

ON CERTAIN CLASSES OF p -VALENT ANALYTIC FUNCTIONS

NAK EUN CHO

Department of Applied Mathematics
National Fisheries University of Pusan
Pusan 608-737
KOREA

(Received November 5, 1991)

ABSTRACT. The objective of the present paper is to introduce a certain general class $P(p, \alpha, \beta)$ ($p \in N = \{1, 2, 3, \dots\}$, $0 \leq \alpha < p$ and $\beta \geq 0$) of p -valent analytic functions in the open unit disk U and we prove that if $f \in P(p, \alpha, \beta)$ then $J_{p,c}(f)$, defined by

$$J_{p,c}(f) = \frac{c+p}{z^c} \int_0^z t^{c-1} f(t) dt \quad (c \in N),$$

belongs to $P(p, \alpha, \beta)$. We also investigate inclusion properties of the class $P(p, \alpha, \beta)$. Furthermore, we examine some properties for a class $T_p(\alpha, \beta)$ of analytic functions with negative coefficients.

KEY WORDS AND PHRASES. p -valent analytic function, Hadamard product, integral operator, multiplier transformation, p -valently convex of order δ .

1991 AMS SUBJECT CLASSIFICATION CODE. Primary 30C45.

1. INTRODUCTION.

Let A_p denote the class of functions of the form

$$f(z) = z^p + \sum_{n=1}^{\infty} a_{n+p} z^{n+p} \quad (p \in N = \{1, 2, 3, \dots\}) \quad (1.1)$$

which are analytic in the unit disk $U = \{z : |z| < 1\}$. We also denote by S_p the subclass of A_p consisting of functions which are p -valent in U .

A function $f \in A_p$ is said to be in the class $P(p, \alpha)$ ($0 \leq \alpha < p$) if and only if it satisfies the inequality

$$Re \left\{ \frac{f'(z)}{z^{p-1}} \right\} > \alpha \quad (0 \leq \alpha < p, z \in U). \quad (1.2)$$

The classes $P(1, 0)$ and $P(p, 0)$ were investigated by MacGregor [7] and Umezawa [11], respectively. In fact, the class $P(p, \alpha)$ is a subclass of the class S_p [11].

Let f and g be in the class A_p , with $f(z)$ given by (1.1), and $g(z)$ defined by

$$g(z) = z^p + \sum_{n=1}^{\infty} b_{n+p} z^{n+p}. \quad (1.3)$$

The convolution or Hadamard product of f and g is defined by

$$(f * g)(z) = z^p + \sum_{n=1}^{\infty} a_{n+p} b_{n+p} z^{n+p}. \quad (1.4)$$

For a function $f \in A_p$ given by (1.1), Reddy and Padmanabhan [10] defined the integral operator $J_{p,c}$ ($p, c \in N$) by

$$\begin{aligned} J_{p,c}(f) &= \frac{c+p}{z^c} \int_0^z t^{c-1} f(t) dt \\ &= z^p + \sum_{n=1}^{\infty} \frac{c+p}{c+p+n} a_{n+p} z^{n+p}. \end{aligned} \quad (1.5)$$

The operator $J_{1,c}$ was introduced by Bernardi [2]. In particular, the operator $J_{1,1}$ were studied by Libera [5] and Livingston [6].

Clearly, (1.5) yields

$$f \in A_p \Rightarrow J_{p,c} \in A_p \quad (1.6)$$

Thus, by applying the operator $J_{p,c}$ successively, we can obtain

$$J_{p,c}^n(f) = \begin{cases} J_{p,c}(J_{p,c}^{n-1}(f)) & (n \in N), \\ f(z) & (n = 0). \end{cases} \quad (1.7)$$

We now recall the following definition of a multiplier transformation (or fractional integral and fractional derivative).

