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ABSTRACT. In this paper, we introduce a new formulation of the theory of continuous spectrum
eigenfunction expansions for self—adjoint operators and analyze the question of when operators
may be approximated in an operator norm by finite sums of multiples of eigenprojections of
multiplicity one. The theory is designed for application to ordinary and partial differential
equations; relationships between the abstiract theory and differential equations are worked out in
the paper. One motivation for the study is the question of whether these expansions are
susceptible to computation on a computer, as is known to be the case for many examples in the
discrete spectrum case. The point of the paper is that continuous and discrete spectrum
eigenfunction expansions are treated by the same formalism; both are limits in an operator norm
of finite sums.
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0. INTRODUCTION

Eigenfunction expansions may be considered as an abstraction of the idea of approximating
complicated waves by finitely many standing waves. For discrete spectrum eigenfunction
expansions associated with a self-adjoint operator H in a Hilbert space L2(X,p), the rate of

convergence of the expansion has been the subject of a great deal of research. In the continuous
spectrum case, sums are replaced by integrals, and the question of whether the integral can be
approximated by a finite sum has not been studied. This paper begins such a study; first,
however, we indicate why the question is important, and what sort of answers we look for. It is
helpful to take a naive look at the method of separation of variables, or eigenfunction expansions.
One purpose of an eigenfunction expansion is to convert continuous data, such as functions,
into elements of C", vectors formed from the coefficients of the function in the expansion. A
problem, such as a partial differential equation, in a function space is then transferred to ?,
solved there (partial differential equations often transform into ordinary differential equations
with constant coefficients), and then the solution to the original problem is obtained by
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transforming back, that is, by summing the eigenfunctions with the recalculated coefficients. This
involves a certain error. The error is measured using two Hilbert spaces Y and Z.

An eigenprojection in B(Y,Z), the bounded operators from Y into Z, of a self-adjoint
operator H in a Hilbert space L, is an operator in B(Y,Z) of the form P(¢) = F(¢)F, where

F e ZcY', and where H takes a dense locally convex vector space W contained in Y continuously
into itself, and H'F = AF. Ideally, the operator which solves the original problem is the limit in
B(Y,Z) of finite sums of multiples of eigenprojections. We call this property the discrete
approximation property, for the remainder of this introduction.

If the discrete approximation property holds, the eigenfunctions used to perform the
expansion do not have to be recalculated for each new function being expanded, and only finitely
many coefficients must be calculated. In other words, up to a certain error, functions become
elements of Cn, and semigroups generated by the original self-adjoint operator become semigroups
of diagonal matrices. Continuous spectrum expansions have at present no such theory; these are
modelled on the inverse Fourier transform, so instead of finite sums one must work with integrals
which in general only converge in the mean, and convergence in operator norm is not discussed.
One consequence of this is that the theory of continuous spectrum eigenfunction expansions
appears to have no computational significance; it seemingly cannot be put onto a computer. This
situation, which if true would lead to problems of whether the theory is well-posed in any
reasonable sense, contradicts the intuition gained from the Fourier transform; the Fourier
transform is well-known to be computationally significant. The purpose of this paper is to begin
a continuous spectrum theory modelled on the discrete spectrum case, where finite sums appear
instead of integrals. In order to do this, it has been useful to reformulate the existing theory of
these expansions. More about this reformulation will be given later in this introduction.

The discrete approximation property is shown in section 3 to follow if the operator in
question is a convergent operator—valued integral, in B(Y,Z), of eigenprojections, which in the
continuous spectrum case must go from a space Y smaller than L2 to a space Z large enough to

contain the eigenfunctions. Hence we must study when the expansion is such an integral. This is
shown in section 3 to be true when the measure of A is finite, with respect to an invariant
measure depending for a cyclic subspace only upon Z. This measure is the one which normalizes
the eigenfunctions in Z.

For Sturm—Liouville theory for the Dirichlet problem on a finite interval, with Y = H(l) and

Z = L”, the sort of convergence we study is well known to occur, as it does in many other discrete
spectrum problems. Even in discrete spectrum problems, however, the calculation of appropriate
spaces Y and Z is often nontrivial. In this paper, in the discrete or continuous spectrum case, they
are calculated using a priori estimates on the domain of H. Eigenfunctions satisfy the equation
H'F = AF in a certain dual space and are members of Z.

To study the discrete approximation property for an arbitrary bounded continuous function
of H, we show that it is sufficient to study the property for the spectral projections P(A) for H,
corresponding to Borel sets A. We show in section 5 that the discrete approximation property for
P(A) is equivalent to the question of whether P(A) is compact in B(Y,L2), a question of interest

in its own right. We obtain results which give compactness for concrete examples in spaces where
it is otherwise not known. This shows that the theory has consequences which reach beyond itself,
and suggests the problem of characterizing the sets A such that P(A) is compact; for examples
such as the time—dependent Schrédinger equation, this means calculating the energy sets on which
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the separation of variables scheme discussed earlier works.

It is not quite accurate to say that existing theories completely ignore these questions. A
little bit of thought will convince one that for a bounded set A, the inverse Fourier transform
representation of the spectral projection P(A) for the self—adjoint operator associated with id/dx
has discrete approximation properties from, say, Y = {¢: 6/w € L2} toZ={F:wFe L2}, where w

is a well-behaved L2 function. From the equivalence, shown in section 5, of the approximation

property for P(A) with the compactness of P(A) in B(Y,Z), together with known results about
Schrodinger operators, it is not difficult to establish the same properties for the Schrodinger
operator with a well-behaved potential, where A is a bounded set of energies. However, in
situations like this, the compactness of the spectral projection is known beforehand, and may be
used as in Section 5 to produce the approximation property. A more interesting problem is that of
of unbounded sets A. With the Y and Z above, for the inverse Fourier transform, it turns out
that some unbounded sets A have this property and others do not. The compactness of P(A) is
only known as a consequence of the theory. The results of this paper are oriented toward the
study of which sets A have this property. As an example, the general Sturm—Liouville case on a
half-line is studied in section 4. Much sharper results for short—range potentials are given by D.
B. Hinton and the author in [4], using the results of this paper. Examples from partial differential
equations also fit easily into the formalization of this paper and explicit examples are given. Here
the results are less sharp unless one restricts to a single cyclic subspace.

The heart of the paper is the operator valued integrals of Section 3, together with their
relation to the approximation problem. In section 5, we show the equivalence of the two
problems, compactness and approximation. Using the results of sections 3, 4 and 5 of the paper,
we see that certain spectral projections P(A) are compact as operators between spaces where they
are not already known to be compact by a priori estimates. A simple example is given in section
4, which is about second order ordinary differential operators.

The theory of continuous spectrum eigenfunction expansions is a very old one, going back
to Gelfand’s work in the 1950’s. The book of Berezanskii [1] is a fundamental reference, but it is
difficult to extract specific information from such a general theory. The work of Simon (8], which
is functional—analytic though it is specifically slanted toward Schrodinger operators, is a clear and
rigorous approach to the theory with a lot of specific information.  The paper of
Poerschke—Stolz—Weidmann [5] is more general, and also has more elenienta.ry proofs. This paper
has been followed up by Poershke and Stolz [6], who give applications of their results to scattering
theory.

With such a large and excellent literature, why give yet another approach to the whole
theory? We do so, partly to obtain the crucial assertion iii) of Lemma 1.6, which we need for the
basic problems discussed earlier, but also to be able to analyze the expansion in a format based
simply upon a priori estimates on the domain of powers of the self—adjoint operator H which is
being decomposed, so as to make the results as concrete as possible for applications to differential
equations. The question of what is needed about an a priori estimate in order to do this is
answered in the paper. Our proofs are self—contained, since once the formalism is set up and
Lemma 1.6 is proved, the inverse Fourier transform (Lemma 3.4) and the Fourier transform
(Theorem 1.8) follow quite directly from the spectral theorem; to attempt to invoke other results
would introduce technical difficulties. The estimates on the eigenfunctions in this paper contained
in Assertion ii) of Theorem 1.8 do not follow (at least directly) from other results; and as was
remarked earlier the kind of strong convergence of the integrals in the inverse transform contained
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in Lemma 3.4 is not studied at all in existing literature. On the other hand, our hypotheses are
different from those of other approaches such as [5] and [8]; for example, our theory also demands
more smoothness on the coefficients when applied to differential equations, as we discuss below.
The relationship between this work and that of [5], [6] and [8] is an interesting question for future
research.

