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ABSTRACT. In this paper the author characterizes all those spaces X, for which K,(X,c,) is
proximinal in L(X,c,). Some examples were found that satisfy this characterization.
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1. INTRODUCTION.
The closed subset A of the normed linear space X, is said to be “proziminal” in X if for each
z € X, there is an element y, € A, such that:

d(z,A)=inf{(llz-yliy€ A} = |lz-y.ll,

where d(z, A) is the distance of z from A. The element y, is called a “best approzimation” of z in A.
The best approximation need not be unique, and the set-valued function P 4: X —24 defined by

Py={(ye Ad(z,A)= llz-yll}

is called the metric projection of X into A. If A is proximinal in X then P 4(z) # ¢ for each z€ X, in
this case any function f:X—A satisfying that f(z) € P 4(z) for each z € X, is called a “selection” for
the metric projection P ,.

If A is a subset of X, and N is a subspace of X, then the “deviation” of A from N is defined to be

(A, N) = sup{(d(z, N);z € 4},

and the n-width of A in X is defined to be

d,(A,X) = inf{(6(A,N); N is an n-dimensional subspace of X}.

If there is an n-dimensional subspace N, of X, such that d,(4,X)=6§(4,N,) then d,(4,X) is said to
be “attained”, and the subspace N, is said to be an “eztremal subspace” for d,(A,X). It is well known
(see Garkavi [4]), that if X* is the dual space of the normed linear space X, then d,(4,X*) is
attained.

If X and Y are two normed linear spaces, then L(X,Y) denotes the set of all bounded linear
operators from X to Y, K(X,Y) the set of all compact operators in L(X,Y), and Kp(X,Y) the subset
of K(X,Y) consisting of all operators of rank n.

The proximinality of K(X,Y) in L(X,Y) were studied by several authors, (see for examples
Feder [3], Lau [8], Mach [9], Mach and Ward [10], and Saatkamp [11]). Duetsch, Mach, and
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Saatkamp [1], Kamal ([5], [6], and [7]) studied the proximinality of K,(X,Y) in L(X,Y) and K(X,Y)
in details, however, one of the problems left unsolved is the problem 5.2.2 mentioned by Duetsch.
Mach and Saatkamp [1], concerning the proximinality of K,(X,c,), in L(X,c,) where ¢, is the space
of all real sequences that converges to zero. The problem is divided into two parts, the first part is
to characterize all those spaces X for which K,(K,c,) is proximinal in L(X,c,), and the second part
is to show whether K, (X,c,) is proximinal in L(X,c,) or not, whenX =¢ or 1,,. Kamal [7] showed
that Kp(c,c,) is not proximinal in L(c,c,), given a partial solution for the second part pf the
mentioned problem. Deutsch, Mach, and Saatkamp [1] showed that if X = ¢, or if X* is uniformly
convex, then K,(X,¢,) is proximinal in L(X,¢,), Kamal [6] showed that K,(1;,¢c,) is not proximinal
in L(¢},c,), also Kamal [7] showed that if Q is a compact Hausdorff space that contains an infinite
convergent sequence, then K,(C(Q),c,) is not proximinal in Z(C(Q),c,). In this paper a theorem is
proved to characterize all those spaces X, for which K,(X,c,) is proximinal in L(X,c,), this
characterization includes X =c,, X for which X* is uniformly convex, and X such that the metric
projection Py from X* onto any of its n-dimensional subspaces N, has a selection which is w*-
continuous at zero. A point worth mentioning is that although ¢, is a one codimensional subspace
of ¢, there are spaces X for which K,(X,c,) is proximinal in L(X,c,), meanwhile K,(X,c) is not
proximinal in L(X,c), for example Deutsch, Mach and Saatkamp [1] showed that K,(cyc,) is
proximinal in L(c,,c,), meanwhile Kamal [7] showed that K(c,,c) is not proximinal in L(c,,c).

The rest of introduction will cover some definitions, and known results that will be used later
in Section 2.

If X is a normed linear space then c,(X* w*) denotes the Banach space of all bounded sequences
{z;} in X* that converge to zero in the w*-topology induced on X* by X, ¢, (X*) is the Banach space
of all sequences {z;} in X* that converge to zero in the topology defined on X* by its norm, and if
n>1 is any positive integer, then c,(X*n) denotes the union of all ¢,(N), where N is an n-
dimensional subspace of X*. The norm on c,(X*w*) is the suprimum norm. If {z;} is an element in
co(X*,w*) then for any positive integer n > 1, define

an({z;}) = inf{|| {z;} ~ {y;} ; {y;} € co(X*,n)}

The following theorem can be obtained as a corollary, from the theorem of Dunford and
Shwartz [2, p. 490].