DEFINITION 1 ([3]). Let the function

$$\phi(z) = \sum_{n=0}^{\infty} c_{n+p} z^{n+p} \quad (1.8)$$

be analytic in U and let λ be a real number. Then the multiplier transformation $I^\lambda \phi$ is defined by

$$I^\lambda \phi(z) = \sum_{n=0}^{\infty} (n+p+1)^{-\lambda} c_{n+p} z^{n+p} \quad (z \in U). \quad (1.9)$$

The function $I^\lambda \phi$ is clearly analytic in U . It may be regarded as a fractional integral (for $\lambda > 0$) or fractional derivative (for $\lambda < 0$) of ϕ . Furthermore, in terms of the Gamma function, we have

$$I^\lambda \phi(z) = \frac{1}{\Gamma(\lambda)} \int_0^1 (\log \frac{1}{t})^{\lambda-1} \phi(zt) dt \quad (\lambda > 0). \quad (1.10)$$

DEFINITION 2. The fractional derivative $D^\lambda \phi$ of order $\lambda \geq 0$, for an analytic function ϕ given by (1.8), is defined by

$$D^\lambda \phi(z) = I^{-\lambda} \phi(z) = \sum_{n=0}^{\infty} (n+p+1)^\lambda c_{n+p} z^{n+p} \quad (\lambda \geq 0, z \in U). \quad (1.11)$$

Making use of Definition 2, we now introduce an interesting generalization of the class $P(p,\alpha)$ of functions in A_p which satisfy the inequality (1.2).

DEFINITION 3. A function $f \in A_p$ is said to be in the class $P(p,\alpha,\beta)$ if and only if

$$(p+1)^{-\beta} D^\beta f \in P(p,\alpha) \quad (0 \leq \alpha < p, \beta \geq 0)$$

Observe that $P(p,\alpha,0) = P(p,\alpha)$. Furthermore, since $f \in A_p$, it follows from (1.1) and (1.9) that

$$(p+1)^{-\beta} D^\beta f(z) = z^p + \sum_{n=1}^{\infty} \left(\frac{n+p+1}{p+1} \right)^\beta a_{n+p} z^{n+p}, \quad (1.12)$$

which shows that $(p+1)^{-\beta} D^\beta f \in A_p$ if $f \in A_p$. In particular, the class $P(1, \alpha, \beta)$ was introduced by Kim, Lee, and Srivastava [4].

2. SOME INCLUSION PROPERTIES.

In our present investigation of the general class $P(p, \alpha, \beta)$ ($0 \leq \alpha < p, \beta \geq 0$), we need the following lemma.

LEMMA 2.1 ([1]). Let $M(z)$ and $N(z)$ be analytic in U , $N(z)$ map U onto a many sheeted starlike region of order γ ($0 \leq \gamma < p$) and

$$M(0) = N(0) = 0, \quad \frac{M'(0)}{N'(0)} = p, \quad \operatorname{Re} \left(\frac{M'(z)}{N'(z)} \right) > \gamma.$$

Then we have

$$\operatorname{Re} \left(\frac{M(z)}{N(z)} \right) > \gamma \quad (0 \leq \gamma < p, p \geq 1).$$

By using Lemma 2.1, we can prove

THEOREM 2.1. Let the function $f(z)$ be in the class $P(p, \alpha, \beta)$. Then $J_{p,c}(f)$ defined by (1.5) is also in the class $P(p, \alpha, \beta)$.

PROOF. A simple calculation shows that

$$\frac{\frac{d}{dz} D^\beta (J_{p,c}(f))}{z^{p-1}} = \frac{c+p}{z^{c+p}} \int_0^z t^c \left\{ \frac{d}{dt} D^\beta f(t) \right\} dt \quad (2.1)$$

where the operators $J_{p,c}$ ($c \in N$) and D^λ ($\lambda \geq 0$) are defined by (1.5) and (1.11), respectively. In view of (2.1), we get

$$M(z) = \frac{c+p}{(p+1)^\beta} \int_0^z t^c \left\{ \frac{d}{dt} D^\beta f(t) \right\} dt \text{ and } N(z) = z^{p+c}, \quad (2.2)$$

so that

$$\operatorname{Re} \left\{ \frac{M'(z)}{N'(z)} \right\} = \operatorname{Re} \left\{ \frac{(p+1)^{-\beta} \frac{d}{dz} D^\beta f(z)}{z^{p-1}} \right\}. \quad (2.3)$$