The formalism of our theory of continuous spectrum expansions depends on the
introduction of a locally convex space W with certain properties, such that H takes W
continuously into itself. It is needed in order to have a core where all operations make sense, and
from which estimates may be extended by the closed graph theorem. It also allows us to say what
an eigenfunction is; it is just an element of W' such that H'F = AF. This, together with regularity
theorems for the domain of H, if H is a differential operator, is what turns an abstractly defined
eigenfunction into a concrete object such as a smooth function. For example, if W = Cg(ﬂ), and

(2 is an open subset of a C® manifold, and H is generated by a hypoelliptic differential expression,
then W' is the space of distributions, so that if F € W' and H'F = AF, then F is a C® function. If
the operator H is, for example, associated with a Dirichlet problem, smootheness of F is needed to
show that F vanishes on the boundary of Q. It should be noted that the smoothness of F does not
follow only from the fact that F € W', which is implied by virtually any theory, but from this fact
'together with the fact that H'F = AF. Of course, there are many approaches to these expansions
which imply, for example for Schrodinger operators, that the generalized eigenfunctions satisfy the
differential equation in a distributional sense and hence classically, but these assertions are shown
as consequences of specific properties of the examples being studied. Since such assertions are
necessary for applications, we build them into the theory, producing a more powerful structure.
Motivated by the above discussion, in examples studied in this paper we often take W to
be C“O’(Q); this causes us to assume smoothness of the coefficients when H is a differential operator.

However, other choices of W would perhaps allow more general coefficients. This is another
subject for further work.

The author has been fortunate enough to have many discussions of this theory with many
different mathematicians over a period of some years. He would like especially to thank Christer
Bennewitz, Rainer Hempel, and Don Hinton, although discussions with a number of others have
also been very helpful. He would also like to thank W. D. Evans, University College, Cardiff, and
the British SERC for support during the author's very pleasant four—month stay in Cardiff in the
spring of 1987, when this paper was begun, and Peter Hislop and the University of Kentucky for
their hospitality in the Spring semester of 1991, when the research for the paper was finished.

1. BASIC FORMALISM AND L, ESTIMATES

In this section we develop the basic formalism and eigenvector estimates for our theory.
We shall need to introduce some basic spaces W and W'. W is contained in the domain of the
self-adjoint operator H, and W' is its dual space under a certain topology. One may think of W
as like Cg(fRn) and W' as the space of distributions on R™; also one may sometimes wish to think of

W as the rapidly decreasing functions and W' as the tempered distributions. In order to handle
the case where W = C'(‘)’(Ikn), we need to assume that W is an inductive limit of Frechet spaces,

rather than a Frechet space itself, since C'(')’(Ikn) under the usual topology is not metrisable. (See

Proposition 5, p. 125, Robertson and Robertson [7].) The purpose of these topological vector
spaces is to get a precise definition of what the eigenfunctions are: they are just elements F of W'
such that H'F = AF for some A, where H' is the transpose of H. The structure of W is needed for
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an application of the closed graph theorem to obtain a priori estimates from assertions about the
domain of H.

Notation 1.1. Let h be a Hilbert space, and let H be a self—adjoint operator with domain a
dense subspace of b and range contained in . Ife€bh, let S e denote the closed linear span of

{P(A)e| A is a Borel subset of R}, where for any Borel set A, P(A) is the spectral projection
associated with A by the spectral theorem. Let o,(A) = [P(A)e,e], where [, ] denotes the inner

product of . (In this paper, h will always be L2(X,p), where p is a positive measure on X). Note
that o is a positive Borel measure on R, such that ae(IR) = ||e||2. Note also that the restriction of
Hto Se is a self-adjoint operator which is unitarily equivalent to the operator in L2(ae) which
maps f(A) to AM(]A).

Assumption 1.2. Throughout the paper, we shall assume the following hypotheses:

i) H is a self-adjoint operator with domain a dense subset of h and range contained in
h= L2(X,p), where X is a locally compact Hausdorff space, and p is a positive regular Borel

measure on X such that the measure of every compact set is finite;
ii) W is the inductive limit of a sequence {Vn} of separable Frechet spaces such that for

each n, Vl1 is algebraically and topologically contained in or equal to V (hence W is

n+1’
complete, by Prop. 3, p.128, [5]); (note that a subbase for the topology of W is the set of all
absolutely convex subsets U of W such that UnVn is open in Vn for every n; recall that W is

metrisable if and only if for some M, V]1 =Vyu for n > M, by Prop. 5, p. 129, [7]);

ili) W' is the dual of W, and W' is given the topology o(W',W) of pointwise convergence
on W; (recall that a neighborhood subbase about 0 for this topology is the set of neighborhoods
U(x,e) = {F: |F(x)| < ¢});

iv) W C domain H and H is a continuous linear transformation from W into W;

v) W is contained and dense in LI(X,p)an(X,p) and the identity mapping from W into

L,(X,p) and L,(X,p) is continuous;

vi) for any open set I in X, if C c()() denotes the continuous complex—valued functions of
compact support in X, and if ¢ is any element in C c(X) which is ‘supported in T, there is a
sequence {¢n} of elements of W, each supported in T, such that ¢  converges in L2(X,p) to ¢.

Remark: We shall sometimes assume the following estimate; we shall explicitly state this
assumption each time.

Estimate 1.3. (an a priori estimate) There exists a 1-1 continuous linear transformation B
from W onto W and a positive function f € L2(X,p), such that multiplication by f maps W

continuously into W and such that the linear transformation B' has the property that there exists
a positive integer N such that {B'¢}/f € Lm(x,p) for all ¢ in the domain of aY. (Note that by v)

of Assumption 1.2, L2(X,p) is naturally embedded in W').

Remark: We now make the initial definition of the eigenfunctions, as linear functionals on
a dense subspace of W over the rationals. The work consists of showing that they belong to a
natural space. Note that W has a countable dense set by hypothesis ii) above. Let S' be a
countable dense subspace of W over the rationals.
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Notation: Let e€h. Let ¢, be the unitary mapping from S e Onto L2(ae), such that
¢(e) =1, and such that ¢e(H¢)(A) = A¢e(¢)(A), for all ¢ in D(H)NS,, and such that
¢e(P(A)¢) = x(A)¢e(¢), where x(A) denotes the characteristic function of the Borel set A. Let
U, = ¢eoP(S e)’ where P(S e) denotes the orthogonal projection onto S,. Note that the existence
and uniqueness of ¢ e follows from the spectral theorem. Let S = S' + HS'. For each ¢i € S, select
an everywhere defined representative of U e(B ¢i)' Denote the above representative by g;.

Definition 1.4. For each ) € R, define i/\,e on S by iA,e(¢i) = g;(A), so that if U, is the
mapping discussed above which arises from the spectral theorem, then Z A,e(¢i) =U e(B¢i)()‘) for
almost every A with respect to O Note that, if AO is the complement of the set of A such that
z Ae is a linear functional on S over the rationals, then ae(AO) =0.

Lemma 1.5. If there ezists a positive constant M such that
I(B"0)/1ll , < Ml 0||§ + ||HN€’||§)1/2 for all 0 in the domain of HN, where f is as in Estimate 1.3,

then for almost every x with respect to p the following is true: for any orthogonal set {ei} in the
domain of HN, such that He, is also an orthogonal set, and such that ||ei||2 + ||HNei||2 =1 for all
i, then (22_, | B, | %(x))1/2 < Mt(x).

Proof: It can be proved by a technique like that of Weidmann [9], p. 140, that if T is a
bounded operator from a separable Hilbert space h into L _(X,p), and IIT|| is the associated

operator norm, then for almost every x with respect to p, it is true that for any orthonormal set
{g} in b, (EilTei(x)|2)l/ 2 <|IT|l- The idea of the proof is to construct a mapping Q from X into

h such that Tg(x) = [Q(x),g]. Then one can see from the hypothesis that for almost every x, Q(x)
has norm less than or equal to ||T||]. Then for each fixed x, the Schwartz inequality gives the
desired result. To make this proof rigorous demands careful attention to sets of measure 0 with
respect to p. Now if we let Tg be (B'g)/f, and h be the domain of AY with norm
"8"121 = ||E||g + ||HNg||§, the result follows.

