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ABSTRACT. The objective of the present paper is to introduce a certain general class
P(p,a,B)(p€ N ={1,2,3,..},0<a< p and $>0) of p-valent analytic functions in the open unit disk U
and we prove that if f € P(p,a,8) then J, (f), defined by

J,,,c(f)=°:2"/; ©-1f(t)dt  (c€N),

belongs to P(p,a,8). We also investigate inclusion properties of the class P(p,a,8). Furthermore,
we examine some properties for a class T (a, §) of analytic functions with negative coefficients.
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1. INTRODUCTION.
Let A, denote the class of functions of the form

[o.°)
fe)=2"+ Z %n4p *P(peN={1,23.)) (1.1)
n=1

which are analytic in the unit disk U= {z:|z| <1}. We also denote by S, the subclass of 4
consisting of functions which are p-valent in U.
A function f €A, is said to be in the class P(p,a) (0<a<p) if and only if it satisfies the

1 4

inequality

R zf;,—(f)f}>a 0<a<p,zel) (1.2)

The classes P(1,0) and P(p,0) were investigated by MacGregor [7] and Umezawa [11], respectively.
In fact, the class P(p,a) is a subclass of the class 5, [11].
Let f and g be in the class 4, with f(z) given by (1.1), and g(z) defined by

0
g(z) = 2P+ Z bt p PR (1.3)
n=1

The convolution or Hadamard product of f and g is defined by
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00
(frg)2)=2P+ Za"+an+Pz”+”. (1.4)
1

n=

For a function fe 4, given by (1.1), Reddy and Padmanabhan [10] defined the integral
operator J, . (p,c € N) by

z
Ty ) =22 [ e 1pwan
& e+
=P 4 Zm%ﬁa"+pz"+p. (15)
n=1
The operator J; . was introduced by Bernardi [2]. In particular, the operator J, , were studied by

Libera [5] and Livingston [6].
Clearly, (1.5) yields

feA, =1, €A, (1.6)
Thus, by applying the operator J,,  successively, we can obtain
I, (521 (neN),
n _d/pVpe
Jo.lf) = { £(2) (n=0). (L.7)

We now recall the following definition of a multiplier transformation (or fractional integral and

fractional derivative).
DEFINITION 1([3]). Let the function

0
#(z) = Z c"+pz"+” (1.8)
n=0
be analytic in U and let A be a real number. Then the multiplier transformation 1*¢ is defined by

¢(z) = io:(n+p+l)"\cn+pz"+" (z€U). (1.9)
n=0

The function I*¢ is clearly analytic in U. It may be regarded as a fractional integral (for A > 0) or
fractional derivative (for A < 0) of ¢. Furthermore, in terms of the Gamma function, we have

(z) = r_(lz$ / ;(Iog—}—)’\ —14(zt)dt (A>0). (1.10)

DEFINITION 2. The fractional derivative D*¢ of order A >0, for an analytic function ¢ given
by (1.8), is defined by

D () =1"2¢(z) = f(n+p+1)* Cayp " tP (A>0,z€U). (1.11)
n=0

Making use of Definition 2, we now introduce an interesting generalization of the class P(p,a)
of functions in A, which satisfy the inequality (1.2).
DEFINITION 3. A function fe A, is said to be in the class P(p,a,8) if and only if

(p+1)~? DPf € P(p,a) (0<a<p,f20)

Observe that P(p,a,0) = P(p,a). Furthermore, since f € 4,,, it follows from (1.1) and (1.9) that
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(o9
(p+1)78 DPf(s) = 2P + zl(";i‘l“)@anﬂznw, (1.12)
n=

which shows that (p+1)~# DPfe A, if f€ A,. In particular, the class P(1,a,8) was introduced by
Kim, Lee, and Srivastava [4].
2. SOME INCLUSION PROPERTIES.

In our present investigation of the general class P(p,a,8) (0 < o < p,8 > 0), we need the following
lemma.

