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ABSTRACT. We extend the spectral analysis of differential forms on the disk (viewed as the
non-Euclidean plane) in recent work by J. Peetre - L. Peng - G. Zhang to the dual situation of
the Riemann sphere S2. In particular, we determine a concrete orthogonal base in the relevant
Hilbert space L*?(5?), where —% is the degree of the form, a section of a certain holomorphic
line bundle over the sphere $2. It turns out that the eigenvalue problem of the corresponding
invariant Laplacean is equivalent to an infinite system of one dimensional Schrédinger operators.
They correspond to the Morse potential in the case of the disk. In the course of the discussion
many special functions (hypergeometric functions, orthogonal polynomials etc.) come up. We

give also an application to “Ha-plitz” theory.
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0. INTRODUCTION.

We wish to extend the considerations in a recent paper [10] valid for the unit disk D or,
equivalently, the upper halfplane U (regarded as a model of the non-Euclidean (or Lobachevskif)
plane) to the case of the Riemann sphere S?. That is, we shall pass to the dual symmetric space.

Let us briefly recapitulate the main contents of [10]. There we studied certain weighted L?-
spaces over D depending on a parameter a > —1 (in the physical interpretation «;—1_'3 is Planck’s
constant) and described their orthogonal decomposition under the action of the Moebius group
SU(1,1). This decomposition was found using a certain invariant Laplacean. Special attention
was payed to the discrete spectrum. In particular, explicit orthogonal bases in terms of hyper-
geometric functions were found in each of the irreducible discrete parts in the decomposition (each
isomorphic to a space in the holomorphic discrete series). The orthogonal bases were then used to
study “Ha-plitz” type linear operators acting between these spaces (boundedness, compactness,
Schatten-von Neumann properties).

In this paper we, thus, carry over the same program to the case of the sphere. A major difference
is now that the corresponding invariant Laplacean has only discrete spectrum. Otherwise the
presentation is remarkably parallel. Again lots of interesting special functions (hypergeometric
and other) arise throughout the discussion, which in fact has been part of the motivation for
undertaking this study. We further elucidate several points in the hyperbolic case left over in [10],
for instance the rather mysterious appearance of the Morse potential in the parallel treatment in
(3]-

We should also say what we intend by the word “quantization” (occurring in the title). We use
it mainly in the sense of Berezin [1] (cf. [8]). Thus we view quantization as a theory of deformation
of line bundles, and the relevant Hilbert spaces, arena for the operator theory involved, arise really
as spaces of sections of these line bundles.

Most of the results of this paper should extend rather easily to the case of P (complex projective
space, which is the compact counterpart of the complex unit ball!). Of course, all this is just a
tiny portion of a vast program and we expect similar results to be true for arbitrary Hermitean
symmetric spaces, both compact and non-compact ones.
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The plan of the paper is as follows. In Section 1 we uncover the structt'lre' of the elienspaxl::s
of the invariant Laplacean, in particular we find an explicit o;thog‘onal t;a:llls 15 tl;err;.a ! g:\gc ty
i i trum factoring suitable functions of the Lap acean. ,
is perhaps that we determine the spect e o e the oast

i urface so we have deferred the de >
the same thing can be done on any Riemann s : crails of the prodt
i i tion 2 we use the orthogonal basis from Secti
to an appendix (as a Section 6). In Sec e the ortl ba n Section 1 to write

i i lications in the spirit of Vilenkin’s g
down the reproducing kernels involved. Some app : Bl T Section 5 sor o ator
iven i i h applications are possible! In Section
(12] are given in Section 3. Many more suc| ions are Section & some operator
i i i briefly indicated. Lastly, in Sec
theory consequences of the previous discussion are y b )
to thg basis vectors and consider the differential equations satisfied by them. In particular, we
write down the “periodic” analogue of the Morse operator.

. E ORTHOGONAL BASIS. ' ) ‘ )
' Vralai shall work within a fixed coordinate neighborhood w1th‘ coord‘mate. z obt?,medhby dtelet(;reng
one point oo (“the point at infinity”). In other words, S? will be identified with the exten

C jective li ! instead of z the
complex plane C = CU {oo} (or the complex projective line P'). Near oo we use inste

coordinate —.

it i — |2|?, everywhere, has to be replaced
tial change compared to [10] is that the factor 1—|z|?, ev S ber
by’I;h-T- Tzls;}rzand 1-— Eu‘) by 1+ 2w).2 Thus, the invariant Cauchy-Riemann operator is given by

_ 17}
D=(1+P) 5

Similarly, the invariant Laplacean is
& 2,9
By = ~(1+ ] g + 1+ )i

The relevant group is now the compact group SU(2), consisting of all 2 x 2 complex matrices

£E= (a 3) such that ad — bc = 1, ¢ = —b, d = @, and the action we have in mind is
c

az

. +b ,
UL f(2) o FEEEE) ™ = f(mg) ez +d)”.

In this notation we have BU® -y,

Notice that, compared to [10], we have changed v to —u‘in the last formul'a. 1:lso wri a;rvtiat}glo:rllé
to assume that v is an integer > 0. This is very convenient, as we are going to wol
Hilbert space L?¥(S5?) of functions with the metric

da(z
191 = [P

where da is the normalized area measure, da(z) = M
T
\da(z) is sometimes named after various authors: Berezin, Ber
1+ [zp)r+2 '© Som ' ' T8

man, Dzhrabshyan, Harish-Chandra, Kostant etc. From a highbrow point of view we should,
strictly speaking, consider the elements of this space not as functions but as sections of an Her-
mitean holomorphic line bundle over S2 (differential forms of degree —%). In fancy language, the
Picard group of P! is isomorphic to Z, so the holomorphic line bundles over P! are labeled by a

. . b
discrete parameter v. If we interpret the formula w = 221

cz+d
the family {(cz + d)*} gives the transition functions.