Another way to construct the mapping Q which does not pay such careful attention to sets
of measure 0 is due to C. Bennewitz and the author:

Note that by the Gelfand representation theorem for commutative Banach algebras
L_(X,p) is isomorphic and isometric as a Banach algebra to the algebra C(Y), where Y is the

maximal ideal space of the Banach algebra Lw(X,p), a compact Hausdorff space. Let E be the
isometry from Lw(X,p) onto C(Y). Define T to be the operator ET. Then at every y € Y, define
éy(g) to be ETg(y). It is clear from the hypotheses that for all y € Y, the linear functional é . is
in the dual space of h, and has norm less than or equal to M = ||T||. Thus Qy(g) = [g,0] for some
a € h, with ||| < M. It follows that for each orthonormal set {ei} of elements of h, and for each
finite N, (Iil;I —1|ETe;(y)] 2)1/ 2¢ C(Y) as a function of y, with supremum norm less than or equal
to M. Hence for each N, (EN=1 |Tei(x)|2)1/ 2¢ L_(X,p) as a function of x with L_ norm less

than or equal to M, since the map E is an isometric isomorphism and takes absolute values to
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absolute values. It follows immediately that for almost every x in X with respect to p,
(%1 |Tei(x)|2)1/2 < M, as we desired to show.

Lemma 1.6. Let n be a positive integer. Assume the hypotheses of Estimate 1.8. Then the
following hold:

i) B is a homeomorphism from W onto W, and B' is a homeomorphism from W' onto W'.

11) There ezists a constant K such that for any ¢ € domain HN,

I(B'8)/1ll, < K(ll4lly + IIHN¢II2)-
iii) Let {§(i)}li‘=1 be any pairwise disjoint collection of Borel subsets of R; let K be as in i)
above. Suppose that e is in the domain of HN, and that {0i} 18 any collection of elements of W
such that || 6]l < 1. Then

B¥_1 I ¢s)| VB 1d0,(0) < VEKIR(T) el

where ||e||121 = Ilellg + ||HNe||§, T is the union of the supports of the functions 6,, and X(T) is the

characteristic function of T.

Proof: To prove the first conclusion, we note that the mapping B is a 1-1 mapping from
W onto itself. This implies that B is a homeomorphism, by a result of Dieudonne and Schwartz
(see the discussion on page 124 of [7]). However, it is now easy to prove this result from later
work on webs; for completeness we give the proof. It is clear that the graph of B_l is closed. By
Theorem 2, page 158, [7], we see that if E is a Frechet space, and F is a separated convex space
with a completing web, then mappings from E onto F with (sequentially) closed graph are
continuous. It is clear from the definition of a compatible web that a Frechet space or the strict
inductive limit of Frechet spaces has a compatible web, which is completing by Lemma 1, p. 156,
[7). Hence, W has a completing web. To show the continuity of B_l, we need only show that the
restriction of B_1 to each space Vll is continuous, since for an open set U, B_I(U) is the union of

its intersection with each Vo and since a set is open in W if and only if its intersection with each
V., is open. But each V_is a Frechet space, and it is obvious from the continuity of B that the
graph of the restriction of B! to each V, is sequentially closed. Therefore B lis continuous, as

we desired to show. That B'is a homeomorphism is immediate.
The second conclusion is a consequence of the closed graph theorem, because the mapping
T taking the domain of HN, with graph norm, into Lm(X,p) has closed graph, where

T¢ = {B'¢}/f. To see this, suppose that ¢, is a Cauchy sequence of elements of the domain of
HN, in graph norm, and that T¢, is Cauchy in Lm(X,p). Then ¢ converges in L2(X,p) to an
element ¢ of the domain of ol We must show that T¢,, converges to T¢. Since ¢ converges to
¢ in L2(X,p), then ¢, converges to ¢ in W', where we have embedded L2(X,p) into W' using v) of

Assumption 1.2 by mapping g to the linear functional F_ such that Fg(¢) = [¢,g]. Since B'is

g
continuous from W' into W', then B'¢ converges in W' to B'¢. But by hypothesis, (B'¢n)/f is
Cauchy in Lm(X,p) and therefore converges to an element 6 of Lm(X,p). The preceding argument,
using v) of Assumption 1.2 for L,(X,p), shows that convergence in L_(X,p) implies convergence in

W'. However, multiplication by f takes W' continuously into itself, where by definition



8 R.M. KAUFFMAN

fF(¢) = F({#), because the transpose of a continuous map from W into W is a continuous map
from W' into W'. But we have embedded L2(X,p) into W' using an embedding map E such that

E(f¢) = fE(¢). Thus B'¢_ converges to f0in W'. Thus B'¢ = {fin W'. Hence B'¢(x) = {é(x) for

almost every x in X with respect to p. Therefore (B'¢)/f = 6, as we desired to show. The second
assertion is proved.

We prove the third assertion. Note that the second conclusion of the lemma guarantees
that for any ¢ in the domain of HY, [[(B'¢)/f]_ < vEK(I¢12 + IENgI2)1/2 We may therefore
use y2K as the constant M in Lemma 1.5. Define b, by b,(}) = |U, e(B()i)l/Ue(B(;‘i) if
Ue(B0i) # 0; define b;(A) to be 0 otherwise. Note that each b, is measurable with respect to g

*
Use r to denote the complex conjugate of the function r. Let R(£(i)) denote the characteristic
function of £(i), and define g € Se by Ue(g) = 21;:1
&; = (P(£(i))g)/IIP(£))glly, then 55, |Be,(x)|? ¢ 2K?% for almost every x. Thus

b.R(&()). By Lemma 1.5, we see that if

B_J i) Ve(BO)|do () = B_J £)PiU(BA)o,(A) =

55/ {U(BA)YU(P(¢(i))g} (Ao (A) = B¥_ (B, P(&(i))g] =
X[ BG{BP(E6))g) (x)dn(x) < BX_ | IR(TIBP(£(i))ell, =
25 _ IP(E0)8ll, IRT)Bely < (55, [P(E)glID) Y XX In(ryBrey2)!/2.

e 112 12 2
But Eli(___l IR(T)B'e;ll; = Eli(=1jp |B'e;| “dp < 2K/ f2dp. Hence

B/ sy | Ue(BO)dag(3) < VEK(ES_ (€08l /2N, < VIR el T,

The third assertion follows immediately; the lemma is proved.

Corollary 1.7. Assume the hypotheses of Estimate 1.8. Use the notation of Definition 1.4.
Suppose that e is in the domain of Y. Then for every € > 0 there exists an M > 0 such that
0(Byp) < € where Apy ={X €R\A)| 3 g €S with |Z/\,e(B¢)I > M|I¢ll,}- )

Proof: Let us write the countable set S as {¢,}. Let &y ={X | |ZA,e(B¢i)I 2 Mligill,
Let 6, = ¢,/x;, where r; is a rational number such that ||¢,]|, < r; < 2||<}Si||2. For any fixed M, let

—1
M =&y 20d 7= € \ Ul €y Then for any k,

Bio1 Iy, 104B8) 40,0 2 (M/2)o (U} _ ;)

By Lemma 1.6, we see that
k k 2 Np/ k 241/2
o(Ui—1m) € (2/MWVZK|Ifllo(IP(U; _ym)elly + NHTP(U; _qm;)ell5) 12
The corollary is proved.

Theorem 1.8. Assume the hypotheses of Estimate 1.8. Suppose that e is in the domain of

HN, and that || ||h is as in Assertion 1ii) of Lemma 1.6. Then there ezists a subset { of R such that

ae(IR\() = 0 and such that for every A € (, there ezists a unique element Z, , in W' such that Z,

18 not the zero functional and Z ). ddrees with i Le On S. Furthermore, if F Le 18 defined on ¢ by
) ) ’

. n—1
the relation F/\,e = (B) Z/\,e’ then:
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1) H'F,\,e = AF,\,e’ where H' is the conjugate of the restriction of H to W; furthermore, for
any e W, F 5, e(0) = Ue( 0)(B) for almost every B with respect to O

i) BF) € Ly(X,p);

1) if o)) = B'F,\,e’ then a is a measurable function with respect to g, from R into
L2(X,p), in the sense thatV € > 0 there ezists a compact set T' such that ae(m\l") < ¢ and such that
the restriction of a to I' is a continuous function from I’ into L2(X,p);

i) if 0 is a Borel subset of X and A is a Borel subset of R, then
Iall x(ﬂ)a(A)]|2dae < V?KIIP(A)e"h" x(ﬂ)f]lz, where x(f) is the characteristic function of B.