LEMMA 2.1([1]). Let M(z) and N(z) be analytic in U, N(z) map U onto a many sheeted starlike
region of order v (0 <y < p) and

R

Then we have

M
R N((:))) O0<y<pp>1).

By using Lemma 2.1, we can prove

THEOREM 2.1. Let the function f(z) be in the class P(p,a,8). Then J, (f) defined by (1.5) is
also in the class P(p,a,B).

PROOF. A simple calculation shows that

4 pha Af z
Erdl "1( ) "+"/ot°{3"—tD"f(t)}dt (2.1)

P c¥p

where the operators J, . (c € N) and D* (A > 0) are defined by (1.5) and (1.11), respectively. In view
of (2.1), we get

M(z) = c—+1'37i / {mpﬁf(t)}dt and N(z) = 2P+, 02
so that
(z 1)~ 84 ps
Re{;’{'((z))} - Re{(‘&)—;-—r-@} 23

Since, by hypothesis, f € P(p,a,8), the second member of (2.3) is greater than a, and hence

Re{%,((:))} >a (0<a<p). (2.4)

Thus, by Lemma 2.1, we have

R (0<a<p,B2>0), (2.5)

M(z) (p+1)~°4DJ RO
N(zz)}=’“{ T

which completes the proof of Theorem 2.1.
Let f € A, be given by (1.1). Suppose also that
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. f: (€14 )+ P)

n+ .
l(cl""""") Co¥pin 4,4, 2" P (c;EN(j=1,2,..m),m€N). (2.6)

Then, by Theorem 2.1, we have

COROLLARY 2.1. Let the function f(z) be in the class P(p,a,8). Then the function F,(f)
defined by (2.6) is also in the class P(p,a,8).

The next inclusion property of the class P(p,a,f), contained in Theorem 2.2 below, would
involve the operator J} (A > 0) defined by

I3 = 1+ p () (A>0,f€A,) (2.7)

For A=m e N, we have
Joi(f) =1+ p)"I™f(2)
(1 + ”1)), / (loghy™ =1 f(t)dt. (2.8)
Clearly, we have

FEABTL (S EA, (A>0). (2.9)

THEOREM 2.2. Let the function f(z) be in the class P(p,a,8). Then the function J} (A >0)
defined by (2.7) is also in the class P(p,a, 8).
PROOF. Making use of (1.9) and (1.11), the definition (2.7) yields
(p+1) 72D} \(£) = T3 (P + 1) PDPf) (B20,A>0,f € 4,) (2.10)

Therefore, setting

9(z) = (p+1)~PDPf and G(2) = 7} 1(9), (211)
we must show that
Re{sz’(_zz}>a 0<a<p) (2.12)

whenever f € P(p,a,f).
From the integral representation in (1.10), we obtain

A
G'(z) = (”r’(“zl)) / ;(on%)’\ ~4g!(2t)dt (A>0), (2.13)
so that
n:{ﬁ,‘_‘}} ”r’(“;)) / (loghp~ 1tPR {%}dt (A>0). (2.14)

Since f € P(p,a,f), we have

R,{L(ZL_)_}> o (0<a<p0<t<l), (215)

Ea
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and hence (2.14) yields

’, A
R f’;@}} = (_Ef*(%l)la / :’(109%)* “YPdt = o O<a<pi>0), (2.16)

which completes the proof of Theorem 2.2.
COROLLARY 2.2. If0<a<pand 0<p <7, then P(p,a,7) C P(p,a,B).
PROOF. Setting A =y -3 >0 in Theorem 2.2, we observe that
f € P(p,e,1)=T3 1 %(f) € P(p,y7)
&(p+1)" D3 5A) € P(p.a)
&(p+1)~PDPf € P(p,a)
«f € P(p,a,B),

and the proof of Corollary 2.2 is completed.
Next we define a function h € 4, by

hz)=2P+ io: (%_{*’l)z"‘“’ (zeU). (2.18)
n=1
Then, in terms of the Hadamard product defined by (1.4), we have

(he 1)(2) = 537 {f() + 282} (2.19)
which, when compared with (1.11) with m =1, yields

