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ABSTRACT. Known sufficient conditions for quadratic dynamical system x'= Ax + f(x) to be
point dissipative given in terms of A and f for dimensions 2 and 3 are extended to allow for
more general forms for the nonlinear term f(x). Furthermore, the conditions extend to n
dimensions when f is quadratic with zero set an (n - 1)-dimensional hyperplane.

0. INTRODUCTION
We are concerned with a class of vector equations of the form x' = Ax + f(x) where the
nonlinear term f(x) is quadratic of the form

xTClx

f(x) =

_xTCn X ]
The n x n matrices {C;} are assumed symmetric with the orthogonality property xTf(x) = 0 for all
x. If xTf(x) = O for all x we say that f is a conservative function. Note that if x' = f(x) with f
conservative then lIxII2 is constant. The problem is to determine conditions on A and f sufficient
to have the system point dissipative, i.e., which guarantee the existence of a bounded region R

with the property that every trajectory of the system eventually enters and remains within R [2].
Consider the Lyapunov function V(x) = %(x - a)T(x - a) for the system. For large lix)l the

quadratic terms xTAx - aTf(x) dominatché@. Therefore our quest is to find conditions on
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A and f for which there is an admissible  which makes these terms a negative definite function.
If there exists an admissible a then a classic result [ 4 ] implies the system is point dissipative.

A necessary condition for the existence of an admissible a is that xTAx < O for each
nontrivial x in the zeros of f. We have shown for n = 2 and 3 [ 1 ] that this condition is also
sufficient. Settling the obvious conjecture for all n bogs down in a proliferation of cases.
However, we have shown in this paper that the necessary condition is sufficient for the simplest
n-dimensional case, namely, when the zeros of f form an (n - 1)-dimensional hyperplane.

Finally, we extend the notion of an admissible a to provide sufficient conditions for systems
x' = Ax + f(x) + g(x) to be point dissipative when f is quadratic but not conservative and g is not
quadratic. If there is a positive definite matrix S such that Sf is conservative then a vector a is
admissible for the dynamical system x' = Ax + f(x) if xTSAx - aTHf(x) is a negative definite
function where HTH = S. If a is an admissible vector for the system x' = Ax + f(x) then the
system x' = Ax + f(x) + g(x) is point dissipative if there is an ordered triple (€, C, M) such that
-aTHg(x) < C lIxlI2 - € for all x with IIxil > M.

Our interest in systems of the form x' = Ax + f(x) was stimulated by all of the work in the
literature based on systems of the same form originally studied by Lorenz [ 5]. We hope to
understand the richness of the class of chaotic systems, especially of dimension n > 3, by
classifying a sufficiently rich class of point dissipative systems in terms of their compact
attractors. This paper represents a step forward in that program by enlarging the class of
systems that can be first classified as point dissipative in terms of their coefficients.

1. PRELIMINARIES
The proof of the prinicipal result Theorem 3 uses some properties of skew symmetric
matrices. These are matrices such that AT =-A. Here are properties that are needed.

1.1. We note that kT is in the kernel of a skew symmetric B relative to left multiplication
if and only if k is in the kernel of B relative to right multiplication. This follows since

T
T
(k B) =- Bk when B is skew symmetric.

1.2. The rank of a skew symmetric matrix is even [ 3, page 217].

1.3. Again let B be an n-dimensional (n 2 2) skew symmetric matrix and C be the (n - 1)-
dimensional principal submatrix obtained from B by removing the first row and the first column.
If the ker(B) is nondegerate and is contained in {x | x, =0 } then C is singular. This follows
since k in the ker(B) implies k, = O thatis k = (0, ks, . . ., k;)T. Now if we project k by P
defined by Px=(xy,. . .,xy)T then Pis a projection from n to n - 1 dimensional vector spaces.
We note that k in the kernel of B implies that Pk is in ker(C). Since kT = (0, k,,...,k,) we

have
kTB = (k"B,,kTB,, .. .. kTB,)
=(0, PkTC,, ..., PKTC, )= (0,0,...,0)

where Bjand Cj refer to the jt column of B and C, respectively.
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1.4. If the ker(B) is contained in {x | x; = 0 } then the dim(ker(B)) < dim(ker(C)). To see
this let n be the dimension of B. We see from the proof of 3) that the dim(ker(C)) 2 dim(ker(B))
and dim(ker(C)) 2 1. Suppose that dim(ker(C)) = dim(ker(B)). Then rank(C) + dim(ker(C)) =
n - 1 and rank(B) + dim(ker(B)) = n. and so rank(C) = rank(B) - 1. But this impossible since
the ranks of both the skew symmetric matrices B and C must be even.