Since, by hypothesis, $f \in P(p, \alpha, \beta)$, the second member of (2.3) is greater than α , and hence

$$\operatorname{Re} \left\{ \frac{M'(z)}{N'(z)} \right\} > \alpha \quad (0 \leq \alpha < p). \quad (2.4)$$

Thus, by Lemma 2.1, we have

$$\operatorname{Re} \left\{ \frac{M(z)}{N(z)} \right\} = \operatorname{Re} \left\{ \frac{(p+1)^{-\beta} \frac{d}{dz} D^\beta (J_{p,c}(f))}{z^{p-1}} \right\} > \alpha \quad (0 \leq \alpha < p, \beta \geq 0), \quad (2.5)$$

which completes the proof of Theorem 2.1.

Let $f \in A_p$ be given by (1.1). Suppose also that

$$\begin{aligned}
F_m(f) &= J_{p, c_1} \left(\dots \left(J_{p, c_m}(f) \right) \right) \\
&= z^p + \sum_{n=1}^{\infty} \frac{(c_1 + p) \dots (c_m + p)}{(c_1 + p + n) \dots (c_m + p + n)} a_{n+p} z^{n+p} \quad (c_j \in N (j = 1, 2, \dots, m), m \in N).
\end{aligned} \tag{2.6}$$

Then, by Theorem 2.1, we have

COROLLARY 2.1. Let the function $f(z)$ be in the class $P(p, \alpha, \beta)$. Then the function $F_m(f)$ defined by (2.6) is also in the class $P(p, \alpha, \beta)$.

The next inclusion property of the class $P(p, \alpha, \beta)$, contained in Theorem 2.2 below, would involve the operator $J_{p, 1}^{\lambda} (\lambda > 0)$ defined by

$$J_{p, 1}^{\lambda}(f) = (1 + p)^{\lambda} I^{\lambda} f(z) \quad (\lambda > 0, f \in A_p). \tag{2.7}$$

For $\lambda = m \in N$, we have

$$\begin{aligned}
J_{p, 1}^m(f) &= (1 + p)^m I^m f(z) \\
&= \frac{(1 + p)^m}{(m - 1)!} \int_0^1 (\log \frac{1}{t})^{m-1} f(t) dt.
\end{aligned} \tag{2.8}$$

Clearly, we have

$$f \in A_p \Rightarrow J_{p, 1}^{\lambda}(f) \in A_p \quad (\lambda > 0). \tag{2.9}$$

THEOREM 2.2. Let the function $f(z)$ be in the class $P(p, \alpha, \beta)$. Then the function $J_{p, 1}^{\lambda} (\lambda > 0)$ defined by (2.7) is also in the class $P(p, \alpha, \beta)$.

PROOF. Making use of (1.9) and (1.11), the definition (2.7) yields

$$(p + 1)^{-\beta} D^{\beta} (J_{p, 1}^{\lambda}(f)) = J_{p, 1}^{\lambda} ((p + 1)^{-\beta} D^{\beta} f) \quad (\beta \geq 0, \lambda > 0, f \in A_p) \tag{2.10}$$

Therefore, setting

$$g(z) = (p + 1)^{-\beta} D^{\beta} f \text{ and } G(z) = J_{p, 1}^{\lambda}(g), \tag{2.11}$$

we must show that

$$Re \left\{ \frac{G'(z)}{z^{p-1}} \right\} > \alpha \quad (0 \leq \alpha < p) \tag{2.12}$$

whenever $f \in P(p, \alpha, \beta)$.

