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ABSTRACT. It is shown, using classical means, that the outer composition of hyperbolic or loxodromic linear
fractional transformations {f}, where f,—f, converges to a, the attracting fixed point of f, for all complex
numbers 2, with one possible exception, z,. Le.,

Fp(z): = fpof,_y0...0f1(2) -
When z, exists, Fp(2,)—p, the repelling fixed point of f. Applications include the analytic theory of reverse

continued fractions.
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1. INTRODUCTION.

The iterative behavior of the non-singular linear fractional transformation (LFT) f(z): = (az +b)/(cz +d),
a,b,c,d € C and ad —bc # 0, is well documented. For example, Ford [1] describes the “multiplier” form of f(z) for
LFTs that are loxodromic, hyperbolic, or elliptic:

(f(z)—a/(f(2)-B)= K (2 —a)/(z- B), K: = (a—ca)/(a—cpB). (1.1)

Here a and f§ are the two distinct fixed points of f. A special equation analogous to (1.1) exists for the one
remaining type of LFT - the parabolic transformation, having a single fixed point.

K is called the multiplier of f and provides an important means of classifying LFT’s in terms of their fixed
points. Briefly, (1.1) is either loxodromic or hyperbolic if | K| <1, and it is this combined case - representing
“most” LFTs - we shall consider exclusively in this article. It is then easily seen from the multiplier form that
F™(2)—a for all z £ 8, and f™(B) = B.

I f(z): = a/(b+z), f(0) is the normal nth approximant of a periodic continued fraction

F+b+..

Thus, this simple continued fraction converges to the attractive fixed point a of f. g is called the repulsive or
repellent fixed point of f. The modified continued fraction generated by f™(z) instead of f™(0) also converges to a
for all z # 8. For this special f(z), | K| = |a/B|,so that |a| < |8].

Magnus and Mandell in 1971 (3] posed and answered the following question: If {f,} is a sequence of
hyperbolic/loxodromic (H/L) LFTs that converge to a H/L LFT f(z), then what may one predict of the
convergenee behavior of the “inner” composition Fy(2): = f0/y0...0fn(z) for z € C? They obtained the following
result which resembles the iterative case.

THEOREM 1. ¥ {f,} and f = Lim fn

are all H/L, then the inner compositional sequence {F
to a constant function for all values of » #P.

'n(2)} converges
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As a consequence, the modified limit periodic continued fraction generated in this way by setting
fn(2): = ay/(by + 2) with f(2)—f(z) = a/(b+ z), and where all the f,,’s and f are H/L, converges to a constant
for all z# 8. This result has proven fruitful in both accelerating the convergence of such continued fractions and
analytically continuing them beyond initial regions of convergence (4], [5].

In the current paper the question posed by Magnus and Mandell with regard to inner compositions is answered

in the context of outer compositional structures:

Fp(2): = frof,, _q0...0f(2), where {f;} and f = Lim f,, are all H/L. (1.2)

The proof of Theorem 1 is elementary, but complicated. Surprisingly, the proof of an analogous theorem for
outer composition is, if anything, slightly more delicate. One would think that in (1.2) F,(z) becomes very like
f™(z) for large values of n, and that this should simplify matters. However, the initial segment F j(z) for j€nis
not easy to control.

In analogy to Theorem 1 (and even closer to the simple iterative case) we shall prove

THEOREM 2. If {f,} and f = Lim f,, are all H/L, then the outer compositional sequence {F,(z)} described
in (1.2) converges to a, the attractive fixed point of f, for all values of z except possibly one, z,. In this exceptional

case Fy(z,)—8, the repulsive fixed point of f.
As one example of Theorem 2, one easily obtains
COROLLARY 1. The modified reverse limit periodic continued fraction

:ﬂ + ;ﬂ;l +o 4 b—u_,."—,
n n—1 a
where f,(z): = a,/(by + 2) and Lim f,(z) = f(z) = a/(b+ z) are all H/L, converges to a, the attractive fixed point
of f for all z € C, with one possible exception.

