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1. INTRODUCTION.
Let (X,t) be a topological space and d:X x X [0, cx) such that d(x,y) 0 if and

only if x y. X is said to be d-complete if ,,oo__ d(x,,,x,,+l) < c implies that the sequence

is convergent in (X, t). In a metric space, such a sequence is a CauchSr sequence. T" X X
is w-continuous at x, if x,, x implies Tx,, Tx.

Definition. A symmetric on a set X is a real-valued function d on X X such that:

(1) d(x,y) >_ 0 and d(x,y) 0 if and only if x y; and

() d(,u) d(u,).

Let d be a symmetric on a set X and for any e > 0 and any x X, let S(x,e) {y X
d(x,y) < e}. We define a topology t(d) on X by U

_
t(d) if and only if for each x U, some

S(x, e) C_ U. A symmetric d is a semi-metric if for each x X and each > O, S(z, e) is a

neighborhood of x in the topology t(d). A topological space X is said to be symmetrizable

(semi-metrizable) if its topology is itduced by a symmetric (semi-metric) on X.
The d-complete synunctrizable (semi-metrizable) spaces form an important class of ex-

amples of d-complete topological spaces. \Ve give other examples. Let X be an infinite set.

and any T non-discrete first countable topology for X. Then there exists a complete metric
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,/fl)r X such that < td and the metric topology td is non-discrete. Now (X,t) is d-conplete

.iJc.. d(a’,,x,,+l) < cxz implies that {x,} is a d-Cauchy sequence. Thus, x, x in d and

lmrefore in the topology t. See [4] for the construction of td. It should also be noted that

,Jy COml,lete quasi-metric space (X,d) (d(x,y) d(y,x)) is a d-complete topological space.

Tlmc are several competing definitions for a Cauchy sequence, but d(xn,xn+l) < will

iq)ly that {x, is a Cauchy sequence for any reasonable definition. One reasonable definition

is dcriw’d from requiring that the filter generated by {x,} be a Cauchy filter in the quasi-

fiformity generated by d. This gives {x,} is a Cauchy sequence if for each e > 0 there exists

positive integer no ,(e) and x x(e)in X such that {x,’n > x0} C_ {g X" d(z,y) < e}.
Tlw metric space definition also holds if d(x,,x,+a) < c. Some fundamental theorems for

d-c,,mplctc topological spaces are given in [4] and [5].

2. RESULTS. The results through Corollary 2.2 axe generalizations of theorems due to Jungck

[7]. Even though only minor changes are needed in the proofs, they are given for completeness.

LEMMA 2.1. Let (X,t) be a d-complete topological space. If there exists c (0,1) such

that d(y,,,y,+) <_ c d(y,_,y,) for atl n, then {Yn} converges to a point in X.

On-1eROOF. (u.,u.+) < .--(u,,u=) gie I.= a(U.,U.+l) _< (Ul,U=)E.=
The result follows since X is d-complete.

THEOREM 2.1. Let (X,t) be a Hausdorff d-complete topological space and f X X a

w-continuous function. Then f has a fixed point in X if and only if there exists c (0,1) and

a w-continuous function g:X X which commutes with f and satisifes
(1) 9(X) C f(X) and d(gx,gy) <_ a d(fx,fy) for alt z,y X. Indeed, f and 9 have a unique

common fixed point if (1) holds.

PROOF. Suppose f(a) a for some a X. Put g(x) a for all x X. Then g(fx) a

and f(gx) f(a) a. Also, g(x) a f(a) for all x X so that g(X) C_ f(X). For any

,, (O,),d(gz,gy) d(a,a) 0 < , d(fz,fy). Since g is w-continuous, (1) holds.

Suppose there exists c and g such that (1) holds. Let x0 e X and let x, be such that (2)
.f(xn) 9(xn-). Now (1) and (2) gives d(fxn,fxn+x) d(gxn-l,gxn) d(fx,_,fxn).
Lemma 2.1 gives p in X such that f(x,) p. 9 w-continuous impfies that lim9fx, 9P.