From the integral representation in (1.10), we obtain

$$G'(z) = \frac{(p + 1)^{\lambda}}{\Gamma(z)} \int_0^1 (\log \frac{1}{t})^{\lambda-1} t g'(zt) dt \quad (\lambda > 0), \tag{2.13}$$

so that

$$Re \left\{ \frac{G'(z)}{z^{p-1}} \right\} = \frac{(p + 1)^{\lambda}}{\Gamma(\lambda)} \int_0^1 (\log \frac{1}{t})^{\lambda-1} t^p Re \left\{ \frac{g'(zt)}{(zt)^{p-1}} \right\} dt \quad (\lambda > 0), \tag{2.14}$$

Since $f \in P(p, \alpha, \beta)$, we have

$$Re \left\{ \frac{g'(zt)}{(zt)^{p-1}} \right\} > \alpha \quad (0 \leq \alpha < p, 0 \leq t \leq 1), \tag{2.15}$$

and hence (2.14) yields

$$Re\left\{\frac{G'(z)}{z^{p-1}}\right\} = \frac{(p+1)^\lambda}{\Gamma(\lambda)} \alpha \int_0^1 (\log \frac{1}{t})^{\lambda-1} t^p dt = \alpha \quad (0 \leq \alpha < p, \lambda > 0), \quad (2.16)$$

which completes the proof of Theorem 2.2.

COROLLARY 2.2. If $0 \leq \alpha < p$ and $0 \leq \beta < \gamma$, then $P(p, \alpha, \gamma) \subset P(p, \alpha, \beta)$.

PROOF. Setting $\lambda = \gamma - \beta > 0$ in Theorem 2.2, we observe that

$$\begin{aligned} f \in P(p, \alpha, \gamma) &\Rightarrow J_{p,1}^{\gamma-\beta}(f) \in P(p, \alpha, \gamma) \\ &\Leftrightarrow (p+1)^{-\gamma} D^\gamma(J_{p,1}^{\gamma-\beta}(f)) \in P(p, \alpha) \\ &\Leftrightarrow (p+1)^{-\beta} D^\beta f \in P(p, \alpha) \\ &\Leftrightarrow f \in P(p, \alpha, \beta), \end{aligned}$$

and the proof of Corollary 2.2 is completed.

Next we define a function $h \in A_p$ by

$$h(z) = z^p + \sum_{n=1}^{\infty} \left(\frac{n+p+1}{p+1} \right) z^{n+p} \quad (z \in U). \quad (2.18)$$

Then, in terms of the Hadamard product defined by (1.4), we have

$$(h * f)(z) = \frac{1}{p+1} \{f(z) + zf'(z)\} \quad (2.19)$$

which, when compared with (1.11) with $m = 1$, yields

$$(h * f)(z) = \frac{1}{p+1} D^1 f. \quad (2.20)$$

We now need the following lemma for another inclusion property of the class $P(p, \alpha, \beta)$.

LEMMA 2.2([8]). Let $\phi(u, v)$ be a complex valued function such that

$$\phi: D \rightarrow C, \quad D \subset C \times C (C \text{ is the complex plane}),$$

and let $u = u_1 + iu_2$, $v = v_1 + iv_2$. Suppose that the function $\phi(u, v)$ satisfies

(i) $\phi(u, v)$ is continuous in D ,

(ii) $(1, 0) \in D$ and $Re\{\phi(1, 0)\} > 0$,

(iii) for all $(iu_2, v_1) \in D$ such that $v_1 \leq -\frac{1+u_2^2}{2}$, $Re\{\phi(iu_2, v_1)\} \leq 0$.

Let $p(z) = 1 + p_1 z + p_2 z^2 + \dots$ be analytic in the unit disk U such that $(p(z), zp'(z)) \in D$ for all $z \in U$. If

$$Re\{(p(z), zp'(z))\} > 0 \quad (z \in U),$$

then $Re\{p(z)\} > 0$ ($z \in U$).