REMARK. The measure

as a change of coordinates on P!,

The subspace of analytic function in L2 (5?) will be denoted by A%*. It is finite dimensional
and consists precisely of all polynomials of degree < v, so that dim A%* = y 4+ 1. This gives
the eigenspace of A, corresponding to the lowest (“zeroth”) eigenvalue 0. To describe the other
eigenspaces we must, following the same pattern as in [10], first analyze the nullspace of the
(I 4 1)-st power D'+ of D. We denote this space by By, B; = ker D'+ n L?¥(S?). The I-th
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eigenspace A?"’ (1=0,1,2,...), with the eigenvalue I(v + 1 + 1), is obtained as the orthogonal
complement of B;_; in By,

Al =Bi6B,_, (B_,=0).
This follows from the following lemma.

LEMMA 1. Let D, : L>**? — L*" be the adjoint of D = D, considered as an operator from L*"
into L***? that is,

D, = 6+(V+2)

02 14|22

Then we have the factorization
DyDyiz...Dyya D = AL (A, — (v +2))(As —2(v +3))... (A, — (v + 1 +1)).
Its proof relies on the following identity:
DD, = D,42D — (v +2).
For details see the Appendix, where the proof is given in the context of an arbitrary Riemann

surface equipped with a metric with positive Gaussian curvature.
Now we begin to uncover the structure of the space By.

LEMMA 2. Every global solution of the differential equation D'*! f = 0 has the unique represen-
tation

1 -
z
1 = —_
. f= L omT
where each g, (j = 0,1,...,1) is a polynomial of degree < v + 2l. However, the | — j highest
coefficients of g; are determined by gi,...,g,+1. In particular, the dimension of By is (I + 1)(v +
1+1).

PROOF: That every solution of D't! has the representation (1) with g, entire in z follows as in
[10] solving the differential equation. In order to see which are the restrictions on g, at oo we

make the change of variable z — % Then we find
Loy Q)
=3 6()7—r5" =
=0 —_
(1+77)

i
=00 7p) -

—Zg G ")zt Z( v ( )(1+|z|2)' =

- (£ (o)

r=0 =r

.. 1
For instance, the I-th coefficient in the outer sum is, up to sign, just gg(;)z“ +21 1t follows that g;
must be a polynomial of degree < v + 2. Similarly, the (I — 1)-st coefficient is, again up to sign,

1 _ 1 _
lgz(;)z"“l l+gl-1(;)2"+2l 2,
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It follows that g;_; must be a polynomial of degree < v+2l—1 and that I§;(v+21)+§i— (v+21-1) =
0. (We use the sign " to denote Taylor coefficients.) The general statement about the functions
g, follows now readily by induction. It is now likewise clear that

dmBi=v+2l+1+(v+21-2+1)+ - +(¥+2+1)+(v+0+1) =
=(I+1)(v+1)+2(0+1-1+---+140)=

=(1+1)(u+1)+2-(%1£=(l+1)(v+1+1)~ [ |

Next, we decompose the space By under the action of the rotation group SO(2) (the isotropy
group of the origin z = 0). The elements of the nth space in this decomposition must be of the
form

(2) = g
! ="ap)

where ¢ = ¢(t) is a polynomial of degree < I. If n < 0 it must vanish to the order —n at the
origin t = 0: ¢(t) = O(t"). Similarly, if n > v it must vanish to the order n — v at the point

t=1: q(t) = O((1 —t)"™*). The last statement follows again by making the substitution z — l
We then get ¢

(3) f=z"""q(1-

It follows that we must have -l <n <l +v.
Let us now compute the norm of a function of the form (2):

2 2n Izl 2 dzdy =
i = [ 1 o ) e -
_ 2n 2 rdrd¢ _
"/ / r Iq(l +,.2)| 71+ 2+
_ J2n rdr _
—/o |9(1+r2)| n(1+r2)y*z

= / la(t) (1 — t)*~"dt = [|q]]*.

Here we have introduced polar coordinates, writing z = re‘#, and put

2z )
1+ 227

‘o |2 r? Ghl—t = 1 1 _ 2rdr
STHRE 142 VO TITIRRE T T4 U O

Now we orthogonalize the set of all polynomials in the metric ||g|]. We get then for each
integer n a set of orthogonal polynomials {gin(t)}. If we keep n fixed and vary instead I we get
an orthogonal basis for the I-th eigenspace A>"” of the operator A, of the form {eai(z)}, where
—1<n <l+v. It will be convenient to set

n |2[?
e,.l(z) =2z qln(m).
In particular, we see that dim A?’" = v +2/+1 in agreement with Lemma 2. Namely, this lemma
shows that
dim A> = dimB; —dimBi_; = (1+ )(v + 1+ 1) = l(v+ ) =v+(1+1)’ - P =v+ 21 +1.
22 -1
|2 + 1

1+t =2t,1—t; =2(1—t),dt; =dt. If t ranges from 0 to 1, then ¢, ranges from —1 to 1. So if
we write Q(tl) = q(t), we get the metric (apart from a constant factor 2“*1)

REMARK. It is convenient to use also instead of ¢ the parameter t; = 2t — 1 = ; then

QI = / QUP( -+ )" - )"

Thus if 0 < n < v we have the conventional Jacobi polynomials P,("'"-") (up to normalizing
factors). If we agree to use the same notation also in the general case, we can write our basis as
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|22 -1

n p(n,v—n)
=R

)}

where as before — < n < I+wv. A possibly even better parameter than ¢} ist; =1—-¢;, = 1-2t =
1|z
A i i i i i be pol ordinates about the
it gets an immediate geometric meaning. Namely, if we let ?, ¢ be polar co

north pole, we can write z = tan % e'®. It follows then that, indeed, ¢, = cos 6. o )

It should be clear that our result generalizes the classical Lal?lace series (expa.nsnon. in sphen‘ca.l
harmonics). This is the case v = 0, when the elements are genuine functions, not sections of a line
bundle. For instance, it is well-known that the Ith eigenvalue of the Laplace-Beltrami operator
equals [(I + 1), which agrees with our formula.

