1 through to 2.4. We note also that
the range for the variable y in (5.3) has been extended trivially from that of |y| <1to |zy| <1. It
seems of particular interest to observe that the exponent 1/(1—z) on the right sides of (5.1) to (5.3)
may be selected as a positive integer n whenever z =1-1/n. In such cases, the right sides are: very
simple power series for (5.2), and polynomials in y for (5.1) and (5.3). This leads to the expectation
that these identities might have “near bijection” proofs as does the well known Euler’s pentagonal
number identity (see Andrews [2])

fTa-m= $ ymgm@m=D g1<t (54)

n=1 m=< 00
Clearly (5.1) and (5.3) will suggest companion identities to those given in Campbell [4], and

each such identity will have a combinatorial interpretation in terms of two dimensional vector

partitions. (see ch. 12 of Andrews [2]).

For example, the coefficient of z4yB in the left side of (5.1) is

s
Z.ﬁ(_l)m+n+ﬁi(lgfi), (5.5)

i=1
where the summation is over solutions of the two dimensional vector equation

8.
J
m(0,1)+n(1,1)+ Y _ Bi(;B;) = (A, B), (5.6)
i=1
where m and/or n can be 0 or, B; and s ; are positive integers, whilst «; and g; are positive relatively
prime integers. The sum (5.5) taken over (5.6) is obviously not easily amenable to calculation, and
yet the right side of (5.1) tells us it is in fact equal to

(- 1)B{coefficient of 4 in ('/ - ‘))1. (5.7)

6. CONCLUSION

The author has left many aspects of this paper open-ended. For example, the bivariate
Dirichlet series resulting from §2 will be developed in a future paper, as will the vector partition
interpretations suggested by §5. Although Theorem 3.2 can be derived simply (and without
Theorem 1) using the inclusion-exclusion principle, the results of that section may link with the ¢-
analogue idea for the Euler totient function in Campbell [4]. §4 contains work mainly due to
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Theorem 1, and there may be scope for further development along similar lines. The companion

identities in §5 seem to suggest an entirely new type of identity to research.
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