Proof: B'is a l}omeomorphism from W' onto W'. By the preceding lemma, for almost
every A the functional Z e has a unique extension Z Ae b0 W. There exists a unique element of
b b

L2(X,p) which agrees with ZA,e on W; denote this also by Z/\,e' For any element ¢ of S',
Z )\,e(¢) =BF A, e(¢) =F A e(Bda) for almost every A with respect to o, But also
ZA,e(¢) = U (B¢)()) for almost every X.

If 6 is the set of A such that Z Ae is the zero functional, then for every ¢ in W, Ue(¢)
vanishes on 8. By continuity of U, from LZ(X,p) into L2(ae), and since W is dense in Ly, it
follows that Ue(e) vanishes on 6. But this function is identically equal to 1 almost everywhere
with respect to o, Hence cre(b') =0. Thus Z e is non—zero for almost every A.

By the spectral theorem for self-adjoint operators in a Hilbert space, if B¢ = 0, we see
that F, (H0) =2, (B™'H0) = U (H6)()) = AU(6)(}) except for a fixed set of measure 0 with

respect to g, which is the union of exceptional sets for each ¢ in the countable set S'. Since
F) o € W', and since the range of the restriction of B to §'is dense in the range of B and therefore
?

dense in W, the first conclusion follows immediately. The second assertion was proved at the
outset. X
We prove the third assertion. Note that if Bg €S, Z, e(B¢) is measurable by definition.

Extending by continuity, for almost every ), to LZ(X,p), we see that [¢,B'F A e] is a measurable
function of A for every ¢ € LZ(X’p)‘ By proposition 8.15.2, p. 574, Edwards [3], the conclusion

follows.
Note that [B'F A e,¢] =F, e(B¢) = Ue(B¢) almost everywhere. By passing to the limit in

Lemma 1.6 we obtain that for any open set I' in X, and any partition {£(i)} of A, and any set of
elements ¢, € L2(X,p), each supported in I', such that ||¢i|| =1,

1

2]-‘=11 A |BFy o.¢;l1dog < VEK|IX(T)llIP(v;600))elly,
Now use assertion iii) to select for every e >0 a compact set Ke of A such that

ae(A\ne) < e and such that the restriction of B'F,  to &, is a continuous function from K, into
3

Lo(X,p). It follows that, if || || [ denotes the norm of Ly(T\p),

T JBF el o € VKUY IP( el
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From the monotone convergence theorem, it follows that
I AIBF Iy pdo < VEKIX(D)IP(A)ell,

Selecting a countable decreasing chain of open sets I' with intersection essentially equal to
B, and using the monotone convergence theorem again, we easily complete the proof of iv), and
hence the proof of Theorem 1.8 is completed.
2. SOME REPRESENTATIVE EXAMPLES

In this section, we take a look at some representative examples to motivate the theory.

Ezample 2.1. Let X =R" and p be Lebesgue measure. Let W denote C‘(')’(Ikn). It is

well-known (see p. 75, [7]) that W satisfies the hypotheses above. Suppose that H is a
self-adjoint operator in L2(IRn) such that Hy = 79 for all ¢ in the domain of H, where 7 is a

partial differential expression with C” coefficients. Suppose further that for some positive integer
N, all elements of the domain of HY liein L (IRn). Let w be any bounded, L, positive element of

C®(R™). Let B be multiplication by w; then B' is also mult:phcatxon by w. Let f in Estimate 1.3
be w. Theorem 1.8 then yields that, for any e in the domain of ;o , the eigenfunction F ) e has the

property that wF Ae is an L2 function, which has the properties of B'F Ae in this theorem. Here
7F Ae= AF Ae in the sense of distributions.
Ezample 2.2. Suppose that H is a self—adjoint operator in L2(IRn) such that Hf = #f for all {

in the domain of H, where 7 is a partial differential expression with C™ coefficients such that each
derivative of any coefficient of 7 has at most polynomial growth at infinity. Suppose that H has
the additional property that for any positive integer j, there exists a positive integer N(j) such
that the domain of H NG is conta.med in the Sobolev space HJ(IRn) Let 7 denote the differential
expression defined by 7 = Elil=1 & / 0xi — 1. Let B be the operator on W defined by

B¢ = (|x|2 + 1)_(n+€)/ 4rr¢, where r is large enough such that for any g such that g € H2r(Rn)’
it follows that g € Lm(IRn). Let W be the space of rapidly decreasing functions on R”. By using the

Fourier transform, we see that B satisfies the hypotheses of Estimate 1.3. W satisfies Assumption
1.2 since it is a Frechet space. Direct calculation shows that B’(0)/(|x|2+1)_(n+€)/ 4) € Lm(lltn)

for all 4 in the domain of HN(j), where j is large enough that for 4 in Hj(lkn), D%e LW(IRn) for
la] <2r. By Theorem 18, we see that 7*{(|x|2 + 1) (¥ /4F, } ¢ L (&®). Since F, _ is in
’ ’
W', the space of tempered distributions, we see from the ordinary Fourier transform that
2 —(n+¢)/4 n
(Ix]“+1) F,\,e €L (R7).
Ezample 2.3. Let H be any self-adjoint operator in L2(|Rn) such that Hf = 50 for all fin

the domain of H, where 7 is a partial differential expression with C* coefficients, such that each
derivative of each coefficient of 5 has at most polynomial growth at infinity. Let W be the space
of rapidly decreasing functions. Suppose that W is contained in the domain of H. Let e € L2(|Rn).

For all $ € W, let B¢ = (Elil=1 32/8:(? - 1)_M((|x|2 +1)77¢) for 7> n/4, where the inverse is
taken in the space W', and where M is such that (|x|2 + 1)_M is in L2(IRn)‘ Then B satisfies
Assumption 1.2 and Estimate 1.3, with f = (|x|2 +1)77, with N = 0, since

B'0 = (|x| 2, 1)—"7(2?=1 & / 8x? - 1)"M0, and since the hypotheses guarantee that
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(Elil=1 02/ 8x? - 1)_M0 € Lm(IRn) for all 6 € Ly(X,p). Theorem 1.8 shows that, for almost every A
with respect to g, F) € W' and (|x|2 + 1)_7(E'il=132/8x? - 1)_NF)‘ e € L2(IRn).

3. APPROXIMATION
In this section we study the main problem of the paper.
Assumption 3.1. Let Y be a subspace of L2(X,p) which is also a Banach space with norm

Il lly> and which has the properties that a) W is a dense subspace of Y, b) there exists a constant
J such that J||¢lly 2 ||B_1¢||2 for all € W, and c) the injection from Y into Ly(X,p) is
continuous. Let Z denote {F € W'| B'F € Lo(X,0)}; if F € Z, let ||F||Z = ||B'F||2. Let A denote
the continuous extension of B! as an operator from Y into L2(X,p).

Remark: We now give the definition of diagonalization, and introduce a spectral measure
which we denote by B Since the properties of b, arE Very important for our theory, it is useful to

note that by an elementary calculation it follows that the definition of He does not depend upon e,
but only upon S e In other words, if S e = Sf, then He = My It should also be remarked that the

following definition has been made quite detailed because it seems useful for later application to
state the approximation properties we obtain completely.