Without loss of generality we can assume that the hyperplane of zeros of f is {x|x; =0).
For consider the dynamical system x' = Ax + f(x) where the zeros of f are an (n - 1)-
dimensional hyperplane, call it H. Let R be a rotation so that H goes onto the hyperplane Y, =
{y!y;=0) under R-I. Let x=Ry. Then the orginal dynamical system is represented by
y' =R-1 ARy + R-1 f(Ry). Note that the zeros of R-1 f(Ry) are precisely the zeros of f(x)
under the rotation R-!. This is true for any rotation R. We note that Z(R -1 f(Ry)) 2
R(Z(f(x))). This applies to both R and R-1.

Let x,# 0 be in H. The hypothesis of our theorem requires that x,TAx, < 0. Then y,=
Rx,and y,T (R1AR) y, =x,TAXx,< 0. Since R has an inverse the hypotheses for the
dynamical system holds whether represented in terms of x or y.

Now assuming that Z(f) = {x | x=0} we notice that f has a convenient representation.
Each coordinate function of f, f, , k =1,2,..., n, must have (x| x, = 0} contained in its zero set.
If we represent f,, k=1,2,...,nby

fk(x) 2 2 kij ij
i=j j=
then

n
£0, Xg0 - X) = 3, 2 g 50 forallxg xg o xg
i=j j=
Therefore, by ;=0 if neitherinorjis 1. Or

n n
fk(x)=§i by K %=% lebklj x,

and
- 2": - ( )
b . x r ] X
1 =1 11j j blll b112 e blln 1
n
b b ...b
X b, . x 211 212 21
15{ 21j j n X,
f(x)= . .. =X,
i b .bnll bnl2 " Tnln .
X X
2 b, .. x
i 1o M1 iy | Xa |

Let B denote the matrix (bk 1 j)'ll '11 . Since xTf(x) = Xy xTBx = 0 for all x
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n n n
T _ 2 _ . . . .
x ' f(x) ‘j=2l bjlj X, xj +k2=,1 le (bklj +bjlk) X, xj X =0 which is the zero polynomial having

zero coefficients. B is skew symmetric and we drop the second subscript which is always one
and we have the representation

0 bl2 b]3 : In [ xl h
by 0 by %5 X,
f(x) = X, . . Ce e )
_'bln -b2n -b3n ... 0 | %]
1 d(V(x)(T
We use the Lyapunov function V(x)= 5(x - @)T (x - &) then (—%-)—))4 xTAx - aTf(x) +
linear terms. For large lIxIl the quadratic terms xTAx - aTf(x) dominate w therefore our

quest is find an a which turns the quadratic into a negative definite function.

2. EXTENSION OF PREVIOUS RESULTS

A sufficient condition for a quadratic dynamical system to be point dissipative has been
given [ 1 ] when the dimension is two or three. This condition uses a relation between the
quadratic and linear parts of the system when f is conservative. The following lemma allows
us to extend the condition to the case where there exists a positive definite matrix S such that

Sf is conservative.

Lemma 1. Let

x' = Ax + f(x) (2.1)
be a quadratic dynamical system for which there exists a positive definite matrix S such that Sf
is conservative. Then there exists matrix H for which the change of variables y = Hx transforms
the dynamical system (2.1) into y' = By + g(y) which has a conservative quadratic term.
Furthermore, xTSAx = yTBy.

Proof. We can factor S by S =HTH [3]. Let y=Hx or x =Hly. The system transforms
into y' = (HAH )y + H f(Hly) or

y' =By +g(y) (2.2)
The system (2.2) has a conservative quadratic term since yTg(y) = xTHT H f(x) = xTSf(x) = 0.
Note that xTSAx = yT(H-1)THTHA H-ly = yTHA H-ly = yTBy.
When Sf is conservative then we say that a vector o is admissible for the dynamical
system x' = Ax + f(x) if - XTSAx + T H f(x) is a positive definite function where S = HTH.
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When f is conservative then the condition for an admissible o reduces to - xTAx + aTf(x)
is positive definite. The proofs of the theorems when the quadratic part of the system is
conservative entail demonstrating the existence of an admissible & for the system.

