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ABSTRACT. The eigenvalue problem in difference equations, (—1)"~*Aty(t) = A ©50 pi(t)A'y(t),
with Ay(0) = 0,0 < i < k, A*'y(T+1) = 0,0 < i < n—k, is examined. Under suitable conditions
on the coefficients p;, it is shown that the smallest positive eigenvalue is a decreasing function of
T. As a consequence, results concerning the first focal point for the boundary value problem with

A =1 are obtained.
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1. INTRODUCTION
Let k and n be integers with 1 < k < n. For functions y defined on an interval of integers, define
the difference operator A by A% =y, Ay(t) = y(t + 1) — y(t), and Ay = A(A'y) for i > 1. We
shall be concerned first with the eigenvalue problem for difference equations
k-1

()" &yt = A 3 pi(t)Ay(t), 0<t<T, (1.1)

Ay(0)=0, 0<i<k-1,

1.2
AHy(T+1)=0, 0<i<n-—k-1, 2

where T is a nonnegative integer. Throughout this paper, the interval notation in expressions such
as (1.1) denote intervals of integers; for example, [0,T] = {0,1,...,T}. Under suitable conditions
on the coefficients p;, we show that the smallest positive eigenvalue is a decreasing function of T

Next, we will consider the boundary value problem (1.2),

k-1
(=1 Ary(t) = 3 pt)Ay(t), 0<t<T. (13)
=0
If there is a nontrivial solution of (1.3), (1.2), then T is said to be a (k,n — k)-focal point of (1.3).
The smallest such T is called the first (k,n — k)-focal point, or, more briefly, the first focal point.

The results concerning the monotonicity of the eigenvalue will be used to investigate relationships
between the existence of first (k,n — k)-focal points of (1.3) and the existence of solutions of (1.3),

(1.2) that are positive with respect to a cone in a suitable Banach space.



170 C. DENNY AND D. HANKERSON

It can be shown that the Green’s function Gr(t,s) for the focal boundary value problem

(=1)r*ary(t) = b,
Ay(0)=0, 0<i<k-1, (1.4)
Ary(T+1)=0, 0<i<n—k—1,

exists. Extensive discussions concerning Green'’s functions for difference equations can be found in
Hartman [1] and Kelley and Peterson [2]; see also [3]. In particular, if y(¢) is a solution of (1.3),
(1.2) on [0, T + n], then y(t) solves the equation

T k-1
y(t) = Z—:GT(t,s) Z:p;(s)A‘y(s), te[0,T +n.

As a consequence, if sign conditions on Gr(t,s) are known and certain positivity conditions are
placed on the p;’s, then questions concerning the eigenvalue of (1.1), (1.2) and the existence of focal
points for (1.3), (1.2) can be examined in terms of a family of linear operators that depend on T'.

Many authors have applied the theory of cones in a Banach space and positive operators either
to demonstrate the existence of smallest positive eigenvalues, to compare these eigenvalues, or to
establish the existence of first conjugate points or first focal points of boundary value problems for
linear equations; see, for example, Eloe and Henderson [4, 5], Gentry and Travis [6], Hankerson and
Henderson [7], Hankerson and Peterson [8, 9], Keener and Travis [10], Tomastik [11, 12], and Travis
[13]. We also mention papers by Eloe [14] and Eloe and Henderson [15] which examine criteria
for disfocality of difference equations, two papers by Henderson [16, 17| on focal boundary value
problems for nonlinear difference equations, and a paper by Henderson and Lee [18] on continuous
dependence and differentiation of solutions of difference equations. Much of our motivation for this
study are the works of Keener and Travis [19], Schmitt and Smith [20], and Tomastik [21].

In section 2, we include preliminary notation, and fundamental results from the theory of cones
in a Banach space. In section 3, we show, under suitable assumptions on the coefficients p;, that
the smallest positive eigenvalue of (1.1), (1.2) decreases with T'. This will lead to results concerning

the first focal point of (1.3), (1.2).