In order to prove Theorem 2, it is convenient to use a more general result from the analytic theory of
contraction maps as applied to outer composition. The sufficiency part of the proof of the following theorem (all
that is required in this exposition) is given in (1.2):

THEOREM 3. Let {g,,} be a sequence of functions analytic on a simply connected region S and continuous on
the closure of S. Suppose there exists a compact set Q contained in S such that Q@D g,(R2) for all n. Then, if
Gp(2): = gno...ogl(z), Gp(2)—a, a constant, uniformly for all z € S if, and only if, the sequence {ay,} of fixed
points of {g,,} in S converges to a.

2.  PROOF OF THEOREM 2.
An explicit expression for f,(z) from the multiplier form (1.1) is
Fulz) = (o= Knfp)z + apfp(Kp—1)
(1-Kp)z+ Kpan— B8,
Let us begin with a lemma that will prepare the way for the use of Theorem 3 in the present context. In all

(2.1)

that follows it will be assumed that K: = Lim K,,, a: = Lim ay, and §: = Lim 3,, exist.

LEMMA 1. Let R: =p|a—-8|, p=(r— |K|)/r|1-K|, | K| <r<1. For n sufficiently large, there
exists t € (r,1) such that [z—a| <R =|fy(2)—a| <tR<R.

PROOF. Writing

fn(z)_o'_‘(fn(z)-an)"‘en (En: =an—a)
=Kplay—B8yp) [(z—a)—¢€,] /{1 - Kp)z—a)+a—Bp+ Kpen)+ €y
one gets
lfn(z)—al < 'Kn(an"ﬂn) (R+ IEnI)/(Ia—ﬂnl - 'Knsn' —R'I—Knl)"' len"
Letting n—oo and replacing R by its defined value, this last expression becomes: rp|a—f8| =rR(<R).

Thus, for all n sufficiently large and |z —a| < R,

| fn(z)—a| <tR <R, for some t € (r,1). QED
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We next decompose the final segment of Fy, | ,.(2) in order to show that as m increases applying fp, | ,, is
similar to applying f.

From (1.2) one can write

fp(z) = ,\p‘lol(po)p(z), where /\?(Z): =(z—- ap) [/ (z— ﬁp) and Kp(z): =Kpe.

Here, for all p, lel <K,<l

Therefore

Fp 4 m(2) = fn y mo-. of + 1(Fa(2) =
-1 -1 -1
Mam Kp im0y moA pm 1 0Ky 1000, 1T oK j0A,  q(20)

where z,,: = Fy(2). Then

Frym(®) =gy m YoKp 4 moT 0T, jo...0T(wy,),
where
Tp(2): =dn g gy 4 po ok, p—1(x) and wy: = A 1 (Fp(2).

The idea behind the proof of the next lemma is that Tp(z) ~K, +p- 1(2) for large values of p. This is a
device initiated by Magnus and Mandell [3].

LEMMA 2. Suppose that |w, | < M( = M(z)) for all n sufficiently large. Then, for preassigned ¢ > 0, there
exists N( = N(z)) and P( = P(z)) such that n > N and p > P implies | Tpo...oTg(wy) | < 2¢/(1-K,).

PROOF. From

Tolwn) ={Ky 4 19n(Bp 4 1-2p 4 2)+(on y9—an y D/ (K 4 19n(By 1= Bp 4 )+ By 2- 24 9]

one obtains

|T2(wn)' S[KoMlﬂn+1‘"n+2| + |"n+2_°‘n+1|] /“ﬁ"+2“"n+1| -K0M|ﬂn+1‘ﬂn+2”<M
and
| Ty(wy) - K, +1%n| <& for large values of n.

Hence |Ty(wy,)| <e+ K, 4 qwnl <e+ K M.

Similarly | T3oTy(wy,) | < M and | TgoTo(wp) | < €+ Ko | To(wp) | < e(1+ Kp) + KoM2.

Continuing in this manner, one arrives at the general form ) | Tpo. -.0T9(wy) | <M and
| T po...oTg(wn) | < e(1+ Ko+ K2 +...+ KP "D+ KP T IM<e/(1-Ko)+ K P~ IM <2/(1-K,)  for
large p. QED

At several points later on we will refer back to this system of inequalities albeit under slightly different
hypotheses.

In order to proceed, we need to know more about the exceptional point z, described in Theorem 2. If f,, = f,
then z, = . That z, can be any point in C is easily seen by setting f,, = f for n > 1 and allowing f 1 to be any
LFT. Since f 1 isone toonein C, and z,=f l_l(ﬂ), clearly z, could be any point we wish, including a.