Since 9x,, p, the w-continuity of f implies that lim fgx, fp. Therefore p is a coincidence

point of f and 9- Clearly, fgP 9fP.
f(fP) f(9P) 9(fP) 9(9P) and d(9P, 9(9P)) d(fp, f(9p)) d(9P, O(9P)).

Hence, 9(P) 9(9P). Thus 9(P) 9(9P) f(gP), d 9(P) is a coon ed point of f and 9.

If x f(x) 9(z) and y f(y) 9(Y), then (1) gives d(x,y) d(gx,9y) d(fx,fy)
d(x,y) or z y.

COROLLARY 2.1. Let (X,t) be a Hausdorff d-complete topological space and f and g

commuting mappings from X to X. Suppose f and g are w-continuous and g(S) C_ f(X). If
there exists (0,1) and a positive integer k such that

d(.qz,gy) < d(fx,fy) for tt ,u x,
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then f and 9 have a unique common fized point.

PROOF. Clearly, g commutes with f and g’(X) C_ g(X) C_ f(X). Applying the theorem
t,,gk and f gives a uniquep X withp-- g’(p) f(p). Since f and g comnmtc 9(p)
,.l(.fp) f(g(p)) .,:l’(gp) or g(p) is a common fixed point of f and gk. Uniqueness gives
9(P) 1’ f(P).

Letting f i, the identity, gives a generalization of Banach’s theorem. If we also let
k= 1, we get Banach’s theorem in this new setting.

COROLLARY 2.2. Let n be a positive integer and let k > 1. If g is a surjective w-
contm.,.o.us self map of a Haudorff d-complete topological space X such that

d(a"., anu) >_ d(z,U) Io art , U e X,

then g has a unique fized point.

PROOF. Let f g2, and a - in Corollary 2.1. Now d(x,y) < o d(g"x,g"y) .gives
d(g"z, g’y) <_ o d(g2"x,g2’y) o d(fz,fy), g surjective implies g(X) C_ f(X).

THEOREM 2.2 Let (X,t) be a Hausdorff d-complete topological space. Suppose f and g
are. commuting w-continuous selfmaps of X such that g(X) C_ f(X) and

(a) d(g"x, g"y) < d,d(fx, fy)

for each n and for all x, y in X, where
Then:

() f,f,.., are fized ?on of ff. ]fp , tenp {f,f,...,). Iff f. then

f f+ for ec 1.

() If lim f "
(5) If

I in addition, f is the identity, then p for each x in X.

PROOF. Since lim d,, 0, there exists a k with d < 1. Then

d(g’x, gy) <_ dd(fx, fy).

From Corollary 2.1, f and g have a unique common fixed point p.
To prove (2), fix x and set y gx in (a). Then d(g’x,g"+z) <_ d,d(fx, fgx), which gives

Z d(g’x’ g"+’ x) <_ d(fx, fgx) Z d(fx, gfx) < co.
n=l n=l

X is d-complete, so there exists an such that x,, g"x Y.. Since g is w-continuous
x,,+ g(x,,) y.. Clearly
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To prove (3), g(fky) fk(g2) fk. for each k > 1. Ifp . then 0 < d(1,,.i’)
d(gp, g2) < dd(fp, f.i’) dd(p,f), and p f. Thus 0 < d(p,]’) d(gp, gf.,’)
d,d(fp, f2) dd(p, fe) and p f2. By induction p f" for any n 1.

If fh" f2" thcn 0 < d(f:r,.f2.) d(gf,gf2) dd(f2,f3) and f2 f.’. By
iMuction .f fa+2- for each ’t 1.

To prove (4), 9f" gy and gf" f"9 f" y and 9Y Y. f"+; Y and

.["+ii" ff" fy, so fy y. From (1) y p.

To prove (5),

n+r--I n+r--I

(".,+rx) e(.,+) (f.,.t)
k=n

T&ing the limit as r yields

(",) e(I,I) .
If f is the identity, g h a unique fixed point from (1). But (2) gives g2 2. Therefore

.i: =p.