THEOREM 1.1. Let X be normed linear space. The mapping a: L(X,c,)—c,(X* w*) defined by
o(T),(z) =T(z); where i=1,2,., and z€X, is an isometric isomorphism. Furthermore
a(K(X,c5)) = co(X*) and a(Kp(X,c,)) = co(X* ). '

As corollary of the Theorem 1.1, one can obtain the following:

COROLLARY 1.2. If X is a normed linear space then for any positive integer n > 1, the set
Kp(X,c,) is proximinal in L(X,c,) (resp. Ku(X,c,)) if and only if c,(X*,n) is proximinal in ¢, (X*,w*)
(resp. co(X*)).

.According to Corollary 1.2 to study the proximinality of K,(X,c,) in L(X,c,) (resp. K(X,co)),.it
is enough to study the proximinality of c,(X*,n) in ¢ (X* w*) (resp. co(X*)).

2. THE PROXIMINALITY OF K,(X,c,) IN L(X,e,).

In this paper if {z;} is an element in c,(X*w*), then dp({z;}, X*) (resp. §({z;},N) denotes the n-
width (resp. the deviation from N) of the subset {z;, z,, z3,..} of X*.

THEOREM 2.1 Let X be a normed linear space, and let n > 1 be any positive integer. If {=;}
is a bounded sequence in X* then

an({z;}) = maz{dp({z;}, X*), Tim || z;|| }.

Furthermore there is an n-dimensional subspace N, of X*, such that ap({z;}) = d({z;}, co(N)).



APPROXIMATION BY FINITE RANK OPERATORS 285

PROOF. First it will be shown that a,({z;}) > maz{d,({z;}, N*), lim||z;||}. By Garkavi [4],
there is an n-dimensional subspace N, of X* such that 6({z;},N) = dp({z;}. X*). For each i=1,2,..
let z; be a best approximation for z; from N, and let £ >0 be given, there is a positive integer n > 1
such that for each i >m, || z;|| <lim||z;|| +¢. Define the sequence {y;} in c,(N,) as follows.

z; ifi<m
y; = .
0 ifi>m.

Then
an({z;) < Mz} = {y} | = sup{llz;~y;ll;i=1,2,...}
= maz{maz{||z; = y; || i = 1,2ssm}, sup{ || z;]|;1 =m+1,m+2..}}
< maz{dy({z;}, X*),Tom || ;|| +¢}.
Since ¢ is arbitrary it follows that ap({z;}) <maz{d,({z;},X*),lim| z;]|}. Second to show that

an({z;} > maz{d,({z;},X*),lim|| z;||}, one should notice first that ap({z;})>Tim| z;||, indeed if
{;} € co(X*,n) then

Iz} = (| = sup{llz;—y; 1|} 2 Tim || 2; —y; || =Tim | =]l
Let £ >0 be given, there is an n-dimensional subspace N° of X*, and a sequence {y;} € c,(N') such
that ap({z;}) > Il {z;} - {y;} | —e. Therefore

Iz} = {v} Il = sup{ll ;- v; 1|} 2 supd(z;, N) = 6({z;}, V) > dy({2;}, X ™).

Hence a,({z;}) = d({z;}, X*) - ¢, and since ¢ is arbitrary it follows that

an({z;}) > dp({z;}, X*).

To prove the fact that there is an n-dimensional subspace N of X* such that
an({z;}) = dp({z;},¢5(N)), Let N be an extremal subspace for d,({z;}, X*), and for each i =1,2,.., let
z; be a best approximation for z; from N. Let £ >0 be given, and define the sequence {y;} in c,(N)
as in the first part of the proof, then

Iz} — w3} | = sup{ll ;- w; 11}
= maz{maz{ || ;= z; 1|31 = 1,2,...m},sup{ || ; || si = m+ 1,m +2,..}}
< maz{8({z;}, N), Tim || z; | +¢)
< maz{dy({z;}, X*)Tim | z; |} + ¢

=ay({z;}) +e.

But ¢ is arbitrary so d({z;},co(N)) = ap({z;}).

THEOREM 2.2. Let X be a normed linear space. For any positive integer n > 1, Kp(X,c,) is
proximinal in K(X,c,).