Definition 3.2. Suppose the hypotheses of Assumption 3.1, Assumption 1.2 and Estimate
1.3 hold, and that e € domain (HN). Let , be the positive measure on R defined by the relation

dp, = ||B'F,\’e||§dae, where FA,e is as in Theorem 1.8. Let Q =r(H), where r is a bounded
continuous function from the spectrum of the restriction of H to Se into €. Let A be a Borel
subset of R. We say that P(A)P(Se)Q is diagonalizable in B(Y,Z) with respect to H and e if
B’P(A)P(Se)Qg € Ly(X,p) forallg € Y, and

a) for every ¢ > 0 there exists a positive integer k and a finite disjoint family {Ai}]i‘=1°f
subsets of R such that p,(A,) is finite for every i and such that there exists a set of real numbers
{,\i}]i‘=l with ); € A;NA and with the property that, injecting P(A)P(S.)Q0 canonically into W',

I{P(A)P(S)Q - 55 _, ye(AinA)?(Ai)R’\i’e}(0)||Z < Oy for all 0 € Y, where

b) ’\i is in the complement of the exceptional set of Theorem 1.8, so that in particular F Ae
l!

is as in Theorem 1.8 and B'F, , € Ly(X,p) with |B'F, ||, # 0, and where
]7 b
¢) Ry (#)=B"G, [(Ag)G, , for any ¢ €Y, where Gy ¢=F, (/IBF, ., and
Iy Iy 1 1 1 v

where B' G e denotes the complex conjugate of the functional B'G Ae The complex conjugate
) )
appears again, because we are working in W'. Note that while the points ’\i depend on A, the
number k and the sets Ai do not; these depend only upon e. Note also that R ). dBrees with
l,

E)\. e(gz&)G A.e 0 W, and that by hypothesis b) of Assumption 3.1, together with the fact that
l, i)

BG) ¢ Ly(X,p), it follows that Ry o B(Y,Z).
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Let M be a family of bounded continuous functions from the spectrum of the restriction of
H to S, into €. Let Qy = {r(H)|re M}. We say that P(A)P(Se)QM is simultaneously

diagonalizable in B(Y,Z) with respect to H and e if for every € > 0 there exist A and A asin a),
b) and c) above such that ]l{P(A)P(Se)Q—El.‘=1 ‘“e(AinA)T(’\i)R,\. IOl < €l 0]y for all
l’

f0eYandallreM.
Theorem 3.3. Suppose that the hypotheses of Assumptions 3.1 and 1.2 hold, and that
Estimate 1.8 holds, and e € domain N, Let Gy=F, e/"B'FA e”2' Then Assertion i) below

implies Assertion i), which in turn implies Assertion ii1).
i) A is a Borel subset of R such that {B'G, | A € A} is precompact in Lo(X,p).

i) [ IIBF A ellgdae()\) < w. (an elementary computation using the spectral theorem shows
that [ 5 ||B'l“’\’e||2dae =JA ||B'F/\,g||2d¢rg if g is another cyclic vector for the subspace Se.)

iti) Let Q = r(H), where t is a bounded continuous function from the spectrum of the
restriction of H to S, into €. Then P(A)P(S,)Q is diagonalizable with respect to H and e in

B(Y,Z). IfM is a set of bounded continuous functions from the spectrum of the restriction of H to
Se into € which is uniformly bounded and equicontinuous on A, then P(A)P(S e)QM 1s

simultaneously diagonalizable with respect to H and e in B(Y,Z).
Proof: We note that Theorem 1.8 guarantees that B'F,  is a measurable function from R
)

into L2(X,p) with respect to g in the sense that for every ¢ > 0 there exists a compact set K
such that oe(IR\K) < e and such that the restriction of h()) = B'F, ¢ to K is continuous from R
into Lo(X,p).

We show that Assertion i) implies Assertion ii). In fact, if Assertion i) holds, there exists a
finite set {,\i}]i‘=1 of points of A such that for all A€ A, there exists a A, such that

IBG, ,—B'G, < 1/2. Select a set {¢i}li[_1 of elements of W such that [B'GA e’¢i] > 3/4,
) i? - i’
k

and such that [|¢;|l, =1. Let A =u;_; A,, where for A€ A,, ||B'GA’e—B’G/\‘ ellg 1/2. We
l’

i
may assume without loss of generality that the sets Ai are disjoint. It follows that for all A € Ai’
I[B'G)«,e"pi” > 1/4. Hence ”B'F,\,e"pi“ > "B'FA,e"2/4‘ But [¢i’B'FA,e] = Ue(B¢i)()\). Hence
L} 2 2 . . .
IplB F)\,e"2dae(’\) < 16‘[}1.‘=1 IAi |Ue(B¢i)| dae(A). Since B¢, € W, the integral on the right
is finite by the spectral theorem.
To complete the proof of the theorem, we need a lemma, which has some independent

interest.
Lemma 3.4. Assume that Assertion 1) of Theorem 3.8 holds. Define He OT A as above. Let

A A) be defined on A by HA) = GA,e = FA,e/"BT/\,e"2 for all X in a subset A of A such that
ae(A\AO) = 0. (This definition makes sense by Theorem 1.8). Then the following are true.

1) Foranyfe€ LI(A"‘e)’ B7 i3 a scalarwise integrable function from A into W' with respect
to p,, where by definition this means that for any ¢ € W, Br(9) € Ll(A,pe). In particular, this is

true for f € Lm(”e)'
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i) If T'(f) is defined for every f € Ll(ue) and ¢ € W by

L(8)(8) = /5 BOVG), ((#)dg(N), then T(6) € W

i) For every f € Ll(A,pe), fB'y i3 a scalarwise integrable function from A into L2(X,p)
with respect to i, where fB'y()) = ﬂ(A)B’G,\’e.

w) If ¥(B) is defined for every f € Ll(A““e) and p € W by

Y(B)(¢) =1 ﬁ(,\)B'GA’e(:ﬁ)due()\), then ¥(f) € L2(X,p), where L2(X,p) 13 identified with its
canonical embedding into W'. Furthermore, ||\Il(ﬂ)||2 <11l

W) IffeLy(Ap), BT(B) = ¥(p).

vi) Iffe L2(X,p), and f = Ue(a)/"B'FA,e"T then f € LI(A,ue) and
¥(6) = B'P(A)P(S e)ﬁ, where B'P(A)P(Se)0 is identified with its canonical embedding into W'. In
particular, BP(A)P(S,)0 € Ly(X,p).

Proof: Part iii) follows from the finiteness of the measure Be» together with the
boundedness of B'G Ae in L2(X,p). Since B is 1-1 and onto, part i) follows as well. Since He is
finite on A, Lm(A,ue) C Ll("e)‘ We show that ¥(f§) € W'. By Theorem 1.8, we know that ¥ is a
measurable function from A into Ly(X,p). Furthermore, [(B)(8)| < 1IAll;lI¢lly, so we see that

¥(p) agrees on W with a unique element of L,(X,p) defined via the Riesz representation theorem

for Hilbert spaces by the relationship ¥(B)(0) = [, F(A)[H,B'GA,Jdpe(A) for all € Ly(X,p).
Part iv) is proved. Since (B')"l is a continuous linear mapping from L2(X,p) into W', (because
the injection of Ly(X,p) into W' is continuous, and (B’)_1 is a continuous linear transformation in
W'), where we once again identify Ly(X,p) with its canonical embedding into W', we may use
Theorem 8.14.5, p. 562, [4] to obtain part ii) and part v). We prove part vi).

If ¢ € W, it follows from part iv) that [¢,¥(8)] = IA F()\)[¢,B'G/\’e]due(A). Also,

[B'G), ] = BG, (4) = G, o(B#) = U(BY)/IBF) |l Hence
15 FONGBG, Jdu(X) = I (UB)IBTF, (T O)/IB'G) ll}dug(A). But

dp, = |IBF, e||2dae, so the integral on the right becomes [, (U, (B¢))(U, 3)dae()‘), which
equals [B@,0] by the spectral theorem; this theorem also guarantees that the integrand is in
Ll(ae), and also that f¢ Lz(ue). Since s, is finite on A, it follows that f € LI(A”‘e)' But if
a=P(A)P(S,)d, [Bf,a] = o(B¢) = B'a(¢), again embedding Ly(X,p) canonically into W'. We

have therefore seen that B'a = ¥(f), as we desired to show. The lemma is proved.

We now show that Assertion ii) implies Assertion iii) of the theorem. For any positive real
number §, select a compact subset K of A such that h is a continuous function from K into
Ly(X,p), and such that 4 (A\K) < 6. Note that {h(X)| X € K} is a compact subset of Ly(X,p).

