

APPROXIMATION BY FINITE RANK OPERATORS WITH RANGES IN c_0

AREF KAMAL

Department of Mathematics and Computer Science
United Arab Emirates University
P.O. Box 17551 Al-Ain
United Arab Emirates

(Received July 25, 1991 and in revised form August 13, 1991)

ABSTRACT. In this paper the author characterizes all those spaces X , for which $K_n(X, c_0)$ is proximinal in $L(X, c_0)$. Some examples were found that satisfy this characterization.

KEY WORDS AND PHRASES. Proximinal, best approximation, selection, extremal subspaces, n-width.

1991 AMS SUBJECT CLASSIFICATION CODES. 46.

1. INTRODUCTION.

The closed subset A of the normed linear space X , is said to be "*proximinal*" in X if for each $x \in X$, there is an element $y_x \in A$, such that:

$$d(x, A) = \inf\{\|x - y\| : y \in A\} = \|x - y_x\|,$$

where $d(x, A)$ is the distance of x from A . The element y_x is called a "*best approximation*" of x in A . The best approximation need not be unique, and the set-valued function $P_A: X \rightarrow 2^A$ defined by

$$P_A = \{(y \in A; d(x, A) = \|x - y\|)\}$$

is called the *metric projection* of X into A . If A is proximinal in X then $P_A(x) \neq \emptyset$ for each $x \in X$, in this case any function $f: X \rightarrow A$ satisfying that $f(x) \in P_A(x)$ for each $x \in X$, is called a "*selection*" for the metric projection P_A .

If A is a subset of X , and N is a subspace of X , then the "*deviation*" of A from N is defined to be

$$\delta(A, N) = \sup\{d(x, N); x \in A\},$$

and the n-width of A in X is defined to be

$$d_n(A, X) = \inf\{\delta(A, N); N \text{ is an } n\text{-dimensional subspace of } X\}.$$

If there is an n -dimensional subspace N_0 of X , such that $d_n(A, X) = \delta(A, N_0)$ then $d_n(A, X)$ is said to be "*attained*", and the subspace N_0 is said to be an "*extremal subspace*" for $d_n(A, X)$. It is well known (see Garkavi [4]), that if X^* is the dual space of the normed linear space X , then $d_n(A, X^*)$ is attained.

If X and Y are two normed linear spaces, then $L(X, Y)$ denotes the set of all bounded linear operators from X to Y , $K(X, Y)$ the set of all compact operators in $L(X, Y)$, and $K_n(X, Y)$ the subset of $K(X, Y)$ consisting of all operators of rank n .

The proximinality of $K(X, Y)$ in $L(X, Y)$ were studied by several authors, (see for examples Feder [3], Lau [8], Mach [9], Mach and Ward [10], and Saatkamp [11]). Duetsch, Mach, and

Saatkamp [1], Kamal ([5], [6], and [7]) studied the proximinality of $K_n(X, Y)$ in $L(X, Y)$ and $K(X, Y)$ in details, however, one of the problems left unsolved is the problem 5.2.2 mentioned by Duetsch. Mach and Saatkamp [1], concerning the proximinality of $K_n(X, c_0)$, in $L(X, c_0)$ where c_0 is the space of all real sequences that converges to zero. The problem is divided into two parts, the first part is to characterize all those spaces X for which $K_n(K, c_0)$ is proximinal in $L(X, c_0)$, and the second part is to show whether $K_n(X, c_0)$ is proximinal in $L(X, c_0)$ or not, when $X = c$ or 1_∞ . Kamal [7] showed that $K_n(c, c_0)$ is not proximinal in $L(c, c_0)$, given a partial solution for the second part of the mentioned problem. Deutsch, Mach, and Saatkamp [1] showed that if $X = c_0$ or if X^* is uniformly convex, then $K_n(X, c_0)$ is proximinal in $L(X, c_0)$, Kamal [6] showed that $K_n(1_1, c_0)$ is not proximinal in $L(\ell_1, c_0)$, also Kamal [7] showed that if Q is a compact Hausdorff space that contains an infinite convergent sequence, then $K_n(C(Q), c_0)$ is not proximinal in $L(C(Q), c_0)$. In this paper a theorem is proved to characterize all those spaces X , for which $K_n(X, c_0)$ is proximinal in $L(X, c_0)$, this characterization includes $X = c_0$, X for which X^* is uniformly convex, and X such that the metric projection P_N from X^* onto any of its n -dimensional subspaces N , has a selection which is ω^* -continuous at zero. A point worth mentioning is that although c_0 is a one codimensional subspace of c , there are spaces X for which $K_n(X, c_0)$ is proximinal in $L(X, c_0)$, meanwhile $K_n(X, c)$ is not proximinal in $L(X, c)$, for example Deutsch, Mach and Saatkamp [1] showed that $K_n(c_0, c_0)$ is proximinal in $L(c_0, c_0)$, meanwhile Kamal [7] showed that $K_n(c_0, c)$ is not proximinal in $L(c_0, c)$.