Let us study the polynomials ¢y,.

LEMMA 3. If properly normalized the polynomials qin, | > max(—n,n — v), are given by a
Rodrigues’s formula:

If we realize S? as the standard sphere in R® (using stereographic projection onto C),

@ an(t) =17"(1 - t)"‘"(%)'[t"“(l e

and N(n + Dy —n + 1))

1
lawl? = [ lan(OPe -~ =

Before passing to its proof, let us introduce some notation. We define the “ascending” factorial
(or Pochhammer symbol)

(a)n =a(a+1)...(a+n-1)
and also the “descending” factorial
(a)y =a(a—1)...(a—n+1) = (=1)*(-a),.
d\n
Clearly (;E) t* = (a);t*™. Recall further the useful formula

(@)n = (a)i(-1)"(n—1=a)n_y,
which will repeatedly be used in what follows.
Now we proceed with the proof of Lemma 3.
PROOF: By Leibnitz’s formula
1

an(®) = 70 = 0" 3 ()0 + DTy + =i

h=0
x tu+l—l+h(_l)n(l _ t)v—n-H—h =
! l
®) = S0 () )0+ Dz = mg e - oA,
h=0

s0 it is clear that g, is a polynomial of degree < I.
To see that it is exactly of degree [ we look at the top coefficient. Expand the expression in (3)

in a power series in ¢. Then we see that for large ¢ the main contribution to the derivation comes
from the term

-n n—yvyn—v d n v—n v—n
£ (=1)" (E)'[t H(—1)rmHpn) =

=(—1)'t'"(,%)'t"+" = (D@ )T T = () (v 4 1) E
Thus the top coefficient is # 0 and equals (-D'(1+ v +1). If n <0, we have

0
(n+Diy=(+Dr+1-1)...(a+l-(+n)...(n+I-(I=h)=1) =0,

provided | —h—1>14nor h < —n—1. That is qin(t) = O(t™™). ¥ n > v, we find in the same
way qin(t) = O((1 - t)"~*).
Let us consider the integral
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1
(qin,t’) =/0 (1 - t)"‘"(%)'[t"*'(l —t)"""] -t dt.

If j < | we can integrate by parts j + 1 times and each time the term integrated out clearly
vanishes. So the integral is 0. We conclude that

(qtn,qn;) =0 forl #j.
To find the norm, we consider the integral
1
d
(q:..,t') - /0 (z)'[t”-H(l _ t)u-n+l]tl dt.
This time we can integrate by parts I times only to produce the integral
1
(—1),1'/ tn+l(1 _ t)u—n-H dt =

0

Fn+l+1)'(v—n+1+1)
Fn+l+14+v—n+l+1)

N+ Di(v—n+l)
(v+2+1)

=(-'n =(-1'

It follows that

gl = (=1)'(1 + v + 1)i(qin, ') =
_ n+D(v—n+)l _ Nn+D(v—n+l)
=(Hv+y (+20+1) T (v42A+ 1)+

LEMMA 4. Ifn > 0 it is possible to express qin in terms of the hypergeometric function:

an(t) = (n+ 1) Fl+v+1,-lin+1t).

We recall that
a)n(b)n 3

F(a,b¢;z) = 2Fi(a,b¢,2) = Z (n'(c)

PROOF: We rewrite the coefficient in (4) as

(1) Dizato 41 =

(=Dn (n+ 1) -
=(= l)" hl ,m.(_l)"(n—-u—l+l)h—
(=Da(n+ 1)

hl(n 4+ 1), ’

=(n+1)

It follows that .
qln(t) = (n + 1)1(1 - t)l F(Tl -V - I, ——I;n + 1, ;_—1).

On the other hand, we know, quite generally, that ([6], bottom of page 8)
F(a,b¢;2) = (1 - z) " F(b,c — a; ; -z——i—l)
So that takinga=n—v—1,b=-l,c=n+1, z =t we find
gmn(®)=(n+ 1) F(l+v+1,-Ln+1t). 1
REMARK. If v > n we get instead
an(t) = () (v=n+ 1y Fl+v+1,~-Lyv-n+11-t).

This is in full agreement with [6], top line of page 9.3

2. THE REPRODUCING KERNEL.
We can now determine the reproducing kernel K(z,w) of the space A}". As {en(2)}, =1 <
n < v+ 1, is an orthogonal basis, we have by general facts
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v+l

(6) Ki(z,w) = Z ent(2)ent(w)llent]| 2.

n=-{
On the other hand, from the SU(2)-invariance it follows that we must have

|z = wf?

K,(z,w) = (1 + za’)"X((l + Izlz)(l + |w|2))’

where x is a function of one variable.
To determine x it suffices to take w = 0. Then (5) gives
Ki(z,0) = eoi(2) leatl 1,

as
(7 ent(0) = { f, n=0
0, n#0
|2
(f n > 0 (6) is obvious; if n < 0 it follows from the fact that eq(z) = 2 q,,.(1 T lzlz) and
ain(t) = O(t™™), so that eni(z) = O(|z|~").) From Lemma 2 and Lemma 3 (with n = 0) we get

[2]2 v+ ) -1
1 + |z|2)((21 +v4+ 1)1+ u)!)

Ki(2,0) =UF(I+v+1,-§1

=Q2l+v+1)-F(l+v+1,-1 1+|ZI2)

Thus we draw the following conclusion.

