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ABSTRACT. Several important metric space fixed point theorems are proved for a large class
of non-metric spaces. In some cases the metric space proofs need only minor changes. This
is surprising since the distance function used need not be symmetric and need not satisfy the
triangular inequality.
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1. INTRODUCTION.

Let (X,t) be a topological space and d : X x X — [0,00) such that d(z,y) = 0 if and
only if z =y. X is said to be d~complete if Y o | d(Zn, Tnt1) < co implies that the sequence
is convergent in (X,%). In a metric space, such a sequence is a Cauchy sequence. T: X — X

is w-continuous at z, if z, — z implies Tz, — Tz.

Definition. A symmetric on a set X is a real-valued function d on X x X such that:
(1) d(z,y) > 0 and d(z,y) = 0 if and only if £ = y; and

(2) d(z,y) = d(y,z).

Let d be a symmetric on a set X and for any € > 0 and any z € X, let S(z,¢) = {y € X :
d(z,y) < €}. We define a topology #(d) on X by U € t(d) if and only if for each z € U, some
S(z,¢) C U. A symmetric d is a semi-metric if for each £ € X and each € > 0,5(z,¢) is a
neighborhood of = in the topology t(d). A topological space X is said to be symmetrizable
(semi-metrizable) if its topology is induced by a symmetric (semi—-metric) on X.

The d-complete symmetrizable (semi-metrizable) spaces form an important class of ex-
amples of d-complete topological spaces. We give other examples. Let X be an infinite set
and t any T} non-discrete first countable topology for X. Then there exists a complete nictric
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d for X such that ¢ < ¢4 and the metric topology t4 is non—discrete. Now (X ,t) is d-complete
since Y d(2n,Tnt1) < oo implies that {z,} is a d-Cauchy sequence. Thus, z, — = in #4 and
therefore in the topology t. See [4] for the construction of t4. It should also be noted that
any complete quasi-inetric space (X,d) (d(z,y) # d(y,z)) is a d—complete topological space.
Thete are several competing definitions for a Cauchy sequence, but } d(Z5,Zn+1) < 00 will
inply that {z,} is a Cauchy sequence for any reasonable definition. One reasonable definition
is derived from requiring that the filter generated by {z,} be a Cauchy filter in the quasi-
uniformity generated by d. This gives {z,} is a Cauchy sequence if for each € > 0 there exists
a positive integer ng = n(e) and z = z(¢) in X such that {z, :n > 20} C {y € X : d(7,y) < €}.
The metric space definition also holds if 3 d(#n,Zn41) < 00. Some fundamental theorems for
d-complete topological spaces are given in [4] and [5].

2. RESULTS. The results through Corollary 2.2 are generalizations of theorems due to Jungck
[7]. Even though only minor changes are needed in the proofs, they are given for completeness.

LEMMA 2.1. Let (X,t) be a d-complete topological space. If there ezists a € (0,1) such
that d(ynYn+1) < & d(yn—1,yn) for alln, then {yn} converges to a point in X.

PROOF. d(ynayn+l) < a"'ld(yl 7!/2) gives Zi—.] d(ynvyn+l) < d(ylvy2)zzo=l an—l < oo.
The result follows since X is d—complete.

THEOREM 2.1. Let (X ,t) be a Hausdorff d—complete topological space and f: X — X a
w- continuous function. Then f has a fized point in X if and only if there ezists a € (0,1) and
a w-continuous function g : X — X which commutes with f and satisifes
(1) ¢(X) C f(X) and d(gz,9y) < a d(fz,fy) for all z,y € X. Indeed, f and g have a unique
common fized point if (1) holds.

PROOF. Suppose f(a) = a for some a € X. Put g(z) = a for all z € X. Then g(fz) =«
and f(ge) = f(a) = a. Also, g(z) = a = f(a) for all z € X so that g(X) C f(X). For any
a € (0,1),d(gz,9y) = d(a,a) = 0 < a d(fz,fy). Since g is w—continuous, (1) holds.

Suppose there exists « and g such that (1) holds. Let zo € X and let z,, be such that (2)
f(zn) = g(2n-1). Now (1) and (2) gives d(fzn,fTns1) = d(gTn-1,9n) < & d(fTn-1,fZn).
Lemma 2.1 gives p in X such that f(z,) — p. ¢ w-continuous implies that limgfz, = gp.
Since gz, — p, the w—continuity of f implies that lim fgz, — fp. Therefore p is a coincidence
point of f and g. Clearly, fgp = gfp.

f(fp) = f(gp) = g(fp) = g(gp) and d(gp,9(9p)) < a d(fp, f(gp)) = « d(gp,9(gP))-
Hence, g(p) = g(gp)- Thus ¢(p) = g(gp) = f(gp), and g(p) is a common fixed point of f and g.