Altman [2] called f-X X a generalized contraction provided d(fz,fy) Q(d(x,y))for
all x, g X wherc Q satisfies the following:

() 0 < (t) < fo n e (0,t,],

(b) g(t) t/(t- Q(t)) is non-increasing,

(c) f2’ g(t)dt < , and

(d) Q is non-decreasing.

He assumes (X,d) is a metric space and proves that for any xo G X, xn f’xo x f(x).
Ve use his definition in the more generM setting to obtMn the following.

THEOREM 2.3. Let (X,t) be a d-complete Hausdorff topological space and f X X
a w-continuous generalized contraction. Let Xo E X and put x, --w f’xo f(xn-1). Then

limz, z and x f(x).

PROOF. Put sa d(xo,xl) and s,+l Q(sn) for n _> 1. Using (a), (b), and (c), Altman

shows that the series n__ s, generated by Q is convergent. By induction,

d(x,,xn+,) d(fxn_,,fx,) < O(d(x,,_,,x,)) < O(s,) ,5n+l.

Thus, -:+, d(x,,,x+, < cx and limx, x exists, f w-continuous gives x,+ f(xn)
f(x). Thus, f(z) x.

If one replaces topological by symmetrizable in the theorem, f is forced to be w-continuous.

Even though Altman asserted uniqueness of the fixed point, examples exist [11] that show

otherwise.

Our next result is the d-complete analogue of Theorem 2.1 of Park [9].

THEOREM 2.4. Let g and h be selfmaps of a d-complete topological space X. if
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(i) there exists a. sequence {x,} C X such that u,+l := gu,,u2,+ := hu,+ and

has a cluster point zn X,
(ii) g and hg are w-continuous at ,
(i,) G(x) := d(x,gz),H(x) := d(z, hx) are orbitally continuous at , and

(i’v) g and h satisfy

d(gx,hy) < d(x,y)

for each distinct z and y in {h-,} satisfying either x hy or y gx, then

(1) g or h has a fixed potnt ,n {-7,} or

(2) is a common fixed point of g and h and u, as oo.

The proof is the same as that of Theorem 2.1 of [9].

COROLLARY 2.3. Let g and h be w-continuous selfinaps of a d-complete space X satis-

fyn.q

d(hz,gy) <_ max{d(z,y), d(z,hz), d(y,gy), d(y,hz)}

for all x, y in X, "where 0 < k < and d(x,gx) and d(x, hx) are orbitally continuous. Then g

or h has a fixed point or g and h have a unique common fixed point.

PROOF. Let u,+ hu,, u.,+2 gu2,+. Thus, from the contractive definition,

d(u2,+,u2n+2) <_ kmax{d(u2n, u2n+a),d(u2n, u2n+l),

d(.+, .+), d(.+, u.+ },

which implies that d(u,+,,u,,+) < k d(u2,,,u,+a). Therefore{u,} is Cauchy, hence con-

verges to a point . The hypotheses of Theorem 4 are now satisfied.
The uniqueness of a common fixed point follows from the contractive definition.
We now demonstrate that several results in the literature follow as special cases of Theorem

2.4. While our list is not exhaustive, it indicates the generality of the theorem.

COROLLARY 2.4. [3, Theorem 1]. Let T, T be two selfmaps of a Hausdorff F-complete
space X, F" X X ---, [0, oo) a continuou symmetric mapping such that F(x,y) 0 for
x y and, for each pair of distinct x, y in X,

F(Tx,Ty) < max{[F(x,y),F(x,Tx),F(y,Ty)] U min[F(y,Ty),F(y,Tx)]},

and for some Xo in X the sequence {x,} defined by x2n+ Tx2n,x2,,+2 Tx2n+, has

subsequence converging to a point in X. If T and T2T or T and TT2 are continuous at

then is a fixed point of T1 and T2 (or T or T2 has a fixed point).

PROOF.