(h* f)2) = p_-l|>fDl f (2.20)

We now need the following lemma for another inclusion property of the class P(p,a, 8).
LEMMA 2.2((8]). Let ¢(u,v) be a complex valued function such that

¢: D—-C, D C CxC(C is the complez plane),

and let u = u; +iuy, v=v, +iv,. Suppose that the function ¢(u,v) satisfies

(i) é(u,v) is continuous in D,

(i1) (1,0) € D and Re{¢(1,0)} >0,

(iii) for all (iu,, v,) € D such that v, < -l—';l‘i, Re{¢(iuy,v,)} <0.

Let p(z) = 1 + pyz + py2% + ... be analytic in the unit disk U such that (p(2),zp'(z)) e Dfor all z€U. If

Re{(p(2),2p'(2))} > 0 (z€U),

then Re{p(z)} > 0(z € V).
THEOREM 2.3. If 0<a<pand 8>0, then

P(p,a,8+1) C P(p, ) (u e er) (2.21)
PROOF. Let the function
F(z) = 37 {f(2) + 21(2)) (e Ap). (2.22)

First, we shall show that
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f'(2)) _2a(p+1)+p
Rf{zp-1}>W 0<a<pzel), (2.23)
whenever
Re{fp(.zf}m (0<a<pzel). (2.24)

By the differentiation of F(z), we obtain

F/(2) = o4 {2f(2) + 2f"(2)). (2.25)

We define the function p(z) by
L vt a-nte) (2.26)
with v = %’:—5—% (0<y<1). Then p(z) =1+ p;z+ pyz® +... is analytic in U. By using (2.25) and

(2.26), we obtain

zi,,"_ii = 51 {7+ P)7 + (1=7)p()) + p(1 = 7)zp'(2)}- (2.27)
Hence, in view of Rc{;’(_’)l} >a (0 < a < p), we have
Re{¢(p(2),zp'(2))} > 0, (2.28)
where ¢(u,v) is defined by
$(w9) = (P2 + )+ (1= 7)) + p(1 = 7)o} o (2:29)

with u = u; +iu, and v =v; +iv,. Then we see that
(i) ¢é(u,v) is continuous in D=CxC,

(i1) (1,0) € D and Re{$(1,0)} =p—a >0, )
(iii) for all(iuy,v,) € D such that v, < —UF*2)

Re{g(iug,01)} = 547{(p* + Py + p(1 = 1)} - @

- u?
s;’__l‘-_l{(pz_'_p).,_ﬂ(l_l)i(l_t_z_)}_laso

for y= %—E. Consequently, ¢(u,v) satisfies the conditions in Lemma 2.2. Therefore, we have
f’(Z)} _2o(p+1)+p
R 1 > p‘r—m. (230)

Next, in view of (2.20) and above arguments, we have

f€P(p,a,B+1)e(p+1)"P1DP+1f € P(p,a)
=h+{(p+1)~PDPf} € P(p,a)
=(p+1)~PDPf € P(p,u) (M=W)
f € P(p,m ), (2:31)

which evidently proves Theorem 2.3.
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REMARK. Since 0 < =a < p, we have

_2a(p+1)+p

=3p+n+1 0 ©

and hence P(p,u,8) C P(p,a,B).
3. THE CONVERSE PROBLEM.
Let T, denote the class of functions of the form

f(z)=zP - i ay 4o tP (€N ={123,..}a,,,>0)
n=1

which are analytic in U and let T (o, 8) = T, N P(p,a, ).
In this section, we investigate the converse problem of integrals defined by (1.5) for the class

T (a, B).
LEMMA 3.1. Let feT,. Then fe T,(,f) if and only if
[e.o] A
El("”)("};ﬁl) G ypSpP-c (3.1)
n=

PROOF. Suppose that

£ (22 <o

B, ’
It is sufficient to show that the values for m;)p_-(ig—‘ﬂ lie in a circle centered at p whose radius is
z

p—-a. Indeed, we have

(p+1)~A(DPsy l
I S

n+p+1
Z("+p)( P‘tl )p "+Pz"