Ifz = f(z) = g(z) and y = f(y) = g(y), then (1) gives d(z,y) = d(g9z,9y) < a d(fz,fy) =
ad(ey)orz=y.

COROLLARY 2.1. Let (X,t) be a Hausdorff d-complete topological space and f and g
commuting mappings from X to X. Suppose f and g are w-continuous and g(X) C f(X). If
there ezists a € (0,1) and a positive integer k such that

d(g*z,g%y) < a d(fz,fy) for all z,y € X,
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then f and g have a unique common fized point.

PROOF. Clearly, ¢* commutes with f and ¢¥(X) C ¢(X) C f(X). Applying the theorem
to g* and f gives a unique p € X with p = g*(p) = f(p). Since f and g commute g(p) =
g(fp) = f(9(p)) = ¢*(gp) or g(p) is a common fixed point of f and ¢g*. Uniqueness gives

9(p) =p = f(p)-
Letting f = ¢, the identity, gives a generalization of Banach’s theorem. If we also let
k=1, we get Banach’s theorem in this new setting.

COROLLARY 2.2. Let n be a positive integer and let k > 1. If g is a surjective w -
continnous self map of a Hausdorff d-complete topological space X such that

d(g"x,g"y) > k d(z,y) for all z,y € X,
then ¢ has a unique fized point.

PROOF. Let f = ¢°" and a = 1 in Corollary 2.1. Now d(z,y) < a d(g"z,g"y) gives
dg"z,9"y) < a d(g’"v,9*"y) = a d(fz,fy). g surjective implies g(X) C f(X).

THEOREM 2.2 Let (X,t) be a Hausdorff d-complete topological space. Suppose f and g
are commuting w-continuous selfmaps of X such that g(X) C f(X) and
(a) d(g"z,9"y) < dnd(fz, fy)

for each n and for all 2,y in X, where dy > 0 and Y oo, dn < 0.
Then:

(1) f and g have a unique common fized point p.
(2) If z € X, img"z = % exists, with g3 = Z.

(3) fZz, f*%,... are fized points of g. If p # Z, then p & {fZ, f?Z,...,}. If fZ # f2% then
frz # 1z for cach n > 1.

(4) If im f"z = y exists, then y = p.
(5) If the topology t is given by a metric d then
[ o]
dig"2,2) < (3 di)d(fz,9f2)
k=n

If, in addition, f is the identity, then T = p for each = in X.
PROOF. Since limd,, = 0, there exists a k with dx < 1. Then

d(g*z,g*y) < drd(fz, fy).

From Corollary 2.1, f and g have a unique common fixed point p.
To prove (2), fix z and set y = gz in (a). Then d(g"z,g"*'z) < dnd(fz, fgz), which gives

Y dlg"z,g"*'e) < d(fz, fg2) Y d(fz,9fz) < oo.
n=1

n=1

X is d-complete, so there exists an  such that z, = g"z — Z. Since g is w—continuous
Ty = g(zn) — gz. Clearly g7 = 7.
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To prove (3), g(f*7) = f¥(¢9z) = f¥z for each k > 1. i p # 7 then 0 < d(p.7) =
dlgp,92) < did(fp, fi) = did(p, f&), and p # fz. Thus 0 < d(p, f7) = d(gp.gfr) <
dyd(fp, f*z) = dvd(p, f?7) and p # f27. By induction p # f"z for any n > 1.

If f7 # f2% then 0 < d(fx, f*%) = d(9f%,9f%z) < d1d(f?%, f3z) and f?z # f°i. By
induction f*z # "+ for cach n > 1.

To prove (4), gf*F — gy and ¢f"% = f"g% = f"z - yand gy = y. f°T'T — y and
e = ffri > fy,so fy =y. From (1) y = p.