It will become apparent later that the method of proof of Theorem 2 requires that {Fy(2)} be uniformly
bounded away from g for large values of n. Consequently, the possibility that {Fy(2)} has a cluster point at  must
be explored.

LEMMA 3. If {F,(2)} has a cluster point at 3, then Fp(2)—p.

PROOF. Suppose that {Fp(2)} has a cluster point at 8, but does not converge to 8. Then there exists an
additional cluster point 8* # 8. Assum * # 0o (a slight variation on the following argument works for this special

case).
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No matter how large N is, there exists n > N such that F,(z) € N e(ﬂ*), where £ > 0 is chosen to exclude by a
large margin @ or any f from N e(ﬂ‘). We will show that this has the effect of eliminating the possibility of g8
being a cluster point of the sequence, thus providing a contradiction.

Under these conditions | A, + I(F,,(z))l < M for an infinite subsequence of n’s. For such an n large enough
the entire structure of the proof of Lemma 2 remains intact, thus giving, for a suitable choice of ¢,
| T go... To(wy)| <2¢/(1—Ky) =1 for all p sufficiently large.

Now | F, 4 p(z) ~Bn+ p | =1y P_loK,, + P(Tpo...ng(w,.)) —Bn 4+ p |

2 lﬂn+p—0n+p|/(l + lKn+p| | T po...0Ty(wy) )
> |B—a|/(2(1+ | K|)) for all p sufficiently large.

Therefore, it is not possible that {F J-(z)} has a cluster point at 8. (—«) QED

Next, we see that z,,, if it exists, is unique.

LEMMA 4. There exists no more than one value z, such that Fy(z,)—8.

PROOF. Suppose there are two such values, z; and zy. Set V,: = Fp(2;) and Wy,: = Fy(z5). Observe that
Vao#W, since F, is one to one. For large n (using a local uniform convergence argument)
na i) = Fn e W) 1/ V=W | % | £y (V)| = F(B)] > 1.

Therefore, |V, +1- W, +1 |/1Vp—Wg| for all n sufficiently large. Hence, one of {V,} or {W} does not
converge to #. (—+) QED

It is now possible to complete the proof of Theorem 2.

If z#z,, then Lemmas 3 and 4 tell us that there exists D >0 such that |Fp(z)~8, .| > D for all n
sufficiently large. We use this to insure the boundedness of {F,(z)} for large n. Then it is possible to show that
| Fp(z) ~a| < p|a— B| for large n, thus allowing the use of Lemma 1 and Theorem 3.

Suppose that {F;(z)} has a cluster point at co. Choose n large enough to guarantee that |\, +1(Fn(2))| =1
and that the inequalities of Lemma 2 are valid. Then, for suitable ¢ >0, |T p0-- .oT2(wn)| < p/4K, < 1/2K,

It then follows that
[ Frg p() | = 13 4 p ToKp 4 p(Tpo...oTp(wn))}

<(1Bn 4 pKn 4 pTpo-oTowp)) | + lay 4 p /(1= | Ky 4 p(Tpo..oTofwp))|)
< 1Bn4pl +2lany pl <Bfor all p sufficiently large. (——)

Therefore, for all sufficiently large n, | A, | {(Fy(z))| < M.

Lemma 2 then insures that | T po.. ©oT9(wg)| < p/4K, < 1/2K ,, for all sufficiently large values of p. Next,
|Fn+p(z)—a| < an+?(l)—ﬁ,‘+p| + |5n+p| (recall: £ =ap—a)
=y p—IOKn+ p(Tpo-.0To(wy)) ~an 4yl +65 4 pl
<K, | Tyo...0Tg(wy)| 1Bntp—an4pl/ —KolTpo...oTz(wn) D+ lenqpl
<(p/2)|ﬂn+p-an+p| + l‘n+p' < p|B—a] for all p sufficiently large.

Therefore zp: = Fy, 1 p() lies in the disk (lz—a| < R) of Lemma 1.

Theorem 3 then implies Limm_,oof” +mnim- 10--~°fn +p+ l(’p) =a.

Hence Lim,, ., Fy(z) =a. QED
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