& n+p+1y
< 3 o (B2 o 110
1

< io:l(n+p)(";.{Tl)ﬂ a4 p<P-a. (3.2)
n=
Conversely, assume that
Rc{(—pil—g—‘:’-(fl)—pfz} >a(0 <a<p), (3.3)
which is equivalent to
wl 8 oen (55 o n+,,z"}<p-a. (3.4)

Choose values of z on the real axis so that

o)
n+p+1)
Z(n+p( p-,l,-l )a"+‘,z"

n=1

is real. Letting z—1 along the real axis, we obtain

& n+p+1
E(nﬂ’)( >4T ) GnepSP—o

n=1

The proof is completed.
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THEOREM 3.1 Let FeTya6) and f()=[245] [*F()f (c€¥). Then the function f(z)
belongs to the class T,(6,8) (0 <6< p) for |z| <r, where

. (p=8)ptec) |L
r=inf [W] : (3.5)

The result is sharp.
PROOF. Let F(z)=2P~ ¥ %10, , z"*P. Then it follows from (1.5) that

16) =[] & tF

X fnt+p+ . (3.6)
=2P- Zl(nﬂ-‘!’-cc)"n+pz +e,

n=

To prove the result, it suffices to show that

(p+1)~A(DPsy

e pl_ﬁ—ﬁ (3.7
for |z| <r. Now
(p+1)~AD%sy & ntp+1\¥(n+p+ .
oL S (e (5525
00 1 3
< Z(Hp)(”jﬁ ) (”Iif°)a..+,|z|". (3.8)
Thus we have
1)~ 3(DPry
(r+ )p s f) —pl<p-6 (3.9)
2
if
&, n+p+1 n+p+c n
Zl("+p)( p+l )B( p+c )’n-{-plzl SP—5° (310)
n=
But Lemma 3.1 confirms that
Z (n+p) (";i-{l) GypSP-a (3.11)
Therefore (3.10) will be satisfied if
(R (5= <G2) (312)
for each ne N, or if
iy 1
=1 <[(B=8) ()| (313
The required result follows now from (3.13). Sharpness follows if we take
1\
F(z)=2P- (%) ('—‘%%T_—l) e (3.14)

for eachne N.
THEOREM 3.2. Let F € T (a, ) and f(s) =[5
p-valently convex of order § (0 < § < p) in the disk

] [2°F(2))’ (c € N). Then the function f(z)

p+c
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. . p(p - 6) ntp+c\(n+p+1\]%
|z <r =mf[(n+p+5)(l"'°)( pte )( P+l )] ’

n>l

The result is sharp.
PROOF. To prove the theorem, it is sufficient to show that

1)
(” ) )“’

<p-§

for |z| <r*. In view of (3.6), we have

n+ptc -1
- ?=1Mn+p)( P ¥c )n+p3"+p

() _
(” f'(z)) P

n+p+c
< 2?:1"(""‘?)( Ptc )"n+p|’|"

= +p+c ¥
p— L a=1n+p) (:'W‘)“H,,IZI"

Thus
zf"'(2) _
(1+ f’(Z) )‘P Sp ]
i
e in(ntp) (S22 Yy 121" .
n c n spP—0
p—Z?=1(n+p)( :if )ﬂ,.+pIZI
or

X (n+p)(n+p+6 +p+ec
(n+pn+p+8)(nt+p eplzln <l

- ¥
= Plp-d) pte

But from Lemma 3.1, we obtain

00 lB
$ o) (22 e ps

Hence f(z) is p-valently convex of order 6 (0 < 6 < p) if

(n+p)n+p+é)(ntpte n<(pir)(nipt! %
p(p—9) pie )21 <p=a)\ Ty

or

IzI5[(n+p+5)(p_a)(n+p+c)( p+1 )]

+p+ _
(- T2=1n+p) (55 Jongp 2P 7!
14 14
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(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

for each n e N. This completes the proof of the theorem. The result is sharp for the function given

by (3.14).
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