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ABSTRACT.

In this paper we consider a mapping S of the form

S =agl +a,T+a,T?+... + T,
k
where o; 2 0. a; >0 with ¥ o, = 1, and show that in a uniformly convex Banach space the Picard iterates
i=0

of S converge to a fixed point of T when T is nonexpansive or generalized nonexpansive or even quasi-
nonexpansive.
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1. INTRODUCTION.

Let B be a Banach space and C a convex subset of B. AmappingT: C — C is said to be nonexpansive
if | Tx - Ty|| <||x - y| forallx, y €C. A mapping T: C — C is said to be quasi-nonexpansive if T has
afixed point p such that | Tx - p|| < | x - p| for allx € C. The concept of quasi-nonexpansiveness is more
general than that of nonexpansiveness. Indeed, a nonexpansive mapping with at least one fixed point is
quasi-nonexpansive, but there exists quasi-nonexpansive mappings which are not nonexpansive. See, for
example, Petryshyn and Williamson [7].

If T is nonexpansive, then the Picard iterates of T may not converge and, even if they do converge,
they may not converge to a fixed point of T. However, to circumvent the difficulty, one may consider the
mapping

T, =(1-M) +AT, (1.1)
where [ is the identity mapping and 0 <A < 1, and show that the Picard iterates of T converge to a fixed
point of T under certain restrictions, see [3,5,10]. Generalizing the idea Kirk [6] has introduced a mapping
S given by

S=agl +o,T+a,T*+... +a,T* 1.2)
where a; 2 0, a, >0 with éoa,. = 1, and has shown that the Picard iterates of S converge to a fixed point

of T under conditions similar to those imposed in connection with the convergence of Picard iterates of T;.

Our purpose here is two-fold. First we show that the Picard iterates of S converge to a fixed point of
T under conditions weaker than those imposed by Kirk [6]. Secondly, we establish that the Picard iterates
of S converge to a fixed point of T even when T is generalized nonexpansive, i.e., when T satisfies
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| Tx - Ty| =alx -y| +b{lx~Tx| +|y -y} +c{ly - Tx| +|x-Ty|} (13)
for all x, y €C, where a,b,c = 0 with @ +2b +2c < 1. Then the analysis has been extended to a more

general mapping resulting in generalization of some results obtained by Ray and Rhoades [9].

2. CONVERGENCE TO FIXED POINTS

It has been established by Kirk [6] that S and T have common fixed points if T is nonexpansive. Let
the common fixed point set be denoted by F. Further, the set F is closed when T is nonexpansive or even
when T is quasi-nonexpansive (see Dotson [2]). We now state the following conditions:

CONDITION-A. A mapping T: C — C with a nonempty fixed point set F is said to satisfy
Condition-A if there is a nondecreasing function f: [0, %) —[0,%) with f(0)=0 and f{r)> 0 for all
r €(0, %) such that | x — Sx|| = f(d(x,F)) for all x € C, where d(x,F) = plgi‘;"x -p|.

CONDITION-B. A mapping T: C — C with a nonempty fixed point set F is said to satisfy
Condition-B if there exists a number a > 0 such that | x —Sx|| = ad(x,F) forallx €EC.

It may be remarked that the mappings which satisfy Condition-B also satisfy Condition-A. However,
Condition-B may be verified easily by giving examples. It may be further remarked that Conditions I and
II of Senter and Dotson [11] are identical with Conditions A and Bwhen ;=3 = ... =, = 0.

We now recall the following lemma due to Dotson [1]. This will be used later to establish our results.

LEMMA. If the sequences {s,} and {t,} are in the closed unit ball of a uniformly convex Banach
space and {z,} = {(1 - a,)s, + 0,2, } satisfies li_1.:|l||z,|{ =1,where0<a <a, <b <1,then .11_1.11“ s,—t,] =0.

THEOREM 1. Let C be a nonempty: closed, convex and bounded subset of a uniformly convex
Banach space B and T: C — C be a nonexpansive mapping. If T satisfies Condition-A, where F is the
fixed point set of T in C, then for an arbitrary x, € C, the Picard iterates (S"x;) converge to a member of
F.

PROOF. Ifx, EF, then the result is trivial. We assume that xo € C — F. Then, setting x, = S"x,, we
have for an arbitrary p EF
I%.1-pl =15 "%~ p| =|Sx, - p|

= | ogx, + 0, Tx, + &,T, +... + 0, T*x, - p|
=| 0g(x, - p) + a(Tx, - p) + 0fT%, - p) + ... + &(T*x, - p|
s ag|x, - p| +ay| Tx, - p|| + 0| T, - p| +... + | (T'x, - p)|
s|x,-p|.