THEOREM 2.3. If $0 \leq \alpha < p$ and $\beta \geq 0$, then

$$P(p, \alpha, \beta+1) \subset P(p, \mu, \beta) \quad \left(\mu = \frac{2\alpha(p+1)+p}{2(p+1)+1} \right). \quad (2.21)$$

PROOF. Let the function

$$F(z) = \frac{1}{p+1} \{f(z) + zf'(z)\} \quad (f \in A_p). \quad (2.22)$$

First, we shall show that

$$Re\left\{\frac{f'(z)}{z^{p-1}}\right\} > \frac{2\alpha(p+1)+p}{2(p+1)+1} \quad (0 \leq \alpha < p, z \in U), \quad (2.23)$$

whenever

$$Re\left\{\frac{F'(z)}{z^{p-1}}\right\} > \alpha \quad (0 \leq \alpha < p, z \in U). \quad (2.24)$$

By the differentiation of $F(z)$, we obtain

$$F'(z) = \frac{1}{p+1}\{2f'(z) + zf''(z)\}. \quad (2.25)$$

We define the function $p(z)$ by

$$\frac{f'(z)}{pz^{p-1}} = \gamma + (1-\gamma)p(z) \quad (2.26)$$

with $\gamma = \frac{2\alpha(p+1)+p}{2p(p+1)+p}$ ($0 \leq \gamma < 1$). Then $p(z) = 1 + p_1z + p_2z^2 + \dots$ is analytic in U . By using (2.25) and (2.26), we obtain

$$\frac{F'(z)}{z^{p-1}} = \frac{1}{p+1}\{(p^2+p)(\gamma + (1-\gamma)p(z)) + p(1-\gamma)zp'(z)\}. \quad (2.27)$$

Hence, in view of $Re\left\{\frac{F'(z)}{z^{p-1}}\right\} > \alpha$ ($0 \leq \alpha < p$), we have

$$Re\{\phi(p(z), zp'(z))\} > 0, \quad (2.28)$$

where $\phi(u, v)$ is defined by

$$\phi(u, v) = \frac{1}{p+1}\{(p^2+p)(\gamma + (1-\gamma)u) + p(1-\gamma)v\} - \alpha \quad (2.29)$$

with $u = u_1 + iu_2$ and $v = v_1 + iv_2$. Then we see that

- (i) $\phi(u, v)$ is continuous in $D = C \times C$,
- (ii) $(1, 0) \in D$ and $Re\{\phi(1, 0)\} = p - \alpha > 0$,
- (iii) for all $(iu_2, v_1) \in D$ such that $v_1 \leq \frac{-(1+u_2^2)}{2}$,

$$\begin{aligned} Re\{\phi(iu_2, v_1)\} &= \frac{1}{p+1}\{(p^2+p)\gamma + p(1-\gamma)v_1\} - \alpha \\ &\leq \frac{1}{p+1}\left\{(p^2+p)\gamma - \frac{p(1-\gamma)(1+u_2^2)}{2}\right\} - \alpha \leq 0 \end{aligned}$$

for $\gamma = \frac{2\alpha(p+1)+p}{2p(p+1)+p}$. Consequently, $\phi(u, v)$ satisfies the conditions in Lemma 2.2. Therefore, we have

$$Re\left\{\frac{f'(z)}{z^{p-1}}\right\} > p\gamma = \frac{2\alpha(p+1)+p}{2(p+1)+1}. \quad (2.30)$$

Next, in view of (2.20) and above arguments, we have

$$\begin{aligned} f \in P(p, \alpha, \beta+1) &\Leftrightarrow (p+1)^{-\beta-1}D^{\beta+1}f \in P(p, \alpha) \\ &\Rightarrow h * \{(p+1)^{-\beta}D^{\beta}f\} \in P(p, \alpha) \\ &\Rightarrow (p+1)^{-\beta}D^{\beta}f \in P(p, \mu) \quad \left(\mu = \frac{2\alpha(p+1)+p}{2(p+1)+1}\right) \\ &\Leftrightarrow f \in P(p, \mu, \beta), \end{aligned} \quad (2.31)$$

which evidently proves Theorem 2.3.