These results [ 1 ] can be restated as follows:

Theorem 1. A quadratic dynamical system x' = Ax + f(x) is point dissipative when there exists a
positive definite matrix S such that Sf is conservative and there exists an admissible a. If the
system has dimension 2 or 3, Sf is conservative and zTSAz < 0 for any z which is a nontrival
zero of f then the system is point dissipative.

Proof. We can transform the dynamical system by y = Hx where S = HTH and by Lemma 1
the resulting dynamical system satisfies the hypothesis of the previous theorem. Hence, the
resulting dynamical system as well as the original system are both point dissipative.

Another direction of generalizing the past results is to consider nonlinear dynamical
systems which have nonquadratic nonlinear terms as well as quadratic terms. Relative to the
nonlinear terms there again must exits a positive definite matrix S such that the nonlinear terms
premultiplied by S are conservative.

Theorem 2. When there exists a positive definite matrix S such that Sg and the quadratic
function Sf are conservative and

Condition (A) For some admissible o for x' = Ax + f(x) there exists an ordered triple of
numbers (g, C, M) such that - a THg(x) < C lIxlI2-€ for all x with lixll > M.
then

x' = Ax + f(x) + g(x)
is point dissipative.
Note that condition (A) can be replaced by either of the stronger conditions (B) or (C).

Condition (B) There is an admissible o for x' = Ax + f(x) and I gll =0 ll x Il 2,

Condition (C) There is an admissible o for x' = Ax + f(x) and g is bounded.

3. THE PROOF OF THE THEOREM
Theorem 3. A quadratic dynamical system X' = Ax + f(x), A a matrix and f a quadratic
function, is point dissipative when

(1) there exists a positive definite matrix S such that Sf is conservative,
(2) the zeros of f are an (n - 1)-dimensional hyperplane,

and
(3) zTSAz < 0 for any z which is a nontrivial zero of f.

Proof. From Lemma 1 the system can be transformed into a system which has a
conservative quadratric term. Moreover, the zero properties are preservered. So we assume
that f is conservative. We can assume that Z(f) = { x| x; =0 } and f(x) = x;Bx where B is
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skew symmetric as shown in Section 1.3. Since Z(f) =( x1x,=0), k in the kernel of B
implies (0, k,, ..., k,)orthat k; =0. Let h be a vector which is not in the kernel of B but
(hy, ..., hn)T is in the ker(C), see Section 1.4. Here again C is the principal submatrix of B
formed by removing the first row an column of B. Moreover, if the rank of C # 0, we can choose h
so that h; = 0.

Let G={a la=th,tareal number } and we will show G is contained in the set of

admissible a's. Note that if & isin G then aTf(x) =x; thTBx =x,1(q,0,0,...,0)x=tq xf
since Ph is in the ker(C). Also q # 0 since h is not in the ker(B). Notice that q # 0 whether or
not the rank(C) = 0 furthermore, we can choose t so that ol f(x) 2 0 for all x.

We can restrict our attention to the sphere lIxll = 1 which is compact. There is a closed
cone on a closed cone which contains the hyperplane { x | x; =0 } such that xTAx <0 forall x =
0 in this cone. Hence, there is an € > O such that xTAx <0 on {x | lixli =1 and -€ < x; < €}.
Let M = max(xTAx)on { x!Ilixll =1 ). By picking t large enough in magnitude we can assure
that tqe2 > M. Hence, ol f(x) > tqe2 >Mon (x| lixll = 1 and Ix;l2€ }. Thus for all of { x|
Ixll =1}, xTAx- aTf(x) <0. And so for all nonzero x we have that xTAx - aTf(x) < 0 which
implies that the system is point dissipative.

This result can be generalized by adding to the differential equation any conservative
function g(x) whose growth is restricted. The corollary states this condition.

Corollary Let g and the quadratic function be conservative. If Z(f) is an (n - 1)-hyperplane and
x in Z(f) implies xTA x <0 and

Condition (A) for some admissible o there exists an ordered triple of numbers (g, C, M)
such that - a Tg(x) < IIxNI2°€ for all x with IIxll > M.
then

x' = Ax + f(x) + g(x)

is point dissipative.
Note that condition (A) can be replaced by either of the stronger conditions (B) or (C).

Condition (B) There is an admissible a for x' = Ax +f(x) andllgll=oli x Il 2,

Condition (C) There is an admissible a for x' = Ax + f(x) and g is bounded.