The rest of introduction will cover some definitions, and known results that will be used later in Section 2.

If X is a normed linear space then $c_0(X^*, \omega^*)$ denotes the Banach space of all bounded sequences $\{x_i\}$ in X^* that converge to zero in the ω^* -topology induced on X^* by X , $c_0(X^*)$ is the Banach space of all sequences $\{x_i\}$ in X^* that converge to zero in the topology defined on X^* by its norm, and if $n \geq 1$ is any positive integer, then $c_0(X^*, n)$ denotes the union of all $c_0(N)$, where N is an n -dimensional subspace of X^* . The norm on $c_0(X^*, \omega^*)$ is the supremum norm. If $\{x_i\}$ is an element in $c_0(X^*, \omega^*)$ then for any positive integer $n \geq 1$, define

$$a_n(\{x_i\}) = \inf\{\|x_i - y_i\| ; y_i \in c_0(X^*, n)\}$$

The following theorem can be obtained as a corollary, from the theorem of Dunford and Shwartz [2, p. 490].

THEOREM 1.1. Let X be normed linear space. The mapping $\alpha: L(X, c_0) \rightarrow c_0(X^*, \omega^*)$ defined by $\alpha(T)_i(x) = T(x)_i$, where $i = 1, 2, \dots$, and $x \in X$, is an isometric isomorphism. Furthermore $\alpha(K(X, c_0)) = c_0(X^*)$ and $\alpha(K_n(X, c_0)) = c_0(X^*, n)$.

As corollary of the Theorem 1.1, one can obtain the following:

COROLLARY 1.2. If X is a normed linear space then for any positive integer $n \geq 1$, the set $K_n(X, c_0)$ is proximinal in $L(X, c_0)$ (resp. $K_n(X, c_0)$) if and only if $c_0(X^*, n)$ is proximinal in $c_0(X^*, \omega^*)$ (resp. $c_0(X^*)$).

According to Corollary 1.2 to study the proximinality of $K_n(X, c_0)$ in $L(X, c_0)$ (resp. $K(X, c_0)$), it is enough to study the proximinality of $c_0(X^*, n)$ in $c_0(X^*, \omega^*)$ (resp. $c_0(X^*)$).

2. THE PROXIMALITY OF $K_n(X, c_0)$ IN $L(X, c_0)$.

In this paper if $\{x_i\}$ is an element in $c_0(X^*, \omega^*)$, then $d_n(\{x_i\}, X^*)$ (resp. $\delta(\{x_i\}, N)$) denotes the n -width (resp. the deviation from N) of the subset $\{x_1, x_2, x_3, \dots\}$ of X^* .

THEOREM 2.1 Let X be a normed linear space, and let $n \geq 1$ be any positive integer. If $\{x_i\}$ is a bounded sequence in X^* then

$$a_n(\{x_i\}) = \max\{d_n(\{x_i\}, X^*), \overline{\lim} \|\{x_i\}\|\}.$$

Furthermore there is an n -dimensional subspace N_0 of X^* , such that $a_n(\{x_i\}) = d(\{x_i\}, c_0(N_0))$.