REMARK. Since $0 \leq \alpha < p$, we have

$$\mu = \frac{2\alpha(p+1)+p}{2(p+1)+1} > \alpha,$$

and hence $P(p, \mu, \beta) \subset P(p, \alpha, \beta)$.

3. THE CONVERSE PROBLEM.

Let T_p denote the class of functions of the form

$$f(z) = z^p - \sum_{n=1}^{\infty} a_{n+p} z^{n+p} \quad (p \in N = \{1, 2, 3, \dots\}, a_{n+p} \geq 0)$$

which are analytic in U and let $T_p(\alpha, \beta) = T_p \cap P(p, \alpha, \beta)$.

In this section, we investigate the converse problem of integrals defined by (1.5) for the class $T_p(\alpha, \beta)$.

LEMMA 3.1. Let $f \in T_p$. Then $f \in T_p(\alpha, \beta)$ if and only if

$$\sum_{n=1}^{\infty} (n+p) \left(\frac{n+p+1}{p+1} \right)^\beta a_{n+p} \leq p - \alpha. \quad (3.1)$$

PROOF. Suppose that

$$\sum_{n=1}^{\infty} (n+p) \left(\frac{n+p+1}{p+1} \right)^\beta a_{n+p} \leq p - \alpha.$$

It is sufficient to show that the values for $\frac{(p+1)^{-\beta}(D^\beta f)'}{z^{p-1}}$ lie in a circle centered at p whose radius is $p - \alpha$. Indeed, we have

$$\begin{aligned} \left| \frac{(p+1)^{-\beta}(D^\beta f)'}{z^{p-1}} - p \right| &= \left| - \sum_{n=1}^{\infty} (n+p) \left(\frac{n+p+1}{p+1} \right)^\beta a_{n+p} z^n \right| \\ &\leq \sum_{n=1}^{\infty} (n+p) \left(\frac{n+p+1}{p+1} \right)^\beta a_{n+p} |z|^n \\ &< \sum_{n=1}^{\infty} (n+p) \left(\frac{n+p+1}{p+1} \right)^\beta a_{n+p} \leq p - \alpha. \end{aligned} \quad (3.2)$$

Conversely, assume that

$$Re \left\{ \frac{(p+1)^{-\beta}(D^\beta f)'}{z^{p-1}} \right\} > \alpha (0 \leq \alpha < p), \quad (3.3)$$

which is equivalent to

$$Re \left\{ \sum_{n=1}^{\infty} (n+p) \left(\frac{n+p+1}{p+1} \right)^\beta a_{n+p} z^n \right\} < p - \alpha. \quad (3.4)$$

Choose values of z on the real axis so that

$$\sum_{n=1}^{\infty} (n+p) \left(\frac{n+p+1}{p+1} \right)^\beta a_{n+p} z^n$$

is real. Letting $z \rightarrow 1$ along the real axis, we obtain

$$\sum_{n=1}^{\infty} (n+p) \left(\frac{n+p+1}{p+1} \right)^\beta a_{n+p} \leq p - \alpha.$$

The proof is completed.

THEOREM 3.1. Let $F \in T_p(\alpha, \beta)$ and $f(z) = \left[\frac{z^1 - c}{p+c} \right] [z^c F(z)]'$ ($c \in N$). Then the function $f(z)$ belongs to the class $T_p(\delta, \beta)$ ($0 \leq \delta < p$) for $|z| < r$, where

$$r = \inf_{n \geq 1} \left[\frac{(p-\delta)(p+c)}{(p-\alpha)(n+p+c)} \right]^{\frac{1}{n}}. \quad (3.5)$$

The result is sharp.