Let {1{i)} be a finite open cover of this set where each i(i) has diameter less than 4. Let
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a(j) = h_l(v( j)). Select a finite relatively open cover {X(n)} of K which is subordinate to {afj)},
and which has the property that |r(A)-t(f)| < éfor all A and Fin R(n). Let {(j) = R(i)\y <jR(i).
Let bj = ue(((j)). Select one ) j from each set {(j) and let Q; = Eljf:l'r_(,\j)bjR/\j’e, using the
notation of Definition 3.2. Note that for ¢ € W, since ||B'G, ll, =1,
' -1 ) —1 -1 '
IGA’e(‘p)' = IBG,\)e(B ¢)| = |[B GA,e,B ¢l <IIB ¢"2"B GA’ellz < J"¢"Y

Using Lemma 3.4, parts iv), v) and vi), together with Proposition 8.14.6, p. 562, Edwards
[4], used on the space Ly(X,p), we see that for any ¢ € W such that “¢“Y = 1, the function

mapping A to T(A)G 2el#)G) ¢ is a scalarwise integrable function from R into W' with respect to

T and

IB{P(S)P(A)Q6 — Qy#}ll, =

IB'{8 ) (FOIG (16, = TG, (616 Jn) +

I a\k TG, (816, (W Hly = B ¢ (FO) = TO)G), o(#)G, (diglX) +

EjT(Aj)f ¢G) (—G-A,e( $) - ﬁ,\j’e(m)G)"edﬂe('\) + EjT(Aj)I((j) ﬁ,\j,e(qﬁ)(G,\,e - G/\j,e)dﬂe(A) +

IA\K ?(’\)—G,\,e(@GA,ed/‘)\,e}NZ <6 EJ"((J) Jdﬂe()‘) +

Nell Bsf (i) JIB'(Gy ¢ = Gy Mgdhe(A) + litll Z:f iy JIB'(Gy o = Gy ligde(A) +
<) ) 7 ¢(3) ) 7

el I/ A\ g 3He(A) € Bug(A) + Jlirll due(A) + Illrll Ee(A) + Iliell 0

We have seen that for any ¢ € W such that [|¢lly, = 1,

IB'{P(S)P(A)Q8 — QBHly < HIn(A)(1+20sl,) + el }

We must extend this estimate to all of Y.

We examine the operators B'P(Se)P(A)Q and B'P(Se)P(A)QO. Note that by Lemma 3.4,
for any 6 in Ly(X,p), ¥(f) = B’P(A)P(Se)a, where i = Ue(o)/"B'FA,eHZ' Again by Lemma 3.4,
¥(B) € Ly(X,p), and ||¥(A)lly < lIAll;- However, since u is finite on A, it follows that
1%(B)lly < (,ue(A))l/ 2Ilﬁll2 by the Schwartz inequality. But the spectral theorem, and the
definition of y,, show that "R(A)ﬂ"2;#e = ||P(A))(Se)0l|2’p. If 6=Q¢, with ¢ €Y, and if we
recall that by Assumption 3.1 the identity mapping Ey, from Y into L2(X,p) is continuous, we see

from part vi) of Lemma 3.4 that B'P(A)P(S e)Q is a continuous mapping from Y into L2(X,p)‘

Recall that Qg = Z5_ s (()T(A)R o A0 that RAi’e(¢) =BG )‘i’e(Aet)G e foF 20

¢ €Y, where A is the continuous extension of B—1 to Y, as an operator from Y into L2(X,p).
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Observe that we have selected Ai in such a way that B'F Me€ L2(X,p). Furthermore,
l’
B'G, (A¢)=[A¢BG, e] Since A is continuous from Y into Ly(X,p), it follows that Q is a
ie i’

bounded linear transformation from Y into Ly(X,p). Assertion iii) of Theorem 3.3 follows by

continuity, since W is dense in Y. The theorem is proved.
4. A SIMPLE EXAMPLE

In this section, to place the results in perspective, we study the situation of a second order
ordinary differential operator in L2([0,w)). We show that in considerable generality in the

second—order ode case, there exist unbounded sets A and natural spaces Y and Z such that P(A)
is diagonalizable (and therefore compact) in B(Y,Z), but such that the injection from Y into Z is
not compact. Hence in this situation the compactness of P(A) is a consequence, rather than a
hypothesis, for our theory. For p identically 1 and xq(x) € Ll’ sets A have this property for the Y

and Z of this section if 1/y/X € L;(AN(0,0)), as very recent results of D. B. Hinton and the author

[4] show, using the results of this paper. A number of lemmas are proved in this section, which
seem fairly obvious, such as the existence of a cyclic vector. The proofs and statements are
included because the author is unable to find them in the literature, in the continuous spectrum

.

case.

Definition 4.1. Let 7 be given by 7¢ = «(p¢')' + q¢ for all sufficiently differentiable ¢ on
[0,0), where p and q are C” functions from [0,0) into R, and where p is positive and bounded away
from 0 and q is bounded below. Let H be the Friedrichs extension in L2[0,m) of the restriction of 7

to C"O’(O,m). It is clear that any element ¢ of the domain of H is actually in Lm[O,m), since the
hypotheses guarantee that for such a ¢, ¢' is in L, = L2[0,m). Throughout this section let w be
any positive bounded C” element of L2; let Z w denote {F: wF € L2}, and Y w denote
{¢: ¢/lwe Ly}

Remark 42. If W= C‘a’(o,m) and B is the operator of multiplication by w, then
Assumption 1.2, Estimate 1.3, and Assumption 3.1 hold for the above H, with f = w, Y=Y w and
Z2=1 g In particular, Theorem 3.3 and Lemma 3.4 hold. We show th‘at there is an element e of
Y such that S o = L,. This requires another functional analytic result.

Theorem 4.3. Suppose that Assumptions 1.2 and 8.1 and Estimate 1.8 hold. Then for any
ee€ D(HN) and almost every A with respect to 0, there ezists a decreasing tower {An} of compact

sets with the following properties:

a) A c[A-1/n,A + 1/n];

b) gg(A,) > 0;

¢) the mapping -G Ae 13 continuous from An into Z;

?
P(A A in Z B'F .
&) P(A,)e/u(8,) converges inZ 10 G, /BT, Il
Proof: We showed in Theorem 1.8 that the mapping 7: A»G Ae is a measurable function
b

from R into Z. Hence there exists a tower of compact sets Kj such that ae(IR\U}’=1Kj) =0, and
such that the restriction of yto K i is continuous from K j into Z. Let
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A =[-1/nA+1/n]n Kj‘ If ae(An) #0forall n,and A € A  for all n, then letting 3 denote
the characteristic function of An, Lemma 3.4, part vi) guarantees that

I‘(ﬂn(s)/"B'Fs’e”z) =P(A )e, since U,(e) =1 and since "B'F,\,e"2 is bounded away from 0 on
A, because it is continuous and non—vanishing. But it is clear from vi) of Lemma 3.4 together

with the continuity of 4 that conclusion d) of the theorem holds. However, the set of all A such

that for every set K.i containing A there is an n such that ae([A —1/n,A + 1/n]n Kj) =0 is a set
of measure 0 with respect to To The theorem is proved.

Theorem 4.4. Let H be as in Definition 4.1. Let W and B satisfy the hypotheses of
Assumptions 1.2 and 3.1 and Estimate 1.3; assume further that CS(O,m) s algebraically and

topologically contained in W, where Cg(O,m) is given the usual inductive limit topology. (Recall that
all ¢ € C{)(0,0) vanish in o neighborhood of 0). Suppose e € Domain (H). Then FA,e € C”[0,0)
and TF/\,e = AFA,e for every X in the set { of Theorem 1.8, and FA,e(O) = 0 for almost every A in
¢ with respect to O

Proof: Let A€ (. Then H'F,\,e= ’\F,\,e’ by Theorem 1.8. Hence, for any 6 in W,
FA,e(To) = ,\FA,e(o). In particular this is true for 6 in C{j(1,e), so that TF)\,e = ’\FA,e in the
space of distributions. But any distributional solution to 7F Ae = AF e is in C*[0,0). We need
only show that F A e(0) = 0 for almost every A with respect to o,. For this, we may choose the
spaces W and Y and the map B any way we wish. Choose W to be C'(’)’(O,m) and B to be
multiplication by w, with f = w. By Theorem 4.2 we may construct a sequence An of compact
sets contained in [A+1/n,A—1/n] for almost every A such that { =P(A e)/u (A ) converges in
Zgto G,\,e/"“’F,\,eHZ' But since A € [A-1/n,A+1/n], it follows that 7§ converges in Zg to
’\GA,e/"“’F,\,e"? Hence, if v = w§, we see that v converges in L, to (.;G/\’e/lle,\’Jl2 and
wr(v,/w) converges in L, to ’\“’GA,e/"“'FA,e"T Writing out the terms of the differential
expression [ such that f0= wr(f/w), we see that v, converges uniformly on compacta to
WG A,e/ [|wF ,\,e"2; in particular this is true in a neighborhood of 0. It follows immediately that
G A e(0) = 0, as we desired to prove.