This implies that d(x, ,,,F) s d(x, ,F) and hence that the sequence {d(x,,F)} is nonincreasing. Then

lim d(x,,F) exists. In the sequel we shall show that this limit is zero.

Suppose that“li_x.xld(x,,F) =b >0. Then, forap EF, ”Ii_1.11||x, -p| =b'2b > 0. Choose a positive
integer N such that || x, - p| s2b’ forn 2N. Sety; = (T'x, -p)/x, - p| forallnandalli=0,1,2,....k
with T%, = x,. Then | yi|| = 1. Further, setz, = agy? + (1 - ag),, where , = il(a,-y:)/(l -ag)with|£,| s 1.
Then {y?} and {T,} are in the closed unit ball. Now -
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Ilz " Xy — P Txn—p a'Zszn 4 rxu—p
Al =) o +Q + +.. .+ QT
R R B R P *Ix-pl

_ | agx, + . Tx, + 0, T, + ... + 4 T*x, = p| || %,,,-P|

- , 21
Ix - Pl Ix. - pl
implying ||z,| — 1 asn — . But, forn =N, we have
“yo_t II - Xy —P _ 1 L a,-(T‘x, ‘P)
" x-pl (-adi X -p
- Xy =P _an_ooxu_(l_%)p
lx-pl  (-a)fx -p|
%, = Sx|
(1-ag)|x. -p|
d(x,,F
fld(x,,F)) fb) 0 2.2)

*M-w)]x-p] 2'(-a)

implying li_lg | 2 -1, =0, which contradicts the lemma. Hence lim d(x,,F)=0. This implies that {x,}

n—-®

converges to a member of F, since F is closed.

REMARK 1. It is obvious that the above theorem holds if Condition-B is satisfied instead of
Condition-A.

REMARK 2. Condition-A is more general than the condition imposed by Kirk [6] in establishing
the convergence of Picard iterates {S"x,}, see Senter and Dotson [11].

REMARK 3. In the above theorem the existence of a nonempty fixed point set F is not assumed and
is ensured by the conditions assumed therein. However, if we assume that T has a nonempty fixed point
set F, then T need not be assumed to be nonexpansive and it is enough for T to be quasi-nonexpansive.
Further, C need not be bounded. Indeed, the following result holds.

THEOREM 2. Let C be a nonempty, closed and convex subset of a uniformly convex Banach space
BandT: C — C be a quasi-nonexpansive mapping. If T satisfies Condition-A, where F is the fixed point
set of T in C, then, for an arbitrary x, € C, the Picard iterates {S"x,} converge to a member of F.

The proof may be established exactly in the same way as in Theorem 1. It only remains to be shown
here that S and T have common fixed points. A fixed point of T is obviously a fixed point of S. We now
show that the converse is also so. Let p be a fixed point of S. Then from Condition-A it is obvious that
d(p,F) =0, implying p €F. Since T is quasi-nonexpansive, F is closed and hence p EF, i.e., p is a fixed
point of T. Hence the result.

Next, we show that the Picard iterates of S converge to a fixed point of T even when T is generalized
nonexpansive. However, one need not assume Condition-A or Condition-B in this case. These conditions
are automatically satisfied.

THEOREM 3. Let C be a nonempty, bounded, closed and convex subset of a uniformly convex
Banach space B and T: C — C be a continuous mapping such that

ITx -Ty| sa|x-y| +b{|x-Tx| +|y -Ty[} +c{lx-Ty| +]y -Tx|} (23)
forallx, y €C, wherea, c 20 and b > 0 with a +2b +2c < 1. Then for an arbitrary x, € C, the Picard
iterates {S"x,} converges to the unique fixed point of T.

PROOF. By Theorem 2 of Goebel, Kirk and Shimi [4] the mapping T has a unique fixed point p,

say. Setting y = p in (2.3) we have
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| Tx - p|| <(a+c)|x-p| +b]|x-Tx| +c|Tx-p|
s(@+b+c)|x-p| +(b +c)|Tx-p|,
implying

a+b+c
1 Tx-pl s —Ix-pl <|x-pl, (2.4)

since @ +2b +2¢ s 1. Thus T is quasi-nonexpansive. Further, it is easy to verify that
Isx-pl <|Tx-p| =|x-pl, (2.5)
implying S is also quasi-nonexpansive.
It is obvious that p is also a fixed point of S. We now show that S cannot have a fixed point other
than p. If possible, let g(= p) be a fixed point of S. Then