To prove (5),

n+r—1 n+r—1
dg"z, g™ 2) < Y d(g¥a,¢"tme) < Y did(fz, foz)
k=n k=n
=3
<d(fr.gfz) ) di.
k=n

Taking the limit as r — oo yields

oo
d(g"z,z) < d(fz,9fz) ) ds.
k=n
If f is the identity, g has a unique fixed point from (1). But (2) gives gz = Z. Therefore
r=p.
Altman [2] called f : X — X a generalized contraction provided d(fz,fy) < Q(d(z,y)) for
all t,y € X where @ satisfies the following;:
(a) 0<Q(t) <tforallte (0],

(b) g(t) =t/(t — Q(t)) is non-increasing,
(c) foh g(t)dt < co, and
(d) @ is non—decreasing.
He assumes (X ,d) is a metric space and proves that for any z¢ € X,z, = f"rq — ¢ = f().

We use his definition in the more general setting to obtain the following.

THEOREM 2.3. Let (X,t) be a d-complete Hausdorff topological space and f : X — X
a w-continuous generalized contraction. Let zo € X and put z, = fhzo = f(zn-1). Then
limz, =z and z = f(z).

PROOF. Put s; = d(z¢,r1) and 5,41 = Q(s,) for n > 1. Using (a), (b), and (c), Altman
shows that the series 3 - | s, generated by Q is convergent. By induction,

d(mn,1n+l) = d(fzn—]afl'n) < Q(d(zn—lyzn)) < Q(sn) = Sn+41-

Thus, Z:H d(Tn,Tny1) < 00 and limz, = z exists. f w-continuous gives To41 = f(zn) —
f(z). Thus, f(z) = z.

If one replaces topological by symmetrizable in the theorem, f is forced to be w—continuous.
Even though Altman asserted uniqueness of the fixed point, examples exist [11] that show
otherwise.

Our next result is the d-complete analogue of Theorem 2.1 of Park [9].

THEOREM 2.4. Let g and h be selfmaps of a d-complete topological space X . if
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(i) there ezists a sequence {r,} C X such that us,41 = gug,,uz,42 := hug,4; and {u,}
has a cluster point € i X,
(31) g and hg are w-continuous at &,
(11) G(z):=d(a,gz), H(z) := d(z, hz) are orbitally continuous at €, and
(iv) g and h satisfy
d(gz,hy) < d(z,y)

for each distinct z and y in {W.} satisfying either z = hy or y = gz, then
(1) g or h has a fized point n {T;} or
(2) € is a common fized point of g and h and u, — € as 1 — oo.
The proof is the same as that of Theorem 2.1 of [9).

COROLLARY 2.3. Let g and h be w-continuous selfmaps of a d-complete space X satis-
fyng
d(hz,gy) < k max{d(z,y),d(z,hz), d(y,9y), d(y,hz)}

for all z,y in X, where 0 < k < 1 and d(z,gz) and d(z, hz) are orbitally continuous. Then g
or h has a fized point or g and h have a unique common fized point.

PROOF. Let uznty = hugp, Usnyo = gUugnyr. Thus, from the contractive definition,

d(u2n41,u2n42) < kmax{d(uzn, U2n+1); A(U2n, Y20+1),
d(uzni1, Y2nt2), (U201, U2n41) }
which implies that d(u2n41,u2n+2) < k d(u2n,uzn+1). Therefore{u,} is Cauchy, hence con-
verges to a point £. The hypotheses of Theorem 4 are now satisfied.
The uniqueness of a common fixed point follows from the contractive definition.

We now demonstrate that several results in the literature follow as special cases of Theorem
2.4. While our list is not exhaustive, it indicates the generality of the theorem.

COROLLARY 2.4. (3, Theorem 1]. Let Ty, T; be two selfmaps of a Hausdorff F-complete
space X, F: X x X — [0,00) a continuous symmetric mapping such that F(z,y) = 0 for
z =y and, for each pair of distinct z,y in X,

F(le,sz) < max{[F(x,y), F(szIz)$F(y7T2y)] u min[F(vaZy)’ F(y’Tlx)]}v

and for some xo in X the sequence {z,} defined by T2n41 = T1T2n, Tont2 = T2Ton41, has
a subsequence converging to a point £ in X. If Ty and T Ty or T, and Ty T, are continuous at
€, then € is a fized point of Ty and T, (or Ty or T has a fized point).

PROOF.