2. PRELIMINARIES

In this section, we give definitions and auxiliary results from cone theory. Much of the discussion
in this section involving the theory of cones in a Banach space arises from results in Krasnosel’skii’s
book [22]. Other good references include Krein and Rutman [23], and Deimling [24].

Let B be a Banach space. A closed subset K of B is said to be a cone provided: (i) if u,v € K
then au + fv € K for all o, > 0, and (ii) if u,—u € K then u = 0. A cone K is said to be
reproducing provided every z € B can be written as £ = u — v for some u,v € K. If K is a cone
and u,v € B, then we write u < v (with respect to K) provided v —u € K. If L and M are linear
operators on B, then L < M (with respect to K) provided Ly < My for all y € K. Finally, given
a bounded linear operator L on B, we say that L is positive if L(K) C K, and we say that L is
ug-positive if given any nonzero u € K, there exist ky,k; > 0, such that kjug < Lu < kaug. If

L : B — B is a bounded linear operator, we shall use r(L) to denote the spectral radius of L.

THEOREM 2.1 Let L be a positive compact linear operator with respect to a reproducing cone
K and let r(L) > 0. Then r(L) is an eigenvalue of L with corresponding eigenvector in K.
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THEOREM 2.2 If L and M are compact linear positive operators such that L < M, then r(L) <
r(M).

THEOREM 2.3 Let L be a compact linear positive operator, and suppose Lr > ux for some
u>0andz € B with—z ¢ K and z = u — v for some u,v € K. Then L has an eigenvector

zo € K corresponding to an eigenvalue Ao > p.

Theorems 2.5, 2.10, 2.11, and 2.13 of Krasnosel’skii give the following theorem.

THEOREM 2.4 Let K be a reproducing cone. If L is a compact uq-positive linear operator then
L has an essentially unique eigenvector in K and the corresponding eigenvalue is simple, positive,

and larger than the modulus of any other eigenvalue.

The following theorem appears in Keener and Travis [19, Theorem 2.3] and is a generalization
of Travis [13, Theorem 2.3].

THEOREM 2.5 Let L and M be bounded linear operators and assume that at least one of the
operators is ug-positive. Assume L < M and there ezist nonzero vectors u;,uz, € K and scalars
A1, A2 > 0 such that Luy > M\u, and Mu, < Au,. Then Ay < Ay If A\j = A; then u, is a scalar

maultiple of u,.

3. EIGENVALUES AND FOCAL POINTS

Our main objective in this section is to describe how the smallest positive eigenvalue of (1.1),
(1.2) changes with T. We will transform these questions about the eigenvalue into questions about
the spectral radius of certain operators on a Banach space, and then apply the cone theory.

First, let (c)®) denote the factorial polynomial defined by (¢)) = ¢(c —1)---(c—i+1). If
Gr(t, s) is the Green’s function for (1.4), then

min{t-Le} (4 _ 7 —1);=i1) (-7 4 s 4 n — k — 1)(n=F-1)

Gr(t,s) =
NGrbs)= X 7oy m=k—1)
for j < k, and
(=1)? (s+n—k=1=(t+))("—k-1-2) (< s
A+ Gr(t,s) = m—k=1-5)! y tS
0, t>s

for 0 < j <n —k— 1. The Green’s function can be found with the aid of [25, Lemma 1].
Next, let B = {y : [0,00) = R | y is bounded and A'y(0) =0, 0 < i < k}. Then B is a Banach
space under the sup norm. Define Ly : B — B by

T k-1 .
t s A' ) S ST )
Loy(t) = '>=30Gr(,s)'_2=30p(8) y(s), 0<¢ +n
0, T+n<t.
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We assume that p,(t) >0fort >0,0<i<k-1.