F(Tx,TTlx) < max{[F(x, Tz),F(x,Tlx),F(Tlx, TTx)] U

min[F(T x, TTx), F(TI x, Tx

max{r(x,Tx),F(Tx,TTx)}

which implies that F(Tz,TTx) < F(z, TlZ), and condition (iv) of Theorem 2.3 is satisfied.
With g T, h T, the remaining conditions of Theorem 2.4 are satisfied.
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If we now set g T, h T1 then, from the contractive definition,

F(T1T2x, T2x) < max{[F(T2x, x), F(T2x, T1T:x), F(x, Tx)]

U min[F(x,T2x),F(x, T1T:x)]}

max{F(T2x, T,Tx),F(x,Tx)},

which implies that F(TITx,T:z) < F(x,Tx), and again the hypotheses of Theorem 2.4 a.,’,’

satisfied.

COROLLARY 2.5. [S, Theorem 1]. Let f and g be w-continuous selfmaps of a d-complete

L-space X, with d(z,x) 0 and d(x,y) d(y,x) for each z,y in X. If f and g satisfy

min d2(fx,gy), d(x,y)d(fx,gy), d (y,gy)

-min{d(x,fx)d(y,gy), d(x,gy)d(y,fx)} <_ q d(x,fx)d(y,gy)

for all x, in X, and 0 < q < 1, then f and g have a common fixed point, (or f or g has a fixed
po,nt).

PROOF. As in [S], it can be shown that {x,,} converges, where {x,,} is defined by X2n+l

.fx2n, X2n+2 gx2n+l

Setting y fx in the contractive definition yields

o1"

min{d2(fx,gfx), d(x,fx)d(fx,gyx), d2(fx,gfx)}

i{d(,y)d(y,gy),d(,gy)d(y,Y)} <_ q d(, fz)d(fz,gfz),

rnin{d2(fx,gfx),d(x, fx)d(fx,gfx)} < q d(x,fx)d(fx,gfx).

If the minimum is d2(fx,gfx), then we have

d(fx,gfx) < q d(x,fx)d(fx,gfx),

which implies that either fx is a fixed point of g, or d(fx,gfx) < q dix,fx ).
If the minimum is d(x,fx)d(fx,gfx), either x is a fixed point of f, fx is a fixed point of

g, or d(fx,gfx) <_ q d(x,fx). Therefore the conditions of Theorem 2.4 are satisfied, except for

(iii).
However, for this contractive definition (iii) is not needed. As in [8], {x,,} converges to a

point u in X. Since f is w-continuous and X2n+l fX2n, it follows that u fu. Similarly,

COROLLARY 2.6. [1, Theorem 1] Let S,T be orbitally w-continuous selfmaps of a d-

complete L-space X, with d(x,y) 0 iff x y. If for some 0 < cr < 1 and for each x,y in

X,
d(Sx, Ty) <_ a{a(x, sx)a(y, Ty)}/:

and d(x, Sx),d(x, Tx) are orbitally continuous, then S and T have a unique common fixed
point (or S or T has a fixed point).
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PROOF. Now that the contra(’tive definition implies that

,,max{d(x, Sz),d(y, Ty)},

and the result follows from Corollary 2.3.

COROLLARY 2.7. [10, Theorem 1]. Let X be an F-complete Hausdorff space, Tl, T.
continuous selfmaps of X. Let F" X x X IR+, F continuous and such that F(x,x) 0 for
all x in X and

F(Tx,Ty) < a,E(x,y) + a,F(x,Tx) + aaF(y,Ty)

for each distinct x,y in X, where p and q are positive integers, a, >_ O,a + a2 -t" aa < 1. ff
for some Xo X, the sequence {x,} C X defined by x2n+l Tz.,x2.+2 Tz2.+, has a

convergent subsequeuce, then (T or T2 has a fixed point) or T and T2 have a unique common

.fixed poini.

PROOF. Set y Tx to get

F(Tx,TTx) < a,F(x,Tx) + a:F(x,Tx) + aaF(Tx,TTx),

or

F(T TIT) < + F(, T),
1 aa

and the conditions of Theorem 2.4 are satisfied with f T’, g Tq.
The uniqueness follows as in [10].

REMARK. The words in parentheses in Corollaries 4-7 have been added by the present authors,
in order for the theorems to be correctly stated.
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