THEOREM 1. The reproducing kernel in A}" is

=l
U

(8) Ki(z,w) = (v + 2+ 1)1+ 20) F(l+ v+ L, =5 L o

In particular (I = 0), the reproducing kernel in A>" is

!Ko(z,w) =(v+1(1+ ztI))"].

REMARK. Note also that if v = 0 then (writing as before z = tan $¢*%)
Ki(2,0) = (21 + 1)(1 + zw)* F(I + 1,-1;1;sin* §) = (21 + 1) Py(cos 6)

is the spherical function on §% = SU(2)/SO(2), where P, are the Legendre polynomials.

3. APPLICATIONS TO SPECIAL FUNCTIONS.

Now we can play some games in the style of Vilenkin’s book [12]. Chap. II, dealing with SU(2),
is especially relevant for us.

Let us use the above formula (8) in conjunction with relation (6). The result is the formula

_ |w] 2
3 o 1+| ,z)qzn H,wlg )/ llawll® =

n=-1[
|z = w|? )
1+ 23 + [w]?)

=(v+20+ 1)1+ z0)’F(l+v+1,-51;-

N |w]?
Writ =

Ty T T+l
can write this as

= s and let v be the angle between the vectors z and w. Then we
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> (=) e am (o)l =

n=-—1
ts e v
=20 (14 (o))

xF(l+v+1,-1;1;-2(t + s — 2ts — \/t(1 — t)s(1 — s) cos 7))

We may view the above as the Fourier expansion of the function to the right. Thus we conclude

that
2x

w+a+1) [ 1+ (—2 )ée"'")x
o+ (s
X F(l+v+1,-51;—(t +s — 2ts — 24/t(1 — t)s(1 — s)cosy))e " Vdy =

={ (ﬁ;)’q,,.(t)q,n(s)/uqu.u’ for ~I<n<v
0 else

This is a multiplication theorem.
Next we invoke the transvectant (see [4], [15]). It is question of the following bilinear differential
expression:

! nof 8- f2 9
—_ —1)* =3
9) ﬂ(fl,fz)—kzﬂ( 1 (k)(V])k (va)i-x @ 2

If we let f, transform with weight v; and f, transform with weight v;, then the transvectant
Ti(f1, f2) transforms with weight v, + v, + 2s.

We can now exhibit an isomorphism between the spaces A2 and A2**+2! which respects the
SU(2)-action (an “intertwining” map). Namely, we take in (8)

n=-v-2, =1 fi=9g€ Az’"“'. fa=Ka(z,z2)=(1+ |Z|2)—l-

This gives an element f € A2 defined by

(k) z
f= K3 'Ti(f, Ko) = (- 1)'2( 1)*( )( )

To see that the map g — f indeed is an isomorphism we take g = 2"+, —1 < n < v+ I. This
gives us, apart from a factor, back the basis vector en; (use Lemma 4):

(~Di—k (0405 of 22 \'"7F_
f=(=1) Z — B! (- u—zf)k’ (1+|z|2) =
e (D v+ Dign Dy o 22 \7F
_Z (= B)(n+ Di(—v =2 (1+|2|2) -

(n+1) __ (n+l
Tt ln(- u' 20),° q’"(1+|z|2) (n+ 1)i(—v - 21y,

ent(2). B

Let {t,m (&)} be the matrix of action Ué"‘”o on the space A***?! in terms of the basis {2"+},
-l<n<n-lie

n4l
Uéu+2’)zn+'/"2"+l" - E tnm(6)2m+l/|lzm+l"

m=—|

The functions t,,,(£) are expressible in terms of Legendre functions (cf. [12]). Using the isomor-
phism constructed above we see that the action of Ué") on Af’” has the same matrix:
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n+l

en1/||e,.1|| = Z tnvn(f)eml/"eml”

m=-1

(u+2l)

If we spell out this in detail, we obtain a relation involving hypergeometric polynomials.

4. HARMONIC ANALYSIS OF OPERATORS.

However, the principal goal of all this business is operator theory. Now we say a few words
what operator consequences can be drawn from our results.

We are interested in linear operators acting between eigenspaces A; ¥ for different values of
and v (or complex conjugates of such spaces). In the former case we are dealing with “generalized
Toeplitz operators”, in the latter case with “generalized Hankel forms” (we identify an operator
from Af,"/, say, into A}"” with the corresponding bilinear form on the product A2 x A%Y). So
it might be justified to use with Nikol’skii the ackronym “Ha-plitz” as a unifying concept.

As the spaces involved all are finite dimensional, everything blows down to linear algebra
(matrix theory) or — on a more sophisticated level — representation theory for compact groups.
So, at least in principle, the problem is in a way trivial. We remark however that non-trivial
analysis problems perhaps arise if we allow the parameters ! and/or v tend to infinity. If we recall
the isomorphism A>” ~ A2¥+2! (Section 3), we see also that we have essentially the classical
problem connected with the determination of Clebsch-Gordan coefficients in disguise (see e. g.
[12], § 8 of Chap. 3).

We begin with the observation that it is, in principle, superfluous to consider conjugate spaces.
Indeed, there is a canonical isomorphism from A%" onto A%V, which is given by

f(z)— g(2) = E"f(%)

and which intertwines with the group action.
az + b

Let us check the intertwining property: If f is replaced by f ( )(cz + d), then g(z) gets

replaced by

U
-"f(c_ +d)(c§ +d)¥ =

b v d\ —— b

d)’.
cz+d az+b )(cz+ )

So in a way the distinction between Hankel and Toeplitz fades away ...
Let us now look at linear operators from A2 into A>¥. Assume, to fix the ideas, that .

Then the simplest SU(2)-invariant operator from A% into A%* is the Toeplitz type operator T
with kernel

(10) Tp(z,w) = f(2)(1+ 20)",

where the “symbol” B is a polynomial of degree < t which transforms according to the repre-
sentation U, that is, like a form of degree —%. (If v = v' we get a Toeplitz operator exactly
(multiplication by the symbol).) It will be convenient to refer to the number —t as the weight.
We shall assume that ¢ < » +'. (This will be explained in a more general context below, see
(17).)