Remark. Note that L1y depends only on the values of y on [0, + k — 1]. Hence, if T} > T
and Br, = {y: [0,Ty + k— 1] - R| A'y(0) =0, 0 < ¢ < k — 1}, then we can regard Lt as a map
Br, = B. We can then define the map My : By, — Br, by M1z = Lrz|o1, 44-1)-

Now, if (), z) is an eigenpair for Mr, then we can extend z to a function in B by setting
y(t) = 2(t) for 0 <t < Ty + k — 1 and Ay(t) = Lrz(t) for t > Ty + k; then (A, y) is an eigenpair
for Lt. Conversely, if (A,y) is an eigenpair for LT with A # 0, then z = y|jo.7;+x-1) # 0 (otherwise
Lyy =0 and A = 0) and (), z) is an eigenpair for M7.

In addition, for any function z(t) defined on [0, 7 + k — 1], the expression Lyz makes sense and
we will allow this slight abuse of notation. Then if y(t) = Lrz(t), it follows that y(t) is a solution
of the boundary value problem (1.2),

k-1
(—1)""‘A"y(t) = Zop;(t)Ai:t(t).

If (A\,z) is an eigenpair for Ly with A # 0, then (1/),z) is an eigenpair for (1.1), (1.2), and
conversely. Note also that A = 0 is not an eigenvalue of (1.1), (1.2).

To begin with, we wish to examine, under suitable conditions, what happens to the spectral

radius of Lt as T increases. Our first result will play a key role in subsequent work.

THEOREM 3.1 The spectral radius r(Lr) is a nondecreasing function of T. Morever, if p;,(T) >
0 for some T > k — iq, then r(Lt-1) < r(Lt).

PROOF. Define the cone K7 in By by
Kr={y€Br|Ayt)>0,te[0,T+k—-1-1,0<i<k—1}.

Then K§ = {y € By | Ay(t) >0,t € [k—i,T+k—1-1],0<:<k—1}, and Kr is reproducing.
We will begin by showing r(Lr) is nondecreasing; that is, we will show r(Lr_;) < r(Lt). Let

z € Kt and regard Lt_, as an operator on Br. Then

T-1 (S +n—k—1- t)(n-k—-l) k-1

ALraz(t) = Y R 3" pi(s)Ax(s)
=t : 1=0
T (s 1 _ p)(n—k=1) k=1 )
< X_; (s+n (nk— kl_ 13 § pi(s)Nx(s)

= ANLrz(t), 0<t<T-1

We can repeatedly sum both sides of A*Ly_;z(t) < A*Lrz(t) and use the boundary conditions to
show that A'Ly_1z(t) < ALrz(t) for 0 <t <T+k—-1-14,0<i<k—1. Then Lr_; < Lt with
respect to K7 and by Theorem 2.2, r(Lr_,) < r(L7).

Now suppose that p;(T) > 0 for some T > k —i,. We first show that r(Ly) > 0. Let

u(t) = t®) € K3. Note that
k-1

T
K Lru(t) =) NGr(t,s) Y pi(s)Au(s) > XGr(t, T)p;,(T)A°u(T) > 0

s=0 1=0
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fork—j<t<T+k—-j—1and 0<j<k—1. Thus, L7u € K. It follows that there exists an
€ > 0 such that Lyu > eu, and by Theorem 2.3 we have r(L7) > ¢ > 0.

Finally, we will show r(L7_,) < r(Ly). Assume r(Ly_,) > 0. By Theorem 2.1, r(Lz_,) is
an eigenvalue of Lr_; with corresponding eigenvector y € K7_;. We can use r(L7_1)y = Lr1y
to extend y to a function in Br. We claim that y € K$. To see this, since y is an eigenvector

corresponding to r(Lz_,), there exists so € [0,T — 1] such that Y5 p,(so)A'y(s¢) > 0. Then