PROOF. Let {z;} be an element in c,(X*), by Corollary 1.2, it is enough to find an element
{y;} in ¢o(X*,n) such that || {z;} - {y;} | =a,({z;}). Since I.Too fHz; |l =0 it follows that Tim| ;|| =0,
thus by Theorem 2.1, a,({z;}) = dy({z;}, X*). Let N, be an extremal subspace for dp({z;}, X*), and for
each i=1,2,.., let y; be a best approximation for z; from N,. Since I.'-'."oo llz; 1l =0, it follows that
tim {ly;|| =0; that is, {y;} € co(N,). Thus

Hzd =y} | = sup{ll z;—y; 1|} = 6({z;}, No) = dp({z; )X ) = ap({z;}).
LEMMA 2.3. Let X be a normed linear space, and let {z;} be a bounded sequence in X*.
a) Ifdy({z;},X*) > Tim||z; ||, then ap({z;}) is attained.
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b) If d,({z;}, X*) <lim|| z;]|, and there is an extremal subspace N, for d,({z,}, X*) such that
lim d(z;,N,) <lim || z; ||, then a,({z;}) is attained.

PROOF. a) Assume that N is an extremal subspace for dp({z;},X*), and let
a=dp({z;}, X*)~Tim||z;||, then there is a positive integer m > 1 such that for each i >m, one has
[lz;|| <Tim|lz;|| +o. For each i <m, let z; be a best approximation for z; from N,, and define the

sequence {y;} in c,(N,) as follows.

{zi ifi<m
0 if i >m.
Then

Hz} = {v} | = maz{maz{||z; - z;|l;i = 1,2,...m}, sup{||z;|l;i=m+1,m+2,..}}
< maz{8({z;},No)lim || z; | +a}
= dn({2;}, X*) = ay({z;}).
b) let a =Tim| z;||,8 = limd(z;,N,), and y =a—8. Then y>0.
Let {¢;} be a sequence of positive real numbers, satisfying that lim €;=0, for each

i=1,2,..,d(z;,N,) < B+¢; and for each i=1,2,.., || z;|| <a+¢;. For each i=1,2,.., let z; be a best

approximation for z; from N,, and define the sequence {y;} in N, as follows,

z, ifez-y
y;+4¢ .
: —.}-z lfe'~<‘7.

Since {z;} is a bounded sequence in N,, and lim ¢;=0, it follows that {y,} € c,(N,).
Furthermore for each i =1,2,..., if €;>7 then

" 1" - yi ” < d(ziv No) < dn({zi}vx") < a({zi})v
and if ¢; < v then

€; €;
le;=yll Q=P lz;ll +7 )2~ 2]l

€. £
S(A-Pate)+la=—7+¢)
= o= ay({z;).
Thus || {z.'} - {!l,'} Il = an({z;})-
Lemma 2.4 is a continuation for Lemma 2.3.
LEMMA 24. Let X be a normed space, and let {z;} be a bounded sequence in X*. Assume
that dp({z;}, X*) =Tim || z; ||, and for each extremal subspace N for d,({z;},X*) one has
lim d(z;, N)=Tim||z;|| =a. Let N be a extremal subspace for dp({z;}, X*), and for each i=1,2,..,
define

0 if ||z1|| <a p Ao N d 0 if¢‘+6‘=o
.= . .=a—d(z,, , and a; = €5 .
=zl -a if [z, ]| > o’ i (2 No) ) if ¢, +5; #0.

If lim a; =0 then ay({z;}) is attained.
$—00
PROOF. Let z; be a best approximation for z; from N,, and let y; =e;, z;, then the sequence
{y;} is an element in c,(N,). Furthermore for each i =1,2,..,
Tz;=y;ll S =a)llz; |l +%;llz; -zl
<(1-a)(a+e)+ala—6)

=a+te;- a’-(s'- +6;).
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If a; =0 then €;=0s0 ||z;-y;|| =«, and if a; # 0 then
£
lz;-y;1l < "+€;—'E—.'_'f;5i(€;+6;) =a.
1 1
DEFINITION 2.5. Let X be a normed linear space. The bounded sequence {z;} in co(X* w¥) is

said to be an “n-border” sequence if it satisfies the following,

L lim | z;|| exists, and for each extremal subspace N for dp({z;}, X*), one has
1—00

Tom d(z, N) = lim_||2;1] = dn({z), X*).

2. For each extremal subspace N for d,({z;},X*) if ¢;, §; and o; as in Lemma 2.4 then lim a; > 0.

THEOREM 2.6. Let X be a normed linear space, and let n>1 be a positive integer. Then
K,(X,c,) is proximinal in L(X,c,) if and only if for each n-border sequence {z;} in X*, ay({z;}) is
attained.

PROOF. If there is an n-border sequence {z;} in X* such that a,({z;}) is not attained, then
since {z;} € ¢o(X*,w*), it follows by Corollary 1.2 that K,(X,c,) is not proximinal in L(X,c,). To
prove the other part, let {z;} be an element in c,(X*w*). If dp({z;}, X*) > Tim || z;]|, or if
dp({z;},X*) <Tim|| ;]| and there is an extremal subspace N for dp({z;}, X*), such that
lim d(z;,N) <Tim || z; || then by Lemma 2.3, a,({z;}) is attained.