Theorem 4.5. Let H be as in Definition 4.1. Then there ezists an e in the domain of H
such that S e = L2.

Proof Choose W = C"O’(O,m), and choose B in Estimate 1.3 to be multiplication by w and
f=w Choose Z=12 o From the spectral theorem, there exists an e € L2 such that for any
g € Ly, % is absolutely continuous with respect to O Without loss of generality, e may be taken
in the domain of H. We show that Se =L, If not, there exists a non—trivial element g of the
domain of H such that S g n Se. By the previous theorem, for almost every A with respect to S e
F/\’ e(0) = 0. Similarly, for almost every A with respect to Sg’ FA, g(0) = 0. Let the sequence
¢, € C‘(')’(O,m) be such that ||¢ [l, =1 and also such that ¢ converges to g in L,. Selecting a
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subsequence, which we also denote by ¢, we see that Ue(¢n)(A) converges to 0 for almost every A
with respect to o, and U g(¢n)(’\) converges to 1 for almost every A with respect to % Hence,
since ”g is absolutely continuous with respect to 0g WE see that for almost every A with respect to
Tg: F A,e(¢n) converges to 0 and F )«,g(d’n) converges to 1. But F Ae must be a multiple of F/\, g
for almost every A with respect to g since both vanish at 0. This is a contradiction; the theorem

is proved.

Remark: We now prove a negative result, showing that some hypotheses are necessary in
order to diagonalize on a Borel set A. The first operator one might wish to diagonalize is the
identity operator; this gives a discrete approximation to an inverse Fourier transform.

Theorem 4.6. Let H be as in Definition 4.1. Suppose that P(A) is diagonalizable in
B(Y W'z u) with respect to H. Then P(A) i3 a compact operator from Y pintoZ In particular,

the identity operator P(R) is not diagonalizable in B(Y  ,Z w) with respect to H.

Remark: Since the embedding of Y o into Ly is continuous, as is the embedding of L, into
Z,,, it follows that P(A)isin B(Y Y w) Since the previous theorem showed that there exists an
element e of the domain of H such that §, = L,, we do not need to consider P(S e)'

Proof: Operators with finite dimensional range are compact, as are limits in operator norm
of such operators. The first conclusion is therefore immediate. The embedding of Y  into Z  is

clearly not compact, since on the interval [0,1] the norm of Y wis equivalent to that of Z w and to
the norm of L2([0,1]).

Theorem 4.7. Let H be as in Definition 4.1; let e be any element of the domain of H such
that Se = L2. Then

a) for any bounded continuous function r: spectrum (H) - (, and any bounded Borel set A,
P(A)r(H) is diagonalizable in B(Y w' ) with respect to H;

b) if the essential spectrum of H is not a bounded set, there ezist subsets A of the spectrum
of H such that ue(A) i3 finite (where dpe = "Fz\,e"%wdde)’ and such that for all N,
ae(A\[—N,N]) > 0. In particular, for such A and any bounded continuous function r(H) of H,
P(A)r(H) is diagonalizable with respect to H in B(Y w 'L w), although A is not an essentially
bounded set with respect to O

Remark: The first conclusion of the theorem does not state that He is finite on bounded

sets. This question is a difficult one, which we do not address here.

Proof: The first assertion will be proved in more generality in Theorem 5.5 of the next
section. If the second assertion of the theorem is false, then the finiteness of ye(A) implies that
for some N, o (A\[-N,N]) =0. This implies that if a, = po([N+i,N+i+1)), {a;: 3, >0} is
bounded away from 0 in (0,0). Since the operator H is unbounded, if I' = {i: a;, > 0}, then T is

infinite. It is also clear that if b, = glb {8o(3): #e(J) > 0}, then {b.: je T} is also
JC[N+1,N+i+1) J

bounded away from 0. Suppose A > N. Either ) is in the exceptional set of Theorem 4.3, or there
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exists a decreasing tower A = of Borel sets such that A = n:=1 A, and such that ue(An) is finite
and positive for each n. Since by hypothesis, pe(An) does not approach 0, this implies that X is a
point mass. It follows that there exists a countable set {A_} of points of the spectrum of H such
that pe([N,m)\{An}) =0. Hence, the same assertion is true for o, These points A are
eigenvalues of H. Since the essential spectrum of H is unbounded, and the multiplicity of each ’\n
is one, it follows that there exists an unbounded set {ﬂj} of cluster points of {A }. (It should be
remarked that the A n are not necessarily arranged in increasing order.)

Let ¥ be the normalized eigenfunction corresponding to the eigenvalue A . Ifc = [e,\I'n],

then g (A ) = |cn|2. But F A = a, ¥ for some complex number o . Hence
Ule)(Ay) = [e’FAn,e] =1=ac;; thus a) =1/c . Thus

2 2
IFy ellz =MNuFy ellg=lw¥ylly/lcy|; them u(A) = IFy (ll7 og(Ay) = lw¥yll3.
n w n n w
Let ﬂj be a cluster point of {A_}. Let {\} converge to ﬂj. [¥, ,¥, ]=0forr#s. Buton
r s

any compact interval [0,M], if R([0,M]) is the characteristic function of [1,M], then Ascoli’s
theorem guarantees that {R([0,M])¥ 5} bhas a cluster point gy, in L. But if
T

%= [gM,N([O,M])\II A ], then the sequence 7, is square summable and 7 — |IR([0,M])¥ A ||2
r r
converges to 0. But since ¥ A is normalized in L2, and TV A= ’\r‘I' )\ We see since the sequence
T r T
A, is bounded that ||¥, || _is also bounded. It follows that for each ﬁj, there exists at least one
r
e 2
(actually infinitely many) ¥ Ar(j) such that ||w¥ ’\r(j)"2 < 1/j°, and such that |’\r( 0= ﬁj| <l It

follows that the sequence ’\r( i) approaches infinity, and that if A = {\
ae(A\[—N,N]) > 0 for all N. The theorem is proved.
5. DIAGONALIZATION IN Ly(X,p)

r(j)}’ ”e(A) is finite but

In this section we discuss diagonalization of P(A), not just P(A)P(S,), and show the
equivalence of compactness of P(A) in B(Y,Lz) and diagonalization in B(Y,Z) discussed in the
introduction. For situations where the embedding of Y into L2 is not compact, these properties

generally hold for some but not all A. In applications to partial differential equations, it is often
true that P(A) is known by other means to be compact for all bounded A; an example is the
situation of Theorem 5.5. When A is unbounded but the embedding from Y into Z is not
compact, compactness and diagonalization become delicate properties of A as we see for an
example by the results of section 4.

Remark: The difference between the following definition and Definition 3.2 is only that we
diagonalize P(A)r(H), not just P(A)P(Se)r(H). For completeness, however, the definition is given

in its entirety.
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Definition 5.1. Assume the hypotheses of Assumptions 1.2 and 3.1 and Estimate 1.3. Letr
be a bounded continuous function from the spectrum of H into the complexes. Let A be any Borel
subset of R. We say that Q = P(A)r(H) is diagonalizable in B(Y,Z) with respect to H if
B'Qg € Ly(X,p)for all g € Y, and the following is true:

a) for every € > 0 there exists a positive integer k and a finite disjoint family {Ai}]i‘=lof
subsets of A such that there exists a finite set {e j}l,lil=1 of orthonormal elements of the domain of

HY and a finite set of real numbers X j}li‘=1 such that A, i€ A, and such that, injecting Qf

canonically into W', [|{Q — ”2‘:1”?:1 uej(Ai)?(,\i’ PRy, j,ej}(f;)uz < ellflly for all # € Y, where
b) ’\i j is in the complement of the exceptional set for ej of Theorem 1.8, so that in

particular F is as in Theorem 1.8 and B'F € L,(X,p), and where
A 5 N 5 2
b ),

¢) R ¢)=B'G (A9)G for any ¢ € Y, where
NN SRR

i,

G, =F, .,e./"B'FAi,e"T and where B'GA,e denotes the complex conjugate of the

L% %
functional B'G Ae

Let M be a family of bounded continuous functions from the spectrum of the restriction of
Hto S, into C. Let A be a Borel subset of R. Let Qy o = {P(A)r(H): r € M}. We say that

QA is simultaneously diagonalizable in B(Y,Z) with respect to H if for every ¢ > 0 there exists

Ai’ ’\i i and e ; as above, which are independent of r, such that
2

lQ-2¥_ 57, e (AT 05 IRy J(Oly < ey

for all 0€YandallQeQM6.