T-1 k-1
r(Lr-1)&y(t) = Y NGr.(t,s) 3" pi(s)Ay(s)

s=0 =0
k-1
> ANGr_i(t,s0) Z P:(30)A%(s0) > 0,
1=0

forte[k—j,T+k—1-3],0<j<k—1. It follows that y € K3. Hence p,,(T)A°y(T) > 0 and

T-1 k-1
NLray(t) = 3 AGra(ts) Y pi(s)Ay(s)

T k-1 .
< ;,AkGT(t’ s) Y pi(s)Ay(s)

=0
= ANLpyt), 0<t<T-1

Using the boundary conditions at 0, we obtain Lty — L7_1y € K7. Hence, there exists an
€ > 0 such that Lyy — Ly_1y > ey, or Lty > ey + Lr-1y = (€ + r(Lr-1))y. By Theorem 2.3,
r(Lt) > r(L1-1). o

We obtain a corresponding result for the smallest positive eigenvalue, \g, of the eigenvalue
problem (1.1), (1.2).

COROLLARY 3.2 Assume p;(To) > 0 for some 1o, Ty such that Ty > k —io. Then the smallest
positive eigenvalue, Ao(T'), for the eigenvalue problem (1.1), (1.2) decreases for T > To. If, in
addition, there ezist iy, T, such that Ty > min{k —i,,To+ 1} and p;,(T}) > 0, then Ao(T1) < Ao(To)-

PROOF. By Theorem 3.1, r(L1,) > 0 and r(Lg,) is an eigenvalue of Lt,. From the correspon-
dence between eigenpairs of the eigenvalue problem and Lg,, we see that 1/r(Lz,) is the smallest
positive eigenvalue of (1.1), (1.2). Since r(Lz) is increasing, it follows that Ao(T) = 1/r(L7) is
decreasing for T > Ty. Finally, r(Lt,-1) < r(Lz;) by the previous theorem, and hence Ao(To) >
Ao(Th — 1) > Ao(Th). 0

We now shall concentrate on the characterization of the first focal point of the boundary value

problem and corresponding results.

THEOREM 3.3 Assume p,,(T) > 0 for some T > k — io. Suppose that the boundary value
problem (1.3), (1.2) has.a nontrivial solution y € Kt (again, we mean ylo74k-1) € K1). Then T
is the first focal point.

PROOF. Our first step will be to show r(Lr) = 1. Now Lry = y implies r(Lt) > 1. Let
u € Kr be an eigenvector corresponding to r(Lr). We have shown in the proof of Theorem 3.1
that y € K. Choose @ maximal so that y > au. Then y = Lry > alru = ar(Lr)u. By the
maximality of o, r(Lt) < 1. Hence, r(Lt) = 1.
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Finally, if the first focal point 5 < T, then r(L,;) > 1. But Theorem 3.1 shows that r(L,) <
r(Lr), contradicting r(Lt) = 1. o

We are also interested in the uniqueness of the function corresponding to the first focal point. If
conditions can be placed on the p,’s so that Ly is up-positive with respect to K7, then Krasnosel’skii’s
Theorem 2.4 can be applied. In this direction, then, suppose that p,_;(t) > 0 for t € [0,T].
Since K% is nonempty, Kr is reproducing. To show Lt is ug-positive, it is sufficient to show
Lr(K7\{0}) C K3%.

Let z € K7\{0}. First A*'z(t) > 0 for some t € [0,T); otherwise, z would be the trivial

solution. Then for some sq € [0, 7],

T k- -
NLrz(t) = Z%A’GT(t, s) z‘jp;(s)A'z(s) > NGr(t, o) Ii;:p;(so)ﬂz(so) >0,
fort € [k—j,T+k—1-3),0<j < k—1. Therefore, L7z € K§ for all z € K7\{0}, and Lt is
up-positive.

Now suppose, in addition, that (1.3), (1.2) has a nontrivial solution y € K7. Note that by
Theorem 3.3, T is the first focal point. An application of Theorem 2.4 shows that y is unique up
to scalar multiple.