PROOF. First it will be shown that $a_n(\{x_i\}) \geq \max\{d_n(\{x_i\}, X^*), \overline{\lim} \|x_i\|\}$. By Garkavi [4], there is an n -dimensional subspace N_o of X^* such that $\delta(\{x_i\}, N) = d_n(\{x_i\}, X^*)$. For each $i = 1, 2, \dots$, let z_i be a best approximation for x_i from N_o , and let $\varepsilon > 0$ be given, there is a positive integer $n \geq 1$ such that for each $i \geq m$, $\|x_i\| \leq \overline{\lim} \|x_i\| + \varepsilon$. Define the sequence $\{y_i\}$ in $c_o(N_o)$ as follows.

$$y_i = \begin{cases} z_i & \text{if } i \leq m \\ 0 & \text{if } i > m. \end{cases}$$

Then

$$\begin{aligned} a_n(\{x_i\}) &\leq \|\{x_i\} - \{y_i\}\| = \sup\{\|x_i - y_i\|; i = 1, 2, \dots\} \\ &= \max\{\max\{\|x_i - y_i\|; i = 1, 2, \dots, m\}, \sup\{\|x_i\|; i = m+1, m+2, \dots\}\} \\ &\leq \max\{d_n(\{x_i\}, X^*), \overline{\lim} \|x_i\| + \varepsilon\}. \end{aligned}$$

Since ε is arbitrary it follows that $a_n(\{x_i\}) \leq \max\{d_n(\{x_i\}, X^*), \overline{\lim} \|x_i\|\}$. Second to show that $a_n(\{x_i\}) \geq \max\{d_n(\{x_i\}, X^*), \overline{\lim} \|x_i\|\}$, one should notice first that $a_n(\{x_i\}) \geq \overline{\lim} \|x_i\|$, indeed if $\{y_i\} \in c_o(X^*, n)$ then

$$\|\{x_i\} - \{y_i\}\| = \sup\{\|x_i - y_i\|\} \geq \overline{\lim} \|x_i - y_i\| = \overline{\lim} \|x_i\|.$$

Let $\varepsilon > 0$ be given, there is an n -dimensional subspace N of X^* , and a sequence $\{y_i\} \in c_o(N)$ such that $a_n(\{x_i\}) \geq \|\{x_i\} - \{y_i\}\| - \varepsilon$. Therefore

$$\|\{x_i\} - \{y_i\}\| = \sup\{\|x_i - y_i\|\} \geq \sup d(x_i, N) = \delta(\{x_i\}, N) \geq d_n(\{x_i\}, X^*).$$

Hence $a_n(\{x_i\}) = d_n(\{x_i\}, X^*) - \varepsilon$, and since ε is arbitrary it follows that

$$a_n(\{x_i\}) \geq d_n(\{x_i\}, X^*).$$

To prove the fact that there is an n -dimensional subspace N of X^* , such that $a_n(\{x_i\}) = d_n(\{x_i\}, c_o(N))$, Let N be an extremal subspace for $d_n(\{x_i\}, X^*)$, and for each $i = 1, 2, \dots$, let z_i be a best approximation for x_i from N . Let $\varepsilon > 0$ be given, and define the sequence $\{y_i\}$ in $c_o(N)$ as in the first part of the proof, then

$$\begin{aligned} \|\{x_i\} - \{y_i\}\| &= \sup\{\|x_i - y_i\|\} \\ &= \max\{\max\{\|x_i - z_i\|; i = 1, 2, \dots, m\}, \sup\{\|x_i\|; i = m+1, m+2, \dots\}\} \\ &\leq \max\{\delta(\{x_i\}, N), \overline{\lim} \|x_i\| + \varepsilon\} \\ &\leq \max\{d_n(\{x_i\}, X^*), \overline{\lim} \|x_i\|\} + \varepsilon \\ &= a_n(\{x_i\}) + \varepsilon. \end{aligned}$$

But ε is arbitrary so $d(\{x_i\}, c_o(N)) = a_n(\{x_i\})$.

THEOREM 2.2. Let X be a normed linear space. For any positive integer $n \geq 1$, $K_n(X, c_o)$ is proximinal in $K(X, c_o)$.