4. EXAMPLES
Consider the dynamical system

xlx2+x]x3+xlx4
2-1-1-1 KX X+ XX
431 i T T "
x': X+ 2 + X
-1-1-3 -1 e e R
-1-1-1-3 2
i Xl xlxz Xlx3 j

In this example the conservative quadratic function can be writen as
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0111
1011
-1-101
-1-1-10

x =x; Bx

B is a nonsingular matrix and C = B,; is singular. The kemnel of C is generated by (1, -1, 1).
Since B is nonsingular the zero set of f(x)isZ(f)={zlz = (0, zy, 23, 24) = ( X I x;=0 }. The
hypothesis of the theorem hold since

0

% % 3 1 4

z = z =]-1 -3 -1
o, 22,z3,24)A 3 (22’23’Z4)A11 3 | and All

z, z, -1 -1 3

is a negative definite matrix. We can use T = (0, t, -t, t) and aT f(x) = x, (0, t, -t, ) «(x + X3 +
X4 - X + X3 + X4, X| + Xg - X4, - X - X3 - X3)T = tx;,2. So the quadratic term of the Lyapunov
function is

xTAx-an(x)=xTAx-txfxT(A-Q)x=xT - X

This quadratic function is negative definite when t > 2.6. By the theorem this nonlinear quadratic
dynamical system is point dissipative.

Indeed in the example q turns out to be 1. Therefore, aTf(x) can only change the a,,
element of A. This turns out be just what we need and want. Because the zero set of f is ((0,
z,, 73, z4)} we must have that -A;; is positive definite. If t can be choosen so that det(-A +
Q) is positive then that will be enough to insure that - A + Q is positive definite.

Let us choose t =3 and return to the derivative of the Lyapunov function. We can set it
equal to zero and have the equation of a ellipsoid which contains the attractor of the system. The

equation is
-1 -1 -1 -1 2 -1 -1 -1
-1 3 -1 -1 T TS |
X x -(0,3,-3,3 =0
4 -1 3 -1 ( Mg a1 3 al*
-1 -1 -1 3 a1 -1 -1 -3

If we use the rotation

00000 00000 09370 03493
_Ry_|08165 00000 0207 03410,
Y= 04082 07071 02017 05410

-0.4082 0.7071 02017  0.5410

the above equation becomes
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y +(0.3330, 7.9233, 10.61307, -2.1149) y = 0

or

2 2 2 2
2(xl - 0.16651) + 2(x2 -3.9617) + 0.3542(x3 - 5.3065) + 5.6458()(4 -1.0574) =47.7333

The distance to the center is 6.7082 and the half-diameter of the ellipsiod is 11.6070 and our
bound is the sum of these two numbers is 18.3162
Consider the dynamical system

-X -y

2
[_4 4] 6xy - 4y 2ye
X+ x-y

2 +
-4 1 -6x + 4xy -2xe

where the linear part Ax and the quadratic function

2
6xy - 4y

= 2
fx) -6x  + 4xy

are related by 2TAz < 0 when z is a nontrival zero of f. The admissible a's are those for which
xTAx - aTf(x) is a negative definite function. This is equivalent to the matrix
4- 6ez2 3a Wt 2oz2

30Ll + 2(12 -1 - 40zl

being poistive definite. For the diagonial terms to be positive definite a; < - 1/, &, < 2/3 and for

the determiniant of the matrix to be positive

2 2
-9a1+12a1a2-4a2-l6a1+6a2-4 >0 -



DISSIPATIVE QUADRATIC DYNAMICAL SYSTEM

%2

]

"

)
&)=

L2

Figure 1

The shaded region is the set of admissible oT relative to A and f. Now if for one of these
a's condition (A) hold the the dynamical system is point dissipative. This is the case when
we choose T = (-1, 1)

2x e-x i

-’ g =- 71% 2ye =-(x+y)e"x'y5%

and the value of the determinate is 0.75 and the diagonal elements are 1 and 1. Here is the
graph [6 ] of some of the trajectories.

-5 S

q7 X
B J
g—f(‘= - ax + 4y + 6x% - Axy + 2xe XY
%-: - dx +y-6xy + 4y? - 2ye 7"

Figure 2

147
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The attractor above the origin is magnified in the following Figure 3. It indicates that there
is an attractor at (-0.5, 1) surrounded by a limit cycle which is an repeller. There is also an
attractor at (0, 0) and a saddle point near (1, 2).

y

N —

Figure 3
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