In order for the kernel in (10) to have the right transformation properties, that is, to be an
element of the tensor product A2 @ A%*" we must have

(11) v=t+v.

Indeed, the kernel (1+ z)*" behaves as an element of A2V @ A2V (of “biweight” (—v', —v")).
So it is clear that Ty(z,w) has the right behavior in the variable w, this even irrespective of how

f transforms. But, by the same reason, in the variable z the product in (10) transforms then with
weight t + v/, establishing (11). i
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As a generalization of (10), we may, following the procedure in [15], consider for an integer s
the operators Tg) with kernel

(12) T (z,w) = (1 + 219)" ((%)a (B +20)" 7],

where we again assume that the symbol B transforms with weight —t. If o = 0, (12) reduces
to (10). In other words: Tg = Tg'_"l). The connection between o, s and t in general will be
uncovered now.

As there is no differentation in the w variable it is again trivial that we have the correct w
behavior. We require that the product with brackets in (12) be of weight 1 — 0. This gives the
relation

(13) s—t—v'=1—0 or o+s=t+1v +1

If we apply “Bol’s lemma” (see [4]) it follows that, after the differentation carried out, we have
an expression whose weigth is 1+ o. For the result to have the required weight —v we then get
an equation which we may write as

(14) s—v=140 or 6—s=-v-—1.
Thus, eliminating s between (13) and (14), we get

' _ t—(v—v ,)
(15) t=v—v +20 or o= ) s
which is analogous to the corresponding relation in [15].* Clearly, (15) implies that
(16) t>v—2

(o must be a positive number), which generalizes (11), and further that t = v — v’ mod 2. From
(16) we can likewise determine s:

t—(v—-v' v+ +t
s=1+u+a=1+u+—(2——l=1+—-2—,

so both s and o are now expressed in terms of t.> If ¢ = 0, (15) reduces to (11) and then s = 1+v.
Besides (16) there is one more inequality imposed on t. Namely:

(17) t<v+v.

To see this, we observe that if we differentiate the factor (1 + z)*'~* the exponent goes down
to v’ — s — 0. From this we obtain ¢’ — ¢ > 0, which is in view of (15) the same as (17). §
Thus altogether we have ((16) + (17))

(18) V—u'5t5u+u'l.

This agrees with the classical fact that

A2,u ® AZ,U' . Z®A2,t’

where we sum over precisely the indices ¢ occuring in (1) with the same parity as the difference
v —v' (see [12], page 177). Thus we have made this decomposition rather explicit. Note that the
range of o is the interval [0,v'].

Let us indicate one application of the preceding connected with Clebsch-Gordan coefficients.
We take the symbol to be a monomial, B(z) = zF (k= 0,1,...,t), and apply the corresponding
operator to a monomial. We observe first that the kernel satisfies

(12') T (2, e%w) = *=4TQ (2, w).



HARMONIC ANALYSIS ON THE QUANTIZED RIEMANN SPHERE 235

It follows that the operator intertwines with the SO(2)-action:
UéTz(:)U,;l — ei(k—o)anz(:)’

where Uy f(2) = f(e'®z). This again implies that monomials are mapped onto monomials. More
precisely, we have

TP = Cy(n,n')z" with n=n'+k—o,

where the numbers Cy(n,n') are our version of the Clebsch-Gordan coefficients. (We do not
indicate in the notation the dependence on v and v'.)

For a general symbol this gives
T (n,n') = Co(n,n")B(n —n' + o),

where we presently use the hat ~ to denote Fourier coefficients. Now a general operator can, by
the above, be decomposed into a sum of Toeplitz type operators:

T=Y T3
t

It follows that we have the following expression for the Hilbert-Schmidt (S;-)norm:

ITIE, = STITEE, = 32N Y (Cn, )Pl 1212 |12
t

t n=0n'=0

In particular, we obtain the following orthogonality relation (cf. [9] for a similar result in the
hyperbolic case):

> CnnCelm I =0 AL

n—n’=const

The numbers Cy(n,n') can also be expressed in terms of the genera,lize'd hypergeometric func-
tion 3F2:

PROPOSITION 1. Cy(n,n') = const - 3 Fp(—o,v' —s,—n'; v, 1+ k —0o;—-1).

PROOF: We have (see (12))
’ ] o _dalw)
Tf:)z..' = / (1 + 20)° ( 9 ) [zk(1 + zw)® ] w" a+ \t:vlz)”'”

/ (1+ z@)° Z (‘;)(k);_ At D

j=0
I da(w)
(L 20 e

— (k)5—; (v —8); SR—otiy

?;( )
1 +zw) “iglw _ﬂ,—; =
( (1+|w|2)v+
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= i (;)(k);_](u' — )y ATt

1=0

v'—)

v=J h—3+h, n' da(w)
x Z ( )/ Fwtw I+ w2y
The integral gives a contribution only if j + h = n'. In this case it reduces to

/ [w|?™ da(w) __/°° 2% orrdr [ pdp
c L+ wP)+2 — Jo

r(L+r2)p+2 — J (14 o) +2 =
(n'+ DI —n'+1)
T(v' +2) B

=B(n'+1,/V —n'+1)=

_n'l(y = n')!
T+

Therefore we obtain

(-4

n'l(v' —n' o v —j)!
Ci(n,n') = (( +1)|)’Z( 1)‘;(' )J( 1) (k) gy (1) (v _s)’(_'(—j)Tu]')Tn'_)-!=

1=0

(e EO(=D R (v = 8), VA
=D (V’+1)‘Z Jj!(1+k—a), Jn'!(u’)j' -

DRy )y (G0 = )y,
i Z( Vo, ~

_ Y ("‘)"m(—

1 o v —s,—n';—v' 14+ k—o0;-1)

and we are done. J§

Finally, duplicating what is done in [10] and [14] in the hyperbolic case, we say a few words
about SU(2)-invariant Ha-plitz operators from A%" into A,z’” (it is thus the special case I' = 0,
v' = v of the general situation). Such an operator can be defined by the bilinear formula

#3590 = [ f(z)mm%ﬁ‘

(Thus, B(z) is the symbol of the operator HY'”.) If V is the isomorphism from A2**% onto
Az'" displayed in Section 3, then it is easy to verify (for details of this computation see [14]) that

(Hp (l ’))‘V which is thus an operator from A2*+%! to itself, is one of the Toeplitz like operators
T(') considered earlier in this Section.