PROOF. Let $\{x_i\}$ be an element in $c_o(X^*)$, by Corollary 1.2, it is enough to find an element $\{y_i\}$ in $c_o(X^*, n)$ such that $\|\{x_i\} - \{y_i\}\| = a_n(\{x_i\})$. Since $\lim_{i \rightarrow \infty} \|x_i\| = 0$ it follows that $\overline{\lim} \|x_i\| = 0$, thus by Theorem 2.1, $a_n(\{x_i\}) = d_n(\{x_i\}, X^*)$. Let N_o be an extremal subspace for $d_n(\{x_i\}, X^*)$, and for each $i = 1, 2, \dots$, let y_i be a best approximation for x_i from N_o . Since $\lim_{i \rightarrow \infty} \|x_i\| = 0$, it follows that $\lim_{i \rightarrow \infty} \|y_i\| = 0$; that is, $\{y_i\} \in c_o(N_o)$. Thus

$$\|\{x_i\} - \{y_i\}\| = \sup\{\|x_i - y_i\|\} = \delta(\{x_i\}, N_o) = d_n(\{x_i\}, X^*) = a_n(\{x_i\}).$$

LEMMA 2.3. Let X be a normed linear space, and let $\{x_i\}$ be a bounded sequence in X^* .

a) If $d_n(\{x_i\}, X^*) > \overline{\lim} \|x_i\|$, then $a_n(\{x_i\})$ is attained.

b) If $d_n(\{x_i\}, X^*) \leq \overline{\lim} \|x_i\|$, and there is an extremal subspace N_o for $d_n(\{x_i\}, X^*)$ such that $\overline{\lim} d(x_i, N_o) < \overline{\lim} \|x_i\|$, then $a_n(\{x_i\})$ is attained.

PROOF. a) Assume that N is an extremal subspace for $d_n(\{x_i\}, X^*)$, and let $\alpha = d_n(\{x_i\}, X^*) - \overline{\lim} \|x_i\|$, then there is a positive integer $m \geq 1$ such that for each $i \geq m$, one has $\|x_i\| \leq \overline{\lim} \|x_i\| + \alpha$. For each $i \leq m$, let z_i be a best approximation for x_i from N_o , and define the sequence $\{y_i\}$ in $c_o(N_o)$ as follows.

$$y = \begin{cases} z_i & \text{if } i \leq m \\ 0 & \text{if } i > m. \end{cases}$$

Then

$$\begin{aligned} \|x_i - y_i\| &= \max\{\max\{\|x_i - z_i\|; i = 1, 2, \dots, m\}, \sup\{\|x_i\|; i = m+1, m+2, \dots\}\} \\ &\leq \max\{\delta(\{x_i\}, N_o), \overline{\lim} \|x_i\| + \alpha\} \\ &= d_n(\{x_i\}, X^*) = a_n(\{x_i\}). \end{aligned}$$

b) let $\alpha = \overline{\lim} \|x_i\|$, $\beta = \overline{\lim} d(x_i, N_o)$, and $\gamma = \alpha - \beta$. Then $\gamma > 0$.

Let $\{\varepsilon_i\}$ be a sequence of positive real numbers, satisfying that $\lim_{i \rightarrow \infty} \varepsilon_i = 0$, for each $i = 1, 2, \dots$, $d(x_i, N_o) \leq \beta + \varepsilon_i$ and for each $i = 1, 2, \dots$, $\|x_i\| \leq \alpha + \varepsilon_i$. For each $i = 1, 2, \dots$, let z_i be a best approximation for x_i from N_o , and define the sequence $\{y_i\}$ in N_o as follows,

$$y_i + \begin{cases} z_i & \text{if } \varepsilon_i \geq \gamma \\ \frac{\varepsilon_i}{\gamma} \cdot z_i & \text{if } \varepsilon_i < \gamma. \end{cases}$$

Since $\{z_i\}$ is a bounded sequence in N_o , and $\lim_{i \rightarrow \infty} \varepsilon_i = 0$, it follows that $\{y_i\} \in c_o(N_o)$. Furthermore for each $i = 1, 2, \dots$, if $\varepsilon_i > \gamma$ then

$$\|x_i - y_i\| \leq d(x_i, N_o) \leq d_n(\{x_i\}, X^*) \leq a(\{x_i\}),$$

and if $\varepsilon_i < \gamma$ then

$$\begin{aligned} \|x_i - y_i\| &\leq (1 - \frac{\varepsilon_i}{\gamma}) \|x_i\| + \frac{\varepsilon_i}{\gamma} \|x_i - z_i\| \\ &\leq (1 - \frac{\varepsilon_i}{\gamma})(\alpha + \varepsilon_i) + \frac{\varepsilon_i}{\gamma}(\alpha - \gamma + \varepsilon_i) \\ &= \alpha = a_n(\{x_i\}). \end{aligned}$$

Thus $\|x_i - y_i\| = a_n(\{x_i\})$.

Lemma 2.4 is a continuation for Lemma 2.3.

LEMMA 2.4. Let X be a normed space, and let $\{x_i\}$ be a bounded sequence in X^* . Assume that $d_n(\{x_i\}, X^*) = \overline{\lim} \|x_i\|$, and for each extremal subspace N for $d_n(\{x_i\}, X^*)$ one has $\overline{\lim} d(x_i, N) = \overline{\lim} \|x_i\| = \alpha$. Let N be a extremal subspace for $d_n(\{x_i\}, X^*)$, and for each $i = 1, 2, \dots$, define

$$\varepsilon_i = \begin{cases} 0 & \text{if } \|x_i\| \leq \alpha \\ \|x_i\| - \alpha & \text{if } \|x_i\| > \alpha \end{cases}, \quad \delta_i = \alpha - d(x_i, N_o), \text{ and } \alpha_i = \begin{cases} 0 & \text{if } \varepsilon_i + \delta_i = 0 \\ \frac{\varepsilon_i}{\varepsilon_i + \delta_i} & \text{if } \varepsilon_i + \delta_i \neq 0. \end{cases}$$

If $\lim_{i \rightarrow \infty} \alpha_i = 0$ then $a_n(\{x_i\})$ is attained.

PROOF. Let z_i be a best approximation for x_i from N_o , and let $y_i = \alpha_i \cdot z_i$, then the sequence $\{y_i\}$ is an element in $c_o(N_o)$. Furthermore for each $i = 1, 2, \dots$,

$$\begin{aligned} \|x_i - y_i\| &\leq (1 - \alpha_i) \|x_i\| + \alpha_i \|x_i - z_i\| \\ &\leq (1 - \alpha_i)(\alpha + \varepsilon_i) + \alpha_i(\alpha - \delta_i) \\ &= \alpha + \varepsilon_i - \alpha_i(\varepsilon_i + \delta_i). \end{aligned}$$

If $\alpha_i = 0$ then $\varepsilon_i = 0$ so $\|x_i - y_i\| = \alpha$, and if $\alpha_i \neq 0$ then

$$\|x_i - y_i\| \leq \alpha + \varepsilon_i - \frac{\varepsilon_i}{\varepsilon_i + \delta_i}(\varepsilon_i + \delta_i) = \alpha.$$

DEFINITION 2.5. Let X be a normed linear space. The bounded sequence $\{x_i\}$ in $c_0(X^*, \omega^*)$ is said to be an “ n -border” sequence if it satisfies the following,

1. $\lim_{i \rightarrow \infty} \|x_i\|$ exists, and for each extremal subspace N for $d_n(\{x_i\}, X^*)$, one has

$$\overline{\lim} d(x_i, N) = \lim_{i \rightarrow \infty} \|x_i\| = d_n(\{x_i\}, X^*).$$

2. For each extremal subspace N for $d_n(\{x_i\}, X^*)$ if ε_i, δ_i and α_i as in Lemma 2.4 then $\overline{\lim} \alpha_i > 0$.

THEOREM 2.6. Let X be a normed linear space, and let $n \geq 1$ be a positive integer. Then $K_n(X, c_0)$ is proximinal in $L(X, c_0)$ if and only if for each n -border sequence $\{x_i\}$ in X^* , $a_n(\{x_i\})$ is attained.

PROOF. If there is an n -border sequence $\{x_i\}$ in X^* such that $a_n(\{x_i\})$ is not attained, then since $\{x_i\} \in c_0(X^*, \omega^*)$, it follows by Corollary 1.2 that $K_n(X, c_0)$ is not proximinal in $L(X, c_0)$. To prove the other part, let $\{x_i\}$ be an element in $c_0(X^*, \omega^*)$. If $d_n(\{x_i\}, X^*) > \overline{\lim} \|x_i\|$, or if $d_n(\{x_i\}, X^*) \leq \overline{\lim} \|x_i\|$ and there is an extremal subspace N for $d_n(\{x_i\}, X^*)$, such that $\lim d(x_i, N) < \overline{\lim} \|x_i\|$ then by Lemma 2.3, $a_n(\{x_i\})$ is attained.