PROOF. Let $F(z) = z^p - \sum_{n=1}^{\infty} a_{n+p} z^{n+p}$. Then it follows from (1.5) that

$$\begin{aligned} f(z) &= \left[\frac{z^1 - c}{p+c} \right] \frac{d}{dz} [z^c F(z)] \\ &= z^p - \sum_{n=1}^{\infty} \left(\frac{n+p+c}{p+c} \right) a_{n+p} z^{n+p}. \end{aligned} \quad (3.6)$$

To prove the result, it suffices to show that

$$\left| \frac{(p+1)^{-\beta} (D^\beta f)'}{z^{p-1}} - p \right| \leq p - \delta \quad (3.7)$$

for $|z| \leq r$. Now

$$\begin{aligned} \left| \frac{(p+1)^{-\beta} (D^\beta f)'}{z^{p-1}} - p \right| &= \left| - \sum_{n=1}^{\infty} (n+p) \left(\frac{n+p+1}{p+1} \right)^\beta \left(\frac{n+p+c}{p+c} \right) a_{n+p} z^n \right| \\ &\leq \sum_{n=1}^{\infty} (n+p) \left(\frac{n+p+1}{p+1} \right)^\beta \left(\frac{n+p+c}{p+c} \right) a_{n+p} |z|^n. \end{aligned} \quad (3.8)$$

Thus we have

$$\left| \frac{(p+1)^{-\beta} (D^\beta f)'}{z^{p-1}} - p \right| \leq p - \delta \quad (3.9)$$

if

$$\sum_{n=1}^{\infty} (n+p) \left(\frac{n+p+1}{p+1} \right)^\beta \left(\frac{n+p+c}{p+c} \right) a_{n+p} |z|^n \leq p - \delta. \quad (3.10)$$

But Lemma 3.1 confirms that

$$\sum_{n=1}^{\infty} (n+p) \left(\frac{n+p+1}{p+1} \right)^\beta a_{n+p} \leq p - \alpha. \quad (3.11)$$

Therefore (3.10) will be satisfied if

$$\left(\frac{n+p}{p-\delta} \right) \left(\frac{n+p+c}{p+c} \right) |z|^n \leq \left(\frac{n+p}{p-\alpha} \right) \quad (3.12)$$

for each $n \in N$, or if

$$|z| \leq \left[\left(\frac{p-\delta}{p-\alpha} \right) \left(\frac{p+c}{n+p+c} \right) \right]^{\frac{1}{n}}. \quad (3.13)$$

The required result follows now from (3.13). Sharpness follows if we take

$$F(z) = z^p - \left(\frac{p-\alpha}{n+p} \right) \left(\frac{p+1}{n+p+1} \right)^\beta z^{n+p} \quad (3.14)$$

for each $n \in N$.

THEOREM 3.2. Let $F \in T_p(\alpha, \beta)$ and $f(z) = \left[\frac{z^1 - c}{p+c} \right] [z^c F(z)]'$ ($c \in N$). Then the function $f(z)$ p -valently convex of order δ ($0 \leq \delta < p$) in the disk

$$|z| < r^* = \inf_{n \geq 1} \left[\frac{p(p-\delta)}{(n+p+\delta)(p-\alpha)} \left(\frac{n+p+c}{p+c} \right) \left(\frac{n+p+1}{p+1} \right)^\beta \right]^{\frac{1}{n}}. \quad (3.15)$$

The result is sharp.