F(Tl:l:, T2T1.’L') < ma.x{[F(a:, Tll’), F(z,Tlm), F(T]l,TgT].’L‘)] U
min[F(Tyz, T\ z), F(Tyz,T\z)}
= max{F(z,Tz), F(T\z,T2Tyz)}

which implies that F(Tyz,ToTiz) < F(z,Tiz), and condition (iv) of Theorem 2.3 is satisfied.
With g = T1, h = T3, the remaining conditions of Theorem 2.4 are satisfied.
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If we now set ¢ = Ty, h = T} then, from the contractive definition,

F(T\Tyz,Tyz) < max{[F(Tyz,z), F(Tez, T\ Tzz), F(z, Tz))
U min[F(z, Tzz), F(z,T1 T>z))}
= max{F(Tyz,T) Toz), F(z,T2z)},

which implies that F(T\Tyz,Tz) < F(z,Tz), and again the hypotheses of Theorem 2.4 arc
satisfied.

COROLLARY 2.5. [8, Theorem 1]. Let f and g be w-continuous selfmaps of a d-complete
L-space X, with d(z,x) = 0 end d(z,y) = d(y,z) for each z,y in X. If f and g satisfy

min{d?(fz,gy),d(z,y)d(fz,9v), d*(v,9v)}
-min{d(z,fz)d(y.gy), d(z,9y)d(y,fz)} < ¢ d(z,fz)d(y.9y)

or all z, in X, and 0 < g < 1, then f and g have a common fized point, (or f or g has a fized
q ’
point).

PROOF. As in [8], it can be shown that {z,} converges, where {z,} is defined by z2n41 =

fTon, Tant2 = gTont1.
Setting y = fz in the contractive definition yields

min{d*(fz.9fz),d(z,fe)d(fz,9fz),d(fz,9fz)}
- min{d(z,fz)d(fz.9fz),d(z.9fz)d(fz,fz)} < q d(z, fz)d(fz.9fz),
or

min{d*(fz,gfz),d(z, fz)d(fz,9fz)} < q d(z,fz)d(fz,9fz).
If the minimum is d?(fz,gfz), then we have
d*(fz,9fz) < q d(z,fz)d(fz,9fz),

which implies that either fz is a fixed point of g, or d(fz,gfz) < ¢ dia:,fm).

If the minimum is d(z,fz)d(fz,9fz), either z is a fixed point of f, fz is a fixed point of
g,or d(fz,gfz) < q d(z,fz). Therefore the conditions of Theorem 2.4 are satisfied, except for
(ii).

However, for this contractive definition (iii) is not needed. As in [8], {z,} converges to a
point u in X. Since f is w-continuous and Zap41 = fZ2n, it follows that u = fu. Similarly,

gu = u.

COROLLARY 2.6. [1, Theorem 1] Let S,T be orbitally w-continuous selfmaps of a d-
complete L-space X, with d(z,y) = 0 iff ¢ = y. If for some 0 < a < 1 and for each z,y in
X,

d(Sz,Ty) < a{d(z, Sz)d(y, Ty)}*/?

and d(z,Sz),d(z,Tz) are orbitally continuous, then S and T have a unique common fized
point (or S or T has a fized point).



FIXED POINTS FOR PAIRS OF MAPPINGS IN d~COMPLETE TOPOLOGICAL SPACES 265

PROOF. Note that the contractive definition implies that

d(Sr,Ty) < a{max|d*(z, Sz),d*(y, Ty)|}*/?
= amax{d(z, Sz),d(y, Ty)},

and the result follows from Corollary 2.3.

COROLLARY 2.7. (10, Theorem 1]. Let X be an F-complete Hausdorff space, T), T,
continuous selfmaps of X. Let F: X x X — Ry, F continuous and such that F(x,2) = 0 for
allz in X and

F(T{z,Tjy) < aF(z,y) + ay F(z,T{ z) + a3 F(y, T}'y)

for each distinct x,y in X, where p and q are positive integers, a, > 0,a; + a3 + a3 < 1. If
for some z¢ € X, the sequence {x,} C X defined by zony1 = T¥T2n, Tans2 = Ty Tonyy has e
convergent subsequence, then (Ty or Tp has a fized point) or Ty and T; have a unique common

fized point.
PROOF. Set y = T?z to get
F(T}2,T{Tz) < a1 F(z,TPz) + a2 F(z, Tf z) + a3 F(TPz, T§ TP z),

or
F(T?z, T{T?z) < 91—1—+£2—F(::,T1”a:),
—a3
and the conditions of Theorem 2.4 are satisfied with f = T?,g = 7.

The uniqueness follows as in [10].

REMARK. The words in parentheses in Corollaries 4-7 have been added by the present authors,
in order for the theorems to be correctly stated.
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