5. DIFFERENTIAL EQUATIONS SATISFIED BY THE BASIS VECTORS.
In Section 1 we constructed the basis {e,i(2)} = {z"q,,,(l -l'_ P l2)} where -/ <n <l+v,in

the space L%*(S?). Now we write down various ordinary differential equations connected with
these functions.
First of all, as the polynomials gi,(t), for n fixed, are orthogonal in the metric

lall? = / (B (1 — ) ~"d,

it is easy to see, by general principles governing orthogonal polynomials, that they satisfy the
differential equation

-n ﬂ—l'd n‘ v—m d
—tT"(1—1t) -‘E[t“(l t) +’d" =lv+1+1)q

or, carrying out the differentiation,
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d
(19) 1= HTE 4 1= =+ DY =i 4141

n+1—(v+2)t

This is of course just a special case of the hypergeometric equation in slight disguise. )
On the other hand, we know by their very construction that the functions e (=) satisfy the
partial differential equation

A A . o - 0
—(1 4 |21)200f + v(1 + |2|1)z20f = v + 1+ 1)f (notation: 9 = o J= -a—g).
Of course, separating variables, this has to lead back to the same equation (1). Let us verify this!
2
Differentiating the relation f(z) = z"q(-l'TI:_IW) yields

= , z . Zn+1

=y T T

n[af? " P

) " ! z _
00f ="y T4 VEERERE T TR

2
lzl —1— we find

. . S L
Adding up and using t TP 1 152

—(1+2*)?00f + (1 + |2[*)z0f = [-t(1 - 1)g" + (v + 2)tg’ — (n + 1)q]".

which apparently yields (19). §

Let us return for a moment to the “hyperbolic” case (disk or halfplane). Actually even before
the paper [10] was ever conceived, the same eigenvalue problem had been studied' (unknown.to
us at the time!) in [3] in a different context (in connection with the Feynman mtegral “.w1th
affine kinetic variables”) and there it had essentially been reduced to a single one dimensional
Schrédinger (or Sturm-Liouville) equation, namely with the Morse operator

i +D(e™W —e7Y) (D a constant)

dy?
in L?(R). Recall that this operator first appeared as a phenomenological model for a diatomic
molecule [7).% Indeed, this is intimately related to the “continuous” orthogonal basis constructed
in {107, viz.

1 a+1
1z _—Eypa+l-1 —_ = .
e e E o] (2€y) (l 0,1, ) [ 2 ])7

where Pi(t) are certain orthogonal polynomials considered by Romanovski [11]. They are (see
[11]) orthogonal with respect to the weigth t**2e~+, are given by a Rodrigues formula

{
P[(t) = ta+2el/t (Ed't') [t2l-a-2e—l/!]’

and satisfy an ordinary differential equation:
(20) t?P"+(1—at)P' =l — a - 1)P.

It is very curious that essentially the same differential equation in two slightly different guises
appeared in the same year 1929% and in two completely different fields: in statistics, respectively
in quantum theory.

Let us formally work out the connection.

In multiplicative language the Morse operator is given by (see [7])

2.1 ’ 2 1 a+1 2
co = e 420+ (€ 4o+ Pl + (T

where v = 242 (= g in the notation of [3]). Its eigenvalues are the numbers
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(";")2—(“;’1 _,)2;1(0,4.1_1) (I=0,1,...,[a—;—1])-

Write
(€)= P(Z)eT et
Differentiating we find

W = P(J) S e e 4 P(3EE T - gD,

P =P"(55)€ et + P,(Tlf)(_'%z;zﬁ%_a +3e8 e b+
+P(3) (- 56370 + 3eF e
+P(g)(5(5 - DEFT - §¢F T - a3 4 ed)e
=[P"(3)56F 7 + P'(5)(=(5 - DEFT e84
+P(F)(5(5-1)€872 afF 1 et
Put t = # or § = % It follows that (we omit the factor €% . e¢ and write P etc. instead of
P'(3))
Y =P"? 4+ P'(-2($ -1t + 1)+ P($(§-1) - $t71 + 77,
€' = — P't+ P(g - 3t71),
(-8 +vE+ 1y =P(-1t72+ 571 + ).
Hence
Lp=—[P"? + P'(-2(% — 1)t +1-2t)+
+PEE-1)-$tT + M P a7 - R 57+ D)

2 _%a+4a+1 1
=—|P"# 4 P(1-at)+P -2 a: ot |+(°"2" )2P =

(=)

= —[P"+(1-at)P].

It follows that (20) is indeed a consequence of the eigenvalue equation Ly = l(a+1—-1)p. I

It is now natural to ask the question: What is the analogue of the Morse operator for the
sphere?

To answer this question we must first digress a little.
DIGRESSION: REDUCTION OF A SELF-ADJOINT SECOND ORDER ORDINARY DIFFER-
ENTIAL EQUATIONS TO NORMAL FORM.