PROOF. To prove the theorem, it is sufficient to show that

$$\left| \left(1 + \frac{zf''(z)}{f'(z)} \right) - p \right| \leq p - \delta \quad (3.16)$$

for $|z| \leq r^*$. In view of (3.6), we have

$$\begin{aligned} \left| \left(1 + \frac{zf''(z)}{f'(z)} \right) - p \right| &= \left| \frac{- \sum_{n=1}^{\infty} n(n+p) \left(\frac{n+p+c}{p+c} \right) a_{n+p} z^{n+p-1}}{(p - \sum_{n=1}^{\infty} (n+p) \left(\frac{n+p+c}{p+c} \right) a_{n+p} z^n) z^{p-1}} \right| \\ &\leq \frac{\sum_{n=1}^{\infty} n(n+p) \left(\frac{n+p+c}{p+c} \right) a_{n+p} |z|^n}{p - \sum_{n=1}^{\infty} (n+p) \left(\frac{n+p+c}{p+c} \right) a_{n+p} |z|^n}. \end{aligned} \quad (3.17)$$

Thus

$$\left| \left(1 + \frac{zf''(z)}{f'(z)} \right) - p \right| \leq p - \delta \quad (3.18)$$

if

$$\frac{\sum_{n=1}^{\infty} n(n+p) \left(\frac{n+p+c}{p+c} \right) a_{n+p} |z|^n}{p - \sum_{n=1}^{\infty} (n+p) \left(\frac{n+p+c}{p+c} \right) a_{n+p} |z|^n} \leq p - \delta, \quad (3.19)$$

or

$$\sum_{n=1}^{\infty} \frac{(n+p)(n+p+\delta)}{p(p-\delta)} \left(\frac{n+p+c}{p+c} \right) a_{n+p} |z|^n \leq 1. \quad (3.20)$$

But from Lemma 3.1, we obtain

$$\sum_{n=1}^{\infty} \left(\frac{n+p}{p-\alpha} \right) \left(\frac{n+p+1}{p+1} \right)^\beta a_{n+p} \leq 1. \quad (3.21)$$

Hence $f(z)$ is p -valently convex of order δ ($0 \leq \delta < p$) if

$$\frac{(n+p)(n+p+\delta)}{p(p-\delta)} \left(\frac{n+p+c}{p+c} \right) |z|^n \leq \left(\frac{n+p}{p-\alpha} \right) \left(\frac{n+p+1}{p+1} \right)^\beta, \quad (3.22)$$

or

$$|z| \leq \left[\frac{p(p-\delta)}{(n+p+\delta)(p-\alpha)} \left(\frac{p+c}{n+p+c} \right) \left(\frac{n+p+1}{p+1} \right)^\beta \right]^{\frac{1}{n}} \quad (3.23)$$

for each $n \in N$. This completes the proof of the theorem. The result is sharp for the function given by (3.14).

REFERENCES

1. AOUF, M.K., OBRADOVIC, M. & OWA, S., On certain class of p -valent functions with reference to the Bernardi integral operator, *Math. Japonica* 35 (1990), 839-848.
2. BERNARD, S.D., Convex and starlike univalent functions, *Trans. Amer. Math. Soc.* 135 (1969), 429-446.

3. FLETT, T.M., The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. **38** (1972), 746-765.
4. KIM, Y.C., LEE, S.H., & SRIVASTAVA, H.M., Some properties of convolution operators in the class $P_\alpha(\beta)$, submitted.
5. LIBERA, R.J., Some classes of regular univalent functions, Proc. Amer. Math. Soc. **16** (1965), 755-758.
6. LIVINGSTON, A.E., On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. **17** (1966), 352-357.
7. MACGREGOR, T.H., Functions whose derivatives has a positive real part, Trans. Amer. Math. Soc. **104** (1962), 532-537.
8. MILLER, S.S., Differential inequalities and Caratheodory functions, Bull. Amer. Math. Soc. **81** (1975), 79-81.
9. OWA, S. & NUNOKAWA, M., Properties of certain analytic functions, Math. Japonica **33** (1988), 577-582.
10. REDDY, G.L. & PADMANABHAN, K.S., On analytic functions with reference to the Bernardi integral operator, Bull. Austral. Math. Soc. **25** (1982), 387-396.
11. UMEZAWA, T., Multivalently close-to-convex functions, Proc. Amer. Math. Soc. **8** (1957), 869-874.

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from "Qualitative Theory of Differential Equations," allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk