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In this paper we consider a mapping S of the form

$ -aol +aT +a2T + +aT,
where as 0. al > 0 with ai 1, and show that in a uniformly convex Banach space the Picard iterates

i-0

of S converge to a fixed point of T when T is nonexpansive or generalized nonexpansive or even quasi-

nonexpansive.
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1. INTRODUCTION.

LetB be a Banach space and C a convex subset orB. Amapping T: C C is said to be nonexpansive

if r Tyl[ II yll for all x, y C. A mapping T: C C is said to be quasi-nonexpansive if Thas

a fixed pointp such that Tx -p[[ [Ix -P]I for alma: C. The concept of quasi-nonexpansiveness is more

general than that of nonexpansiveness. Indeed, a nonexpansive mapping with at least one fixed point is

quasi-nonexpansive, but there exists quasi-nonexpansive mappings which are not nonexpansive. See, for

example, Petryshyn and Williamson [7].
If T is nonexpansive, then the Picard iterates of T may not converge and, even if they do converge,

they may not converge to a fixed point of T. However, to circumvent the difficulty, one may consider the

mapping

Tx- (1- .)// kT, (1.1)

where I is the identity mapping and 0 < . < 1, and show that the Picard iterates of T converge to a fixed

point of Tunder certain restrictions, see [3,5,10]. Generalizing the idea Kirk [6] has introduced a mapping
S given by

S -ctol +alT +0.2T2 +... +tt (1.2)

where a z 0, al > 0 with ai 1, and has shown that the Picard iterates of 3 converge to a fixed point
i-0

of T under conditions similar to those imposed in connection with the convergence of Picard iterates of T,.
Our purpose here is two-fold. First we show that the Picard iterates ofS converge to a fixed point of

T under conditions weaker than those imposed by Kirk [6]. Secondly, we establish that the Picard iterates

ofS converge to a fixed point of T even when T is generalized nonexpansive, i.e., when T satisfies
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for all x, y C, where a,b,c 0 with a + 2b + 2c 1. Then the analysis has been extended to a more

general mapping resulting in generalization of some results obtained by Ray and Rhoades [9].

2. CONVERGENCETO FIXED POINTS
It has been established by Kirk [6] that S and T have common fixed points if T is nonexpansive. Let

the common fixed point set be denoted by F. Further, the set F is closed when T is nonexpansive or even

when T is quasi-nonexpansive (see Dotson [2]). We now state the following conditions:

CONDITION-A. A mapping T: C C with a nonempty fixed point set F is said to satisfy

Condition-A if there is a nondecreasing function f: [0, oo).- [0, oo) with ]’(0)- 0 and f(r)> 0 for all

r 1 (0, oo) such that I[x -Sxll ..f(d(x,F)) for allx 1 C, where d(x,F)- inf I[x -p[[.
pEF

CONDITION-B. A mapping T: C C with a nonempty fixed point set F is said to satisfy

Condition-B if there exists a number ct > 0 such that IIx -Sx[I cut(x,F) for all x t C.

It may be remarked that the mappings which satisfy Condition-B also satisfy Condition-A. However,
Condition-B may be verified easily by giving examples. It may be further remarked that Conditions and

H of Senter and Dotson [11] are identical with Conditions A and B when ( (h ctk 0.

We now recall the following lemma due to Dotson 1]. This will be used later to establish our results.

LEMMA. If the sequences {s,} and {t,} are in the closed unit ball of a uniformly convex Banach

space and {z,, } {(1 ct,,)s, + ct,t, } satisfies lim z, "1, where 0 < a ffi b < 1, then lira s, t.II 0.

THEOREM 1. Let C be a nonempty, closed, convex and bounded subset of a uniformly convex

Banach space B and T: C C be a nonexpansive mapping. If T satisfies Condition-A, where F is the

fixed point set of T in C, then for an arbitrary x01 C, the Picard iterates ($"xo) converge to a member of

F.

PROOF. Ifxo 1F, then the result is trivial. We assume that x0 ( C F. Then, setting x, S’xo, we

have for an arbitrary p 1F

IIx. /,-pll -IIs" /’xo-pll -ilSx. -pll

-II ,x. + ,Tx. / thT2x,, + + ch,Tx,, -pll

-II o<X. -P + Ctl(Tx, -e + ct.z(r-x. -p + + ct,(Tx. -vii

oll 1. -ell /,ll Tx. -ell /,ll Tx. -ell / /,ll (r’x. -p)ll

IIx. -ell.
This implies that d(x. I,F).: d(x. ,F) and hence that the sequence {d(x.,F)} is nonincreasing. Then

lira d(x.,F) exists. In the sequel we shall show that this limit is zero.

Suppose that lira d(x.,F) b > 0. Then, for ap EF, lira II/. -ell b’. b > o. Choo a positive

integerNsuch that IIx. -pll 2b’ for n N. Set yi., .(Tix._p)l x. -Pl] for all n and all/-0,1,2 ,k

withTx,,-x,, rhnlly,’ll 1. Frth,tz.- .+(-o)t,,wht.- Y.(cy,)/(1-ao)withllt, 1.
i-1

Then {y.O} and {T. } are in the closed unit ball. Now
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(2.1)

implying z,,ll 1 as n oo. But, for n N, we have

x.-py.0_ t.II x. p

(I o) x. -vii
.f(d(x,,,F)) f(b O, (2.2)

Cl-,,.o)llx.-ll 2b’(1- %)

implying lim y.0_ t.II - 0, which contradicts the lemma. Hence lim d(x,,V) O. This implies that {x,}
converges to a member of F, since F is closed.

1. It is obvious that the above theorem holds if Condition-B is satisfied instead of

Condition-A.

REMARK 2. Condition-A is more general than the condition imposed by Kirk [6] in establishing

the convergence of Picard iterates {S’x0}, see Senter and Dotson [11].
REMARK3. In the above theorem the existence of a nonempty fixed point set F is not assumed and

is ensured by the conditions assumed therein. However, if we assume that T has a nonempty fixed point

set F, then T need not be assumed to be nonexpansive and it is enough for T to be quasi-nonexpansive.
Further, C need not be bounded. Indeed, the following result holds.

THEOREM 2. Let C be a nonempty, closed and convex subset of a uniformly convex Banach space
B and T: C C be a quasi-nonexpansive mapping. If Tsatisfies Condition-A, where F is the fixed point
set of T in C, then, for an arbitrary x0 (E C, the Picard iterates {S’x0} converge to a member ofF.

The proof may be established exactly in the same way as in Theorem 1. It only remains to be shown

here that S and T have common fixed points. A fixed point of T is obviouslly a fixed point of S. We now

show that the converse is also so. Letp be a fixed point of S. Then from Condition-A it is obvious that

d(p,F) 0, implyingp EF. Since T is quasi-nonexpansive, F is closed and hencep EF, i.e.,p is a fixed

point of T. Hence the result.

Next, we show that the Picard iterates ofS converge to a fixed point of Teven when T is generalized

nonexpansive. However, one need not assume Condition-A or Condition-B in this case. These conditions

are automatically satisfied.

THEOREM 3. Let C be a nonempty, bounded, closed and convex subset of a uniformly convex

Banach space B and T: C C be a continuous mapping such that

IITx-Tyll allx-Yll +bTIIx-Txll +IIy-TylI}+cTIII-TYll +lly-Txll} (2.3)

for all x, y (E C, where a, c 0 and b > 0 with a + 2b + 2c a 1. Then for an arbitrary Xo (E C, the Picard

iterates {S’xo} converges to the unique fixed point of T.
PROOF. By Theorem 2 of Goebel, Kirk and Shimi [4] the mapping T has a unique fixed point p,

say. Setting y -p in (2.3) we have
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implying

Tx-p[I (a +c)l[x -p[I +bllx- Till

a + b + c IIx -pll IIx -ell (2.4)Tx -ell -b -c

since a + 2b + 2c 1. Thus T is quasi-nonexpansive. Further, it is easy to verify that

IlSx -p[[ Tx -eli II1 -ell, <2.5)

implying S is also quasi-nonexpansive.
It is obvious that p is also a fixed point of S. We now show that S cannot have a fixed point other

thanp. If possible, let q(, p) be a fixed point of S. Then

q Tq -II Sq Tq

-II aoq + aTq + oY’q + +aq Tell
.o(q Tq) + (T’q Tq) +... + a,,(Tq Tq

a011 q Tall + 11T-q Tall +... + tll rq Tall
a0{llq -Pll +IITq-Pll } +’{Tq -t’ll +IITq-Pll

+--. + t,{ll r’, -Pll + Tq -Pll }

Z+, + +,x, q -Pll ZX t) q -PlI. (2.6)

Since T is generalized nonexpansive, we have

Tq -p -II Tq Tpll

" a q P + b Tq q + { Tq P

,(a + Zc)ll q -Pll +blTq-qll" (2.7)

Substituting from (2.6) into (2.7) and noting that a + 2c -: 1 2b we obtain

Tq -Pll "( Zb)ll q -pll + Zb(1 a)ll q -pll

q -pll Zb,dl q -pll- q P Zb,dl T pII,
implying

Now from (2.8) we have

1
Tq -Pll + 2bt

q -Pll (2.8)

1IIq -pll -IlSq -pll "= Tq -Pll + 2bt
q -PlI,

which implies q p, since b, ctl > 0. Thus S and T have a unique fixed point p.

Next, we show that T satisfies Condition-B. Forx E C we have

Tx -Pll Tx Tpll allx -pll + bllx -Txll + {llx -Pll + Tx -Pll },

(2.9)

implying
a+c.. b

Tx -Pll 1_-z--II x -pll + _--llx -rxll. (2.10)
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Now,

Also we observe that

and that

IISx-pll ollx-pll /(//... /)llTx-pll

Sx -xll IIx -ell Sx -ell.
Now, substituting from (2.12) into (2.13) we derive

IlSx-xll IIx-pll ollx-pll -(,//... +,)llTx-pll

(1 ct0){llx -pll -II Tx -ell },

whence, using (2.10), we obtain

a+c.. b
Ilax -xll (1 -cq) IIx -pll l_--llx -pll l_--llx Txll

-(1-,){ 1-a-2Cllx-plll-c 1--c x rxll}-
(1 -cto) _--llx -pll IIx rxll

b(1 -%)
l:---c {211x-Pll-IIx-Txll}.

Now, substituting from (2.11) into (2.14)we get

b(1 -%)
IlSx-xll 1-c

{211x-pll-2(1-q)llx-pll-IlSx-xll

(2.11)

(2.12)

(2.13)

(2.14)

implying

where

b(1
1--C{2tllx -Pll -IlSx -xll },

IlSx-xll llx -pll, (2.15)

2b(x(1 -)
> 0,

1-c +b(1-%)

since b, 1 > 0. Thus T satisfies Condition-B. Hence, by Theorem 2, the result follows.

REMARK 4. It may be noted that the stipulation q > 0 in S is necessary to rule out the possibility

that fixed point of S is a point at which Tmay be periodic.

REMARK 5. If we do not restrict b > 0 in Theorem 3, then the fixed pint set of T is not a singleton,

and Condition-A is to be imposed to ensure the convergence of {S’x0}.
The present analysis can be extended to a more general mapping T which satisfies

[[Tx-TYl[ max {[Ix-yll,[llx-Txll +lly-Tyll]/2,[l]y-Txll +[[x-Tyl[]/2} (2.16)

for allx, tE C. This mapping includes nonexpansive and generalized nonexpansive mappings (see Rhoades

[8]). It is easy to verify that T is quasi-nonexpansive. It has been proved by Ray and Rhoades [9] that S
and Thave the same fixed point set. Further, they have established the following theorem in this connection.
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THEOREM 4. ([9, Theorem 2]). Let C be a nonempty, closed convex and bounded subset of a

uniformly convex Banach space B and T a self-mapping of C which satisfies (2.16). If I-S maps bounded

closed subsets of C into closed sets of B, then, for each x0 E C, the sequence {S’xo converges to a fixed

point of T in C.
However, the fact that I-S maps bounded closed subsets of C into closed sets implies Condition-A

(see Senter and Dotson 11]). Thus Condition-A is more general and incorporating this condition we may
obtain the following as generalizations of Theorems 2 and 3 of Ray and Rhoades [9].

THEOREM 5. Let C be a nonempty, closed and convex subset of a uniformly convex Banach space

B and T a self-mapping of C which satisfies (2.16). If T satisfies Condition-A, where F is the nonempty

fixed point set of T in C, then, for an arbitrary x0 C, the Picard iterates {S"x0} converge to a member of

F.
We may note that C need not be bounded in Theorem 5. Because we have assumed the existence of

nonempty fixed point set of T and Condition-A (see [11]). But the boundedness of C cannot be omitted

from the statement of Theorem 4.

ACKNOWLEDGEMENT. The authors are indebted to Professor B. E. Rhoades for his valuable sug-

gestions for the improvement of the paper.
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