Consider a self-adjoint eigenvalue equation of the form

d d
Lu= —w'lz [waﬁ- +bg=)Aq
in L2(I,wdz), where I is some interval C R and w is a positive weight. Furthermore, we assume
that the coefficient a is positive and, similarly, that b is real. So the operator L is formally self-
adjoint and we expect it to be semibounded from below on a suitable domain. We wish to reduce
it to the normal form
—f"+Vf=AXf

in L%(J,dz), where J is some other inteval (the case a = w = 1). We will think of V as the
“potential”.

ANsaTz. [g(z) = m(z)f(¢(2)) |
We then have

lall? = /, lgPwdz = /, (o) Pt da.
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If we require this to coincide with )
11 = [ ifoas,

we must have m?wdz = dp(z) = ¢'dz, which gives the following condition.

/13
CONDITION I. orm = l"’i

(There are two cases, according to whether ¢ is a sense preserving diffeomorphism or a sense
reversing diffeomorphism.) Derivation yields

¢ =f¢'m+ fm',
" 12

d
E(waq') = f"o"*mwa + f'(¢p'm)wa + f'¢'m'wa + fm"wa + (wa)'(f'¢'m + fm').
Thus we get a second condition.
1 dz
CONDITION II. m =3t o= [
el - 0m 215
In this hypotheses (I + II), actually, the coefficient of f' vanishes:

(¢'m)wa + ¢'m'wa + (wa)'p'm = 0 &

(‘P )’ (wa)

m

& (division with ¢'mwa) ~——~ =0
& ¢'m?wa = const

and the latter is a logical consequence of I & II. Now we give a look at the coefficient of f. This
gives, finally,

(m'wa)

V=- +b|. 1

EXAMPLE.The multiplicative Morse operator

Ly = —(z%¢") + b

In this case a = z2,

w = 1. (The exact form of b is not of interest to us at the moment.)
Condition II gives ¢’ = l, ¥ = log z, while Condition I gives m = z% so ¢ = 2% f(log z), which
T
is the transformation on p. 89 of (3] (see formula (3.12)). Thus we find
—1. -3y —1.z-%y
yo e Cre) 1y
z'% °'} ‘

so we obtain the “additive” Morse operator.
After this digression we return to the case of the sphere. It is convenient to put p = v —n (and
forget the v), so the equation that interests us is

d dq
-n -p n+l1 p+1 — I+ 1)g.
-t "(1-1¢) T "1 - t) = n+p+1+1)

Thus it is a case with a = ¢(1 — t), b =0, w = t"(1 — t)?. From Condition II we get

1
2 _
() = Aoy
This time we choose the minus sign:
' 1 /
Ly . /t(l —0

The integration is performed by means of the substitution ¢ = cos? -g:
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dt __ sin%cos2§ 46 = db.

t(1-1) \/cos2 £(1 - cos? 4

Thus the parameter 8 is the same as in Section 1. We are definitely on the right track! From
Condition I we now get

_ 1 ' 1
"= Vil =1 = t)r TR —t)E

Logarithmic differentation now yields

1 1
m =m- [~ + DY+ G+ D -
1

+ e !
4 t‘“*“(l _ t)§+%

+§(1 _ t)§+%+l :

--@

P41
+E+D
Thus we find

m'wa = —(2 + 1311 - FH171 4 (2 4 Lyed o1~ R,

(m'wa)' == (§+ 3§~ I - gEPE
—G+DE 1= -nithy
+G+DE+H1- P -niti-
-GG -pATTa-ni,

mw = t';_*(l —t)%-1,

whence finally (see boxed formula)

U ! l—t t
v=-l b - DI G+ DG - Dy
G +DE-DrE+DE-DI=
ni-11-1 +P’—i t

[ 1t
_np_3.p, 1. p_3  np_3 n ¥ p_ 3
[4 4 2+4 2 16+4 4 2+4 2 16]'

The constant term here can be rewritten as follows:

np 3. p,y 1l p_3 4 nrp_ 3 n,1 p_ 3 _
a1 sti s wta i 2ti T
—=hp _1 n_1 p_ 3 __1., 1 —1ly_1
=F -3 73 8-5=3(n-3)p—-3)—3

Thus we end up with the Schrodinger operator

d2f 2_ 2_1
“m+("—4it&n2§+p—flc°t2§-% "-%)(P-%)+%)f=1("+1’+1+1)f

-

which is the sought “periodic” analogue of the Morse potential.
We may summarize the above discussion as follows.

PROPOSITION 2. The eigenvalue problem for the invariant Laplace operator for —v-forms on
S? is equivalent, in a sense made precise in the foregoing, to an infinite system of synchronous
Schrédinger (or Sturm-Liouville) eigenvalue equations on the interval-(0,7). I

REMARK. Why is there only one equation in the hyperbolic case? It is because in [10] we used
the halfspace realization of non-Euclidean geometry, so we have a “dilation” invariant situation,
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which thus accounts for the “degeneracy”. I we were to use the disk realization, we would
certianly again get infinitely many equations. (One has only to substitute, in the above formula,
the trigonometric functions by their hyperbolic (“alcoholic”) counterparts tanh and coth.) We
do not know if any of this has any bearing to physics whatsoever.

6. APPENDIX. FACTORIZATIONS OF CERTAIN DIFFERENTIAL OPERATORS ON A
RIEMANN SURFACE.
We continue the computation in [10], remark in Section 3.
As there, we let X denote a Riemann surface equipped with an Hermitean metric, in terms of
a local coordinate z given by ds? = g(z)|dz|?>. We consider v-forms locally given in a coordinate
neighborhood (with coordinate z) by f = f(z)(dz)”. If we make a change of coordinate (z — x(2))
then these coefficients experience the change f(z) — f(x(2))(x'(2))*, 9(z) = g(x()IX'(2)%.
(Notice that the parameter v plays in this Section the same réle as v/2 in (the rest of) [10], while
compared to the rest of the present paper it is the same as —v/2.) We denote by L?¥(X) the
space of square integrable v-forms, that is, f € L»*(S?) if and only if [y |f|*¢'™*(z)dzdy < co.
7]

Let us write = —,
0z

is given by

o= g (Wirtinger operators). The invariant Cauchy-Riemann operator
Z

We further set a
D,=-0+(v-— 1)7’,

It may be viewed as the adjoint of D = D, regarded as an operator from L** into L**~!. In
particular, it maps L?*~! into L2*. (In [10] we interpreted D, as the “metric” connection on
the sheaf of all holomorphic v-forms.) The corresponding Laplace operator is defined by

A=A, =D,D.
Written out it is _
A =—g~108 + vg~%(8g)0.