Finally, the requirement that p;_, be strictly positive can be replaced by other similar conditions.
For example, if py_; is identically zero, we could require px_, > 0 and change our interval to
[0,T + k — 2] in the definition of Br.

However, under weaker conditions we can be certain that nontrivial solutions in Kr are actually

in K%. This condition is the key to show uniqueness.

THEOREM 3.4 Let p;(T) > 0 for some T > k — iy and let y € Kr be a nontrivial solution of
(1.3), (1.2). Then y is unique up to scalar multiple.

PROOF. Since y € K7 is a solution to the boundary value problem (1.3), (1.2), then y = Lry.
Let z also be a solution of the boundary value problem (1.3), (1.2) and assume —z ¢ Kr. Choose
o maximal so that y > az. We know that a > 0 since y € K$ by earlier arguments. Suppose
y — az # 0. From previous work we know that Lty — aLrz € K%. Then there is an € > 0 so that
Lty — aLtz > €z. Hence y — az > €z implies y > (a + €)z, which contradicts the maximality of
a. 0

The next two theorems will examine conditions which guarantee that the first focal point of

equation (1.3) is greater than or equal to T.

THEOREM 3.5 Assume that p;,(T) > 0 for some T > k —iq. If the smallest positive eigenvalue
Mo(T) of (1.1), (1.2) satisfies Ao(T) > 1, then the first focal point n > T.
PROOF. Suppose, on the contrary, that n < T. By Corollary 3.2, Xo(n) > Xo(T). Then

Xo(n) > 1 since Ao(T) > 1. This says r(Ly) = 1/Xo(n) < 1. But for 2, a solution of the boundary

value problem, L,z = z implies r(L,) 2 1, which is a contradiction. Therefore, 7 > T o

THEOREM 3.6 Let v be a nontrivial function in Kr such that

T k-1 i
Y Gr(t,s) 3 pi(s)Av(s) < vlt)

=0 =0
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with respect to Kr, where pi_1(t) > 0 for all t € [0,T). Then the first focal point n > T.

PROOF. Under the given hypothesis, we get that Lyv < lv with respect to Kr. Let Ao(T') be
the smallest positive eigenvalue of the eigenvalue problem (1.1), (1.2), and let z be a corresponding
eigenfunction in K. Then r(Lt)x = Ltz = (1/Ao(T'))z. By remarks preceding Theorem 3.4, Lt is
ug-positive, and it follows by Theorem 2.5 that 1/Ao(T") < 1. Therefore, by Theorem 3.5, the first
focal point > T'. 0

As in the discussion preceding Theorem 3.4, the result still holds if we require that the last
nontrivial coefficient function be strictly positive, and then modify the Banach space accordingly.
These conditions guaranteed that L7 was uo-positive and allowed the application of Theorem 2.5.
However, we can relax the requirement of ug-positivity, provided we add the condition Lrv # 0.
To see this, consider the situation in Theorem 2.5 where L < M and there are nonzero vectors
uy, uy € K and scalars A\, A\; > 0 such that Lu; > \ju; and Mu,; < Ayu,. In the proof of Theorem
2.5, uo-positivity of L was used to show € = sup{e | L(uz — eu;) > 0} > 0. In this case,

0 < L(u; — €u1) = Lu; — oLuy < Muy — eohuy < hauz — €ohqug = Ap(u; — )‘ “1)

Hence L(u; — co%:ul) € Kt implies A; < A2 by maximality of .

Now suppose that p;,(T') > 0 for some T > k — iy, and that there is v € K7 such that Lzv is
nontrivial and Lrv < v. Using techniques similar to those in the proof of Theorem 3.1, it can be
shown that L7v € K3. If z € K7 is an eigenfunction for (1.1), (1.2) corresponding to Ao(T'), then
€0 = sup{e | L7(v —ez) > 0} > 0. Hence, 1 < Ao(T'), and the first focal point n > T from the same
arguments used at the end of the proof of Theorem 3.6.
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