Remark: The implication that diagonalizability implies compactness in B(Y,Z) follows
from the fact that any operator with finite dimensional range is compact, and that the compact
operators are a closed subset of B(Y,Z).

Theorem 5.2. Suppose that the hypotheses of Assumptions S.1 and 1.2 hold, and that
Estimate 1.8 holds. Suppose that Z contains L2(X,p), and that the injection from L2(X,p) into Z is

continuous. Let Ey, denote the injection from Y into L2(X,p), and EZ denote the injection from
L2(X,p) into Z. Then

i) PEy is compact in B(Y,L,) if and only if P is diagonalizable in B(Y,Z) with respect to
H, where P = P(A) or P(A)P(Se); further, EZPEY is compact in B(Y,Z) if and only if PEy is
compact in B(Y,L2);

ii) Suppose that PEy, is compact in B(Y,L2). Then for any bounded continuous function r

from the spectrum of H into the complezes, and any Borel subset of R, including R itself, Pr(H) is
diagonalizable with respect to H. Furthermore, if M is a set of continuous functions from the
spectrum of H into €, and M is uniformly bounded and equicontinuous on A, then QM A

simultaneously diagonalizable.
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Proof: We consider the case P = P(A). The other case is done the same way, except that

it is easier. Note that L2(X,p) is the direct sum of countably many subspaces Se-’ where e, is in
i
the domain of HN, and |le;l =1. If P(A)Ey is compact in B(Y,L,), an elementary argument
shows that for every € > 0 there exists a positive integer m such that
IP(A)Ey — 2T _,P(S ei)P(A)EYllB(Y’Lz) <e
Also, there exists a tower {fj} of Borel measurable subsets of R such that ae_(R\U3'=1£j) =0 for
i

all i <m, and such that, for A€ Ej’ ||B'FA’ei||25j for all i<m. Let v = §j\ Ej—l' Let

A §= Anuj. Again using the fact that P(A)Ey is compact, we see that for the above ¢, there
exists a J such that

||z-} _,P(a i))3‘;‘=11>(sei)EY - E?=1P(Sei)P(A)EY||B(Y’L2) <e

Hence, since r(H) is uniformly bounded by some constant I' in operator norm for r € M, it
follows that for all r € M,

IP(A)r(H){Ey — 2‘}=1P(A j)”?=1p(sei)EY}"B(Y,L2) < 2el.

The implication that compactness implies diagonalizability follows immediately, upon using the
implication ii)~iii) of Theorem 3.3 for each S o for i < m together with the fact that the injection
from L,into Z is bounded.

Suppose that P(A)EY is not compact. Then there exists a bounded sequence ¥ in Y such
that P(A)yn has no convergent subsequence in Ly. There exists a weakly convergent subsequence
to the sequence P(A)yn, which we assume without loss of generality is the original sequence;
suppose P(A)yll converges weakly to g. If P(A) is diagonalizable in B(Y,Z), then by the remark
preceding the theorem EZP(A)EY is compact in B(Y,Z); thus EZP(A)yn has a subsequence,

which again we assume is the original sequence, which converges to Ezg in Z and therefore in Y'.
Now EZP(A)yn(yn) converges to ||g||§, by an elementary argument. But

EZP(A)yn(yn) = ||P(A)yn||§, which then converges to ||g||§. By another elementary argument, it
follows that P(A)y, converges to g in Ly, a contradiction. Hence EZP(A)EY is not compact, 8o

that P(A) is not diagonalizable in B(Y,Z). The first assertion is proved; because we have proved
that diagonalizability implies compactness in B(Y,Z) which implies compactness in B(Y,Lz)
which implies diagonalizability.

Remark: We now test the results against the abstract Schrodinger equation, which is more

difficult than, for example, the abstract heat equation, because damping is not present.
Corollary 5.3. Suppose that the hypotheses of Theorem 5.2 hold. Suppose that P(A)EY 18

a compact operator in B(Y,Z). Then for every pair T,e of positive real numbers, there ezists a
finite set {F, } of elements of Z such that H'F, = \F, for some ), € A N spectrum (H), and
i i i

such that ||P(A)eth¢ -3 e_i’“;'i"/\.(c;ﬁ)F)""Z <elldlly for all ¢ inY, and all t such that |t| < T.
i i
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Proof: By Theorem 5.2, {P(An[-n n])elHt |t] < T} is simultaneously dlagonahzable in
B(Y,Z), since {el Moae [-n,n], |t] < T} is equicontinuous. Using the compactness of E P(A)E

again as in the proof of Theorem 5.2, we see that for any € > 0 there exists a positive integer n
such that ||P(An[—n,n])elHt P(A) ]Ht||B(Y 7)< ¢ The result follows from Theorem 5.2.

Ezample: In Example 2.3, let
Y = {0 € L,(®R" 21 #/a® —1)Moe Lo@®Y), and
= {0 Ly®)| (1x1241)70_, /a2 - )Mo e Ly@), an

I8y = (%1 241) 2, 62/ax2 — )My,

This example yields the next corollary.

Remark: In the next result, we look for situations where the approximation property holds
for the whole operator eth, so that we may take A =R. We find that this is possible in great
generality, but at the price of substantially restricting the space Y and increasing the space Z,
which has the practical effect of substantially weakening the error estimate from, say, the
situation of Section 4.

Corollary 5.4. Suppose that T is a partial differential erpression on R" such that the
coefficients of T are infinitely differentiable, and such that any derivative of a coefficient has at most
polynomial growth at infinity. Suppose H is any self-adjoint operator in L2(an) such that the

rapidly decreasing functions are contained in the domain of H, and such that H¢ = 7¢ for all ¢ in

the domain of H, where the derivatives are taken in the distribution sense. Let v > n/4. Then for

any positive real numbers T,e there ezists a finite set {¥ ,\‘} of tempered distributions such that
i

H'q’)‘i = ’\iq’/\i for some X, € spectrum (H), and such that ||elHt0— b e]'\tc,\i(())\ll)\illz <elblly for

el @€Y and |t] < T, where

) Il = 1(1xI12 + )7, Plox —1)™MFl, and 2 consists of all tempered
distributions F such that this norm is finite;

i) ¥ X €Z

i) M >n/4;

w) |y = ||(|x|2 + l)'y(i)’il=1 ﬁz/ax?-—l)MBHT and Y is the set of all elements of
L2(IRn) such that this norm is finite; and

v) c/\i(()) =/ H?Aidp

Remark: The complex conjugates have disappeared from the approximation formula
because here we do not need to consider Z as a subset of Y'.
Proof: It is not difficult to see that the restriction of B' to L (IRn) is a compact operator.

Call this operator V. By taking adjoints, we see that V is also compact. But
l0lly = NIV )_1 0ll; the compactness of the injection from Y into L (IR ) follows immediately.

Assumption 3.1 holds automatically. The corollary is now a consequence of Corollary 5.3.
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Theorem 5.5. Let H be the Friedrichs eztension in L,(0) of the restriction of T to Cg(ﬂ),

where Q is an open subset of Rn, and where 7 is a partial differential ezpression with C® coefficients
on 0, such that [7¢,4] > —K[§, @] for all ¢ € Cg(ﬂ), where K is a positive constant. Let w be any

positive, bounded, C° element of Lz(ﬂ); let Y = {f: f/we Ly(Q); let Z,={tue Ly(Q)}; equip

these spaces with the obvious norms. Suppose that for some N, the domain of "N is contained in
Lm(ﬂ). Then for any bounded set A, and any continuous function r from the spectrum of H into

the complezes, P(A)x(H) is diagonalizable in B(Y ,Z ).

Proof: Since the range of P(A) is contained in the domain of all powers of H, it follows in
particular that it is contained in Lm(Q). It was shown Assertion i) of Theorem 5.2 that

EZP(A)EY is compact in B(Y,Z) if and only if P(A)EY is compact in B(Y,L,), where Y=Y
and Z=72  But by using Lemma 14, it is easy to see that the mapping EZP(A) is
Hilbert—Schmidt, and therefore compact, for bounded A. Hence EZP(A)EY is compact, and the

theorem now follows from Theorem 5.2.
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