Assume that $d_n(\{x_i\}, X^*) = \overline{\lim} \|x_i\|$, and for each extremal subspace N for $d_n(\{x_i\}, X^*)$, one has

$\overline{\lim} d(x_i, N) = \overline{\lim} \|x_i\|$, let ε_i, δ_i and α_i be as in Lemma 2.4. If there is an extremal subspace N for $d_n(\{x_i\}, X^*)$ such that $\lim_{i \rightarrow \infty} \alpha_i = 0$ then by Lemma 2.4, $a_n(\{x_i\})$ is attained. Therefore one may assume that for any extremal subspace N for $d_n(\{x_i\}, X^*)$ one has $\overline{\lim} \alpha_i > 0$. Let $\alpha = d_n(\{x_i\}, X^*)$ and let $\{x_{i_k}\}$ be the largest subsequence of $\{x_i\}$ satisfying that $\|x_{i_k}\| > \alpha$ for each i_k . Thus for each i , if x_i is not an element in $\{x_{i_k}\}$ then $\|x_i\| \leq \alpha$. The sequence $\{x_{i_k}\}$ is an n -border sequence in X^* , so there is an n -dimensional subspace N of X^* , and a sequence $\{z_{i_k}\} \in c_0(N)$ such that $\|\{x_{i_k}\} - \{z_{i_k}\}\| = a_n(\{x_{i_k}\}) = \alpha$.

Define the sequence $\{y_i\}$ in N as follows.

$$y_i = \begin{cases} z_i & \text{if } \|x_i\| > \alpha \\ 0 & \text{if } \|x_i\| \leq \alpha. \end{cases}$$

Then $\{y_i\} \in c_0(N)$, and $\|\{x_i\} - \{y_i\}\| = \alpha = a_n(\{x_i\})$.

COROLLARY 2.7. Let X be a normed linear space, and let $n \geq 1$ be a positive integer. If X^* is uniformly convex then $K_n(X, c_0)$ is proximinal in $L(X, c_0)$.

PROOF. Let $\{x_i\}$ be an n -border sequence in X^* , and let $\alpha = \overline{\lim}_{i \rightarrow \infty} \|x_i\|$. Without loss of generality assume that $x_i \neq 0$ for each i . Let N be any extremal subspace for $d_n(\{x_i\}, X^*)$, and let y_i be the best approximation for x_i from N . Since $\|\frac{x_i}{\|x_i\|}\| = 1$, $\frac{\|x_i - y_i\|}{\alpha} \leq 1$, and

$$\overline{\lim}_{i \rightarrow \infty} \left\| \frac{x_i}{\|x_i\|} + \frac{x_i - y_i}{\alpha} \right\| = \overline{\lim}_{i \rightarrow \infty} \left(\frac{\alpha + \|x_i\|}{\alpha \|x_i\|} \right) \|x_i - \frac{y_i}{\alpha + \|x_i\|}\| \geq \overline{\lim}_{i \rightarrow \infty} \left(\frac{\alpha + \|x_i\|}{\alpha \|x_i\|} \right) \|x_i - y_i\| = 2.$$

It follows by the fact that X^* is uniformly convex that $\overline{\lim}_{i \rightarrow \infty} \left\| \frac{x_i}{\|x_i\|} - \frac{x_i - y_i}{\alpha} \right\| = 0$. But then $\overline{\lim}_{i \rightarrow \infty} y_i = 0$, so $\{y_i\} \in c_0(N)$ and $\|\{x_i\} - \{y_i\}\| = a_n(\{x_i\})$.

Corollary 2.7 was proved by Deutsch, Mach, and Saatkamp [1] in a different way.

COROLLARY 2.8. Let X be a normed linear space, and let $n \geq 1$ be a positive integer. If for each n -dimensional subspace N of X^* , the metric projection P_N has a selection which is ω^* -continuous at zero, then $K_n(X, c_0)$ is proximinal in $L(X, c_0)$.

PROOF. Let $\{x_i\}$ be an element in $c_0(X^*, \omega^*)$ and let N be an extremal subspace for $d_n(\{x_i\}, X^*)$. Since the metric projection P_N has a selection which is ω^* -continuous at zero, it follows that there is a sequence $\{y_i\}$ in N , satisfying that $y_i \in P_N(x_i)$ for each i , and that $\{y_i\}$

converges ω^* -to zero. But N is of finite dimension, thus $\{y_i\} \in c_0(N)$.