In [10] we had, for some reason, written the factors in a different order. We now explain this
discrepancy better.

It is convenient to set e = % (= Ologg). In this notation D, = —8 + (v — 1)e. Furthermore,
g

we let a
K = -2¢g710e = —2g—15(?g-) = —2¢7189(log g).

be the Gaussian curvature. Then we have the following lemma (in a local coordinate neighbor-
hood).

LEMMA. [0,D] = —eD, [D,e] = —1K.

PROOF: It is clear that
[0,D] =[0,97'8] = 8(g~")d = —g~*(09)0 = —eD.
On the other hand, as by definition Je = —%K g, we find
[D,e] =[¢g7'd,¢] =g~ '(8e) = —3K. &
COROLLARY. DDy, = D, D + %K.
PROOF: We get

DD,y = D(-3+ve) = —0D +[0,D] + veD + v|D,e] =
= —8D —eD +veD - gx = (=0 +(v-1)e)D — §A’= D,D - %K. '
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From now on we assume that we have a metric with constant curvature K. We claim that one
can define recursively polynomials ©;(T) (where the letter T stands for an indeterminate) such
that

D,D,_,...D,_ D' = ©(A).

Indeed, if I = 0 this is just the definition of A = A,, with ©¢(T) =T.
Assume that ©;_; is already defined and multiply the corresponding relation (I — 1 instead of
') with A from the right. This gives:

D,D,_;...D,_(-1)D'D,D = 6,1 (A)A.

Consider the operator D'D,. We find using the corollary repeatedly (the first time we apply it
with v replaced by v — 1, the second time by v — 2, and so forth):

b'D, = D-1DD, = DY(D,_,D - (v - 1)¥) =
=D"'D,,D-(v-1)KD"! =
=D"?DD,_,D - (v-1)¥D'" =
=D'"*D,_sD - (v -2)5)D - (v-1)§D"' =
=D'"?D, ,D* — (v - 1)+ (v -2)5D'"' =
= =D, D' - (v-1)+ (v -2+ +(v-D)FD""

As, summing the arithmetic series, (v — 1) + (¥ —=2)+ -+ (v =) = 1(2";—1_')’ it follows that

©,.:(A)A=D,D,_,...D,_D"*' —i(2v-1-)XD,D,_,...D,_4_1)D' =
=D,D,_y...D, D' —(2v - 1 - )X 01, (D).

In other words, we can take
OT) = (T +1(2v — 1~ ) X)0r_y(T),
or, solving this recursion with initial condition ©¢(T) =T,
OT)=T(T + (2v-2)5)(T+202v - 3)E)... (T+1(2v -1 -1)X).

Altogether, we have now established the following result.

THEOREM 2. We have the following factorization
D,Dy_;...Dy D' = A(A+ (2v - 2)E) (A +2(2v - 3)K) ... (A+I2v —1-1)]).

We conclude with several remarks.

REMARK. Introducing the graded vector space L = $°® L?¥, where the summation is over some
remainder class of the indices v mod Z, we can regard the operator D as an endomorphism
of L and, similarly, we can define an endomorphism D on L extending D, : L?¥ — LZ¥*1,
Then one can get a more elegant formulation of the above results. In particular, we can write
D,D,_,...D,_;D'*! more compactly just as D1 D1 This is in line with how it is done in
cohomology theory.

REMARK. To some extent the purported generality of an arbitrary Riemann surface is illusory,
as by the uniformization theorem one can reduce oneself to the situation of a simply connected
manifold, that is, either the disk, the disk or the (“parabolic”) plane. One can then always assume

that the metric is given by
1

9= —mE

(14 &Ey
It follows that
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Putting eo(2) = Z/(1 + ﬂf‘:), the (second) relation in the lemma can be written [f),.eo] =1,
Thus the operators D and (multiplication by) eo formally span an algebra }somorphlc' to the
“Wey] algebra” (see [2]). We do not know what the deeper consequences of this observation are,

if any.

Footnotes. Note that numbers on the left corner o

been cited in the text. f the following footnotes have

1For this case see [13]. . o
2For a unified treatment one could put oneself in the general situation of a Ri

Gaussian curvature. Cf. Appendix.

iemannian manifold with constant

31f one of the parameters a, b of that formula is a negative integer, then the coefficient of the second term to the
right vanishes, so we get

T(c)T(c—a—-b)

—_— —F ,b;a+b—c+1;1—z),
T(c - a)l(c - b) (@

F(a,b;c;2) =

4There we wrote, for some reason, 2t in place of t.
5In [15] the parameter analogous to s was used to label the operator. In retrospect, we see that this was perhaps
not the most natural choice.

SWe are greatful to Thierry Paul for acquanting us with the contents of [3], in particular, the réle of the Morse
operator, during a memoérable “workshop” at the Mittag-Leffler Institute (fall ’90).

In [10] there is also given a “discrete” orthogonal basis, which is the one which is closest to the basis encountered
in the present paper (Section 1). In view of what is done in [9] one may also ask what is the analogue of the Morse
operator for a strip.

8This is also the year of the wedding of the parents of the senior of the two present authors!
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