Assume that d,({z;}, X*)=Tim|| z; ||, and for each extremal subspace N for dp({z;}, X*), one has

Tim d(z;,N) =Tim || 2; |, let ¢, &
dp({z;}, X*) such that lim a; =0 then by Lemma 2.4, a,({z,}) is attained. Therefore one may assume
that for any extremal suol:space N for dy({z;}, X*) one has fim ;> 0. Let a = dp({z;}, X*) and let {z‘k}
be the largest subsequence of {z;} satisfying that || %, Il >a for each iy. Thus for each i, if z; is not

and o; be as in Lemma 2.4. If there is an extremal subspace N for

an element in {zik} then ||z;|| <a. The sequence {zik} is an n-border sequence in X*, so there is an
n-dimensional subspace N of X*, and a sequence {z,-k} €co(N) such that | {zik} - {zik} I
= ap(le; ) = .

Define the sequence {y;} in N as follows.

2 if |zl >a
YiZ1o if |2l <a.

Then {y;} € c,(N), and || {z;} - {y;} | = a = ay({z;}).
COROLLARY 2.7. Let X be a normed linear space, and let n > 1 be a positive integer. If Xx*
is uniformly convex then K, (X,c,) is proximinal in L(X,¢,).

PROOF. Let {z;} be an n-border sequence in X*, and let a=lim |z Without loss of
generality assume that z; #0 for each i. Let N be any extremal subspace for dp({z;}, X*), and let y;

be the best approximation for z; from N. Since || I :‘ plh =1 ! s ) <1, and
1]
. z; -y . otz Y >l a+ ||zl gl =2
Ict-’»nooII_ITr'—"+Tll -l:'—'onoo( a"zi" )"z, at "z’" Il > “_""Oo( “"zi" )”z' y,“ .

i~y

It follows by the fact that X* is uniformly convex that lim ll-":ﬁ— a—|l =0. But then
lim y; =0, s0 {y;} € co(N) and || {z;} — {;} || = ap({z;}).
Corollary 2.7 was proved by Deutsch, Mach, and Saatkamp [1] in a different way.

COROLLARY 2.8. Let X be a normed linear space, and let n>1 be a positive integer. If for
each n-dimensional subspace N of X*, the metric projection P, has a selection which is w*

continuous at zero, then K (X,c,) is proximinal in L(X,c,).

PROOF. Let {z;} be an element in c,(X*w*) and let N be an extremal subspace for
dy({z;},X*). Since the metric projection Py has a selection which is w*-continuous at zero, it
follows that there is a sequence {y;} in N, satisfying that y; € Pp(z;) for each i, and that {y;}
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converges w*-to zero. But N is of finite dimension, thus {y;} € ¢,(N).

Furthermore

Iz} = (| = 6({=z;}. N) = dp({z;}, X*) = ap({z,})-

From Corollary 2.8 one concludes that for each positive integer n> 1. if X =¢, or {51 < p <0,
then K,(X,c,) is proximinal in L(X,c,). Proposition 2.9 clarify that. The fact that Ky(c,,c,) is
proximinal in L(c,,c,) was proved first by Deutsch, Mach, and Saatkamp [1].

PROPOSITION 2.9. Let n>1 be a positive integer and let X =c, or Il <p<oo. The metric
projection Py from X* onto any of its n-dimensional subspace N, has a selection which is w*
continuous at zero.

PROOF. Let N be any n-dimensional subspace of X*, {z;} be any bounded sequence in X*
that converges w*-to zero, and let {y;} by any sequence in N, satisfying that y; € P p(z;) for each i.
It will be shown that {y;} € c,(N). The sequence {y;} is a bounded sequence in a finite dimensional
subspace of X*, so it has a convergent subsequence {y; } that converges to y, in N, it will be shown
that y, =0. Assume not, and without loss of generality assume that {y;} converges to y,, and that
X*=1lpl<p<oo. Let t;=2,~(y;—y,) r;=2;~y; and let ¢>0 be such that e < ||y, || P then as in
Proposition 3 of Mach [9], there is a positive integer m>1 such that for each i>m one has,
It =9 IP=Nt; 1P = NlyollP| <&, thus [|;—yo I P> 14|17+ [|yo 1l P ~¢, that is

lei=3illP2 lzi= (=3 17+ v NP =€ > llz;= (4= vo) I -
So for each i>m one has |z;—(y;—y,)ll > llz;—y;ll, which contradict the fact that
llz; - y;ll =d(z;,N), therefore y, =0.
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