lg -Tq| =|Sq -Tq|
=|owg +o,Tq +a,T°q +... + o, T*q - Tq|
= | ay(q - Tq) + 0(T’q - Tq) + ... + a,(T*q - Tq)|
say|q-Tq| +,| T’ -Tq] +... +o,| T'q - Tq|
<a{lq-p| +ITq-pl}+a{T’q-p| +|Tq-pl}
+...+{|T'q-p| +|Tq-p|}
s2A0+0+...+a))|q -p| =2(1-a)|q~p]. (2:6)
Since T is generalized nonexpansive, we have
| Tq - p| = Tq - Tp|
sa|q-p| +b|Tq-q| +<{|Tq-p| +|q-p|}
s(@a+2)|q-p| +b|Tq-4]|. 2.7
Substituting from (2.6) into (2.7) and noting that a + 2¢ < 1 —2b we obtain
ITq-pl <(1-2b)|q-p| +2b(1-a)|q-p|
=la-p| -2b0,(q-p|
<lq-p| -2ba,|Tq-p|,
implying

1
172 Pl <155 19 -7l @238)

Now from (2.8) we have
1
lg-p| =|Sq-p| =|Tq-p| SmIQ-PII, (2.9

which implies g = p, since b, a, >0. Thus S and T have a unique fixed point p.
Next, we show that T satisfies Condition-B. For x € C we have
|7 -pl =|Tx - Ip| <a]x-p| +b|x -Tx| +c{|x-p| +|Tx-p|},

implying

a+c b
c||x—p" +1—_—;||x-Tx“. (2.10)

I7x-p| =22
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Now, )
[T x| <] ¢ - Tx] +]Sx x|

sag|x = Tx| +ay| T% = Tx| +... + & T*x - Tx| + || Sx - x|

=2(1-a)|x-p| +|Sx-x]|. 2.11)
Also we observe that
ISx - p|l = ag|x -p| +(a;+0,+... + )| Tx - p| (2.12)
and that
Isx -x| =|x-pl -] Sx-p|- (2.13)

Now, substituting from (2.12) into (2.13) we derive
ISx -x| =] x -pl —alx-pl - (e, + @y +... + o) | Tx - p|

=(1-a){|x-p| -|Tx-p|},

whence, using (2.10), we obtain

b
I$x x| =(1-ap)lx-p] - ~qo -1l

1-a-2c

b
-(-a)| T -l - - e

2b b
(1 -ag| o fx-pl -2 1x -7l

b(l 00)

{2|x-p| -|x-Tx]}. (214

Now, substituting from (2.11) into (2 14) we get

b(l ao)
| Sx - x| = {2lx-pl -2 -a|x-p| -] Sx-x|}
_ba- ao)
o {20fx-p| -|Sx-x|},
implying
|Sx -x| zafx-p|, (2.15)
where
2bay(1-ay)

O bl

since b, a, >0. Thus T satisfies Condition-B. Hence, by Theorem 2, the result follows.
REMARK 4. It may be noted that the stipulation a; > 0 in S is necessary to rule out the possibility

that fixed point of S is a point at which T may be periodic.
REMARK 5. If we do not restrict b > 0 in Theorem 3, then the fixed pint set of T is not a singleton,
and Condition-A is to be imposed to ensure the convergence of {S"x}.
The present analysis can be extended to a more general mapping T which satisfies
I - Ty| smax {Jx -y 0x - Ts] +1y -2 0y - Tl +]x -T2} (@216)
forallx, € C. This mapping includes nonexpansive and generalized nonexpansive mappings (see Rhoades

[8]). Itis easy to verify that T is quasi-nonexpansive. It has been proved by Ray and Rhoades [9] that S
and T have the same fixed point set. Further, they have established the following theorem in this connection.
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THEOREM 4. ([9, Theorem 2]). Let C be a nonempty, closed convex and bounded subset of a
uniformly convex Banach space B and T a self-mapping of C which satisfies (2.16). If I-S maps bounded
closed subsets of C into closed sets of B, then, for each x, € C, the sequence {S"x,} converges to a fixed
point of Tin C.

However, the fact that I-S maps bounded closed subsets of C into closed sets implies Condition-A
(see Senter and Dotson [11]). Thus Condition-A is more general and incorporating this condition we may
obtain the following as generalizations of Theorems 2 and 3 of Ray and Rhoades [9].

THEOREM 5. Let C be a nonempty, closed and convex subset of a uniformly convex Banach space
B and T a self-mapping of C which satisfies (2.16). If T satisfies Condition-A, where F is the nonempty
fixed point set of T in C, then, for an arbitrary x, € C, the Picard iterates {S"x,} converge to a member of
F.

We may note that C need not be bounded in Theorem 5. Because we have assumed the existence of
nonempty fixed point set of T and Condition-A (see [11]). But the boundedness of C cannot be omitted
from the statement of Theorem 4.
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