Furthermore

$$\|\{x_i\} - \{y_i\}\| = \delta(\{x_i\}, N) = d_n(\{x_i\}, X^*) = a_n(\{x_i\}).$$

From Corollary 2.8 one concludes that for each positive integer $n \geq 1$, if $X = c_0$ or $l_p, l < p < \infty$, then $K_n(X, c_0)$ is proximinal in $L(X, c_0)$. Proposition 2.9 clarify that. The fact that $K_n(c_0, c_0)$ is proximinal in $L(c_0, c_0)$ was proved first by Deutsch, Mach, and Saatkamp [1].

PROPOSITION 2.9. Let $n \geq 1$ be a positive integer and let $X = c_0$ or $l_p, l < p < \infty$. The metric projection P_N from X^* onto any of its n -dimensional subspace N , has a selection which is ω^* -continuous at zero.

PROOF. Let N be any n -dimensional subspace of X^* , $\{x_i\}$ be any bounded sequence in X^* that converges ω^* -to zero, and let $\{y_i\}$ be any sequence in N , satisfying that $y_i \in P_N(x_i)$ for each i . It will be shown that $\{y_i\} \in c_0(N)$. The sequence $\{y_i\}$ is a bounded sequence in a finite dimensional subspace of X^* , so it has a convergent subsequence $\{y_{i_k}\}$ that converges to y_0 in N , it will be shown that $y_0 = 0$. Assume not, and without loss of generality assume that $\{y_i\}$ converges to y_0 , and that $X^* = l_p, l \leq p < \infty$. Let $t_i = x_i - (y_i - y_0)$, $r_i = x_i - y_i$, and let $\epsilon > 0$ be such that $\epsilon < \|y_0\|^p$, then as in Proposition 3 of Mach [9], there is a positive integer $m \geq 1$ such that for each $i \geq m$ one has, $|\|t_i - y_0\|^p - \|t_i\|^p - \|y_0\|^p| < \epsilon$, thus $\|t_i - y_0\|^p \geq \|t_i\|^p + \|y_0\|^p - \epsilon$, that is

$$\|x_i - y_i\|^p \geq \|x_i - (y_i - y_0)\|^p + \|y_0\|^p - \epsilon > \|x_i - (y_i - y_0)\|^p.$$

So for each $i > m$ one has $\|x_i - (y_i - y_0)\| > \|x_i - y_i\|$, which contradict the fact that $\|x_i - y_i\| = d(x_i, N)$, therefore $y_0 = 0$.

REFERENCES

1. DEUSTCH, F., MACH, J., & SAATKAMP, K., Approximation by finite rank operators, J. Approx. Theory 33 (1981), 199-213.
2. DUNFORD, N., & SCHWARTZ, J., Linear Operators I, Wiley Interscience, New York, 1958.
3. FEDER, A., On certain subsets of $L_1[0,1]$ and nonexistence of best approximation in some spaces of operators, J. Approx. Theory 29 (1980), 170-177.
4. GARKAVI, A., The best possible net and the best possible cross section of a set in a normed linear spaces, Amer. Math. Soc. Transl. 39 (1964), 111-132.
5. KAMAL, A., On proximinality and sets of operators I, Best approximation by finite rank operators, J. Approx. Theory 47 (1986), 132-145.
6. KAMAL, A., On proximinality and sets of operators II, nonexistence of best approximation from the sets of finite rank operators, J. Approx. Theory 47 (1986), 146-155.
7. KAMAL, A., On proximinality and sets of operators III, approximation by finite rank operators on spaces of continuous functions, J. Approx. Theory 47 (1986), 156-171.
8. LAU, K., Approximation by continuous vectors valued functions, Studia, Math. 68 (1980), 291-298.
9. MACH, J., On the proximinality of compact operators with ranges in $C(S)$, Proc. Am. Math. Soc. 72 (1978), 99-104.
10. MACH, J. & WARD, J., Approximation by compact operators on certain Banach spaces, J. Approx. Theory 23 (1978), 274-286.
11. SAATKAMP, K., Best approximation in the space of bounded operators and applications, Math. Ann. 25 (1980), 35-54.

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk