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ABSTRACT. The Darcy-Brinkman free convection near a wedge and a cone in
a porous medium with high porosity has been considered. The surfaces are
subjected to a mixed thermal boundary condition characterized by a
parameter m; m=0,1,0 correspond to the cases of prescribed temperature,
prescribed heat flux and prescribed heat transfer coefficient respec-
tively. It is shown that the solutions for different m are dependent and
a transformation group has been found, through which one can get solution for any =
provided solution for a particular value of m is known. The effects of Darcy number on

skin friction and rate of heat transfer are analyzed.
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1. INTRODUCTION.
The problem of free convection adjacent to a heated vertical surface

has received a great deal of attention. These studies assume that the
surface is subjected to a prescribed temperature or a prescribed heat
flux. In the existing literature these two cases have been studied

independently. The present paper aims to present a unified treatment of

these cases. It also in-ludes the case of prescribed heat transfer

coefficient hitherto not considered by earlier researchers.
Further the free convection on heated surfaces subjected to mixed

thermal boundary condition has not received sufficient attemtion. In
this paper we shall consider Darcy-Brinkman free convection [1,2) on a

wedge and a cone in a porous medium with high porosity. The free convec-
tion on a vertical plate subjected to a prescribed temperature and

prescribed heat flux are obtained as special cases.

2. ANALYSIS.

The configuration of free convection adjacent to a wedge and a cone is shown in
Fig. 1. The surfaces are subjected to a mixed thermal boundary conditions. The boundary
layer equations governing the Darcy-Brinkman free convection are



790 G. RAMANAIAH AND V. KUMARAN

(r“u)x + (r"v)y =0, n=0 for wedge (2.1)
=1 for cone

uu, +vu, = 0y, - (o/K) u + gB(T-Ty)cosa (2.2)
uT, +v Ty = (o/Pr) Tyy (2.3)
with boundary conditions,
u=0,v=0 ag(T-T,) - ay Ty = apx at y=0 (2.4)
u >0, T > Tg as y > ® (2.5)

where u,v are the velocity components along x and y directions respec-
tively. T is the temperature and T, is the ambient temperature. The
symbols g, B, o and Pr denote gravitational acceleration, coefficient of
thermal expansion, kinematic viscosity of the ambient .fluid and Prandtl
number respectively. ags 84 20, ay 2 0 are prescribed constants.

Introducing the following nondimensional quantities,

y=oL, u=4ox f’(¢)/52, v = - 40 (n+1) £(a)/L
4 o0
T =Ty + ——— 6(g), Da= K/LZ. the Darcy number
L4 gR cosa

where L is to be determined from the thermal boundary condition (2.4) in
a manner to be explained [3]. Equations (2.2) - (2.5) become

(2.6)

£°" + 4 ((n41) ££'* - £'2) - pa~lf' + 8 =0 (2.7
0'' + 4 Pr ((n+l1) £’ - f'6 ) =0 (2.8)
£f(0) = £°(0) = f’(@) = 6(2) =0 (2.9)
(1-m) 8(0) - m8'(0) =1 (2.10)

where primes denote differentiation with respect to g,
m = al/(al + Lao) and L is the positive root of the equation,
a,8 cosa LS /(40%) - agl - a; = 0 (2.11)
This equation has a unique positive root by Descartes rule of signs
for a; 2 0, a5 2 0. The local Nusselt number defined by
Nu = - x Ty /(T-Ty) |y=0 becones,

Nu = - (x/L) 98°(0)/6(0) (2.12)
If p is viscosity, the stress at the surface is given by
F=nuy |jzq = 4wox £7(0)/13 (2.13)

3.DISCUSSION ‘AND CONCLUSIONS.

The solution of the boundary value problem (2.7) - (2.10) has been
obtained by shooting method for different values of m 2 0. The values of
6(0), -6'(0), - 6°(0)/8(0) and f£’'’(0) are given in the tables 1 & 2
for n = 0, and 1 respectively with P. = 0.733, It is seen that for
n = 1 (cone) the  surface temperature 8(0), the surface heat flux -0'(0),
the heat transfer coefficient -0’(0)/06(0) and the surface stress f'’(0)
increase with m. 0(0) decreases with increase in Darcy number, whereas
the dimensionless Nusselt number -6’(0)/6(0) increases with increasing
Da. All these effects are more pronounced for n = 0 (wedge) than for
n = 1 (cone). It is observed that the porous medium transports larger
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amount of energy compared to the corresponding fluid medium ([)z;,'l = 0).

pa~! n 8(0) -8'(0) -8'(0)/6(0) £'(0)
0 1.00000 .0.75859 0.75859 0.54935
0.5 1.12302 0.87698 0.78092 0.59930
0 1 1.24736 .1.00000 0.80169 0.64841
10 2.37825 2.24043 0.94205 1.05207
© 3.01972 3.01972 1.00000 1.25843
0 1.00000 0.75786 0.75786 0.54854
0.5 1.12342 0.87658 0.78027 0.59862
0.01 1 1.24823 1.00000 0.80113 0.64788
10 2.38334 2.24500 0.94196 1.05274
[ 3.02647 3.02647 1.00000 1.25945
0 1.00000 0.75132 0.75132 0.54133
0.5 1.12949 0.87051 0.77072 0.59291
0.1 1 1.25597 1.00000 0.79619 0.64324
10 2.42888 2.28599 0.94117. 1.05873
o 3.08689 3.08689 1.00000 1.26863

Table 1. Values of 6(0), -8'(0), -6°(0)/6(0) and f’'(0) for n = 0 (Wedge)

pal . 8(0) -8'(0)  -8'(0)/8(0)  f£''(0)
0 1.00000 0.81449 0.81449 0.50853

0.5 1.09141 0.90859 0.83250 0.54301

0 1 1.17840 1.00000 0.84861 0.57515
10 1.87653 1.78887 0.95329 0.81533

o 2.27224 2.27224 1.00000 0.94115

0 1.00000 0.81385 0.81385 0.50789

0.5 1.09174 0.90826 0.83193 0.54248

0.01 1 1.17908 1.00000 0.84812 0.57474
10 1.88006 1.79205 0.95319 0.81573

® 2.27700 2.27700 1.00000 0.94184

0 1.00000 0.80193 0.80193 0.50079

0.5 1.09790 0.90210 0.82166 0.53800

0.1 1 1.19229 1.00000 0.83872 0.57206
10 1.91178 1.82060 0.95231 0.81938

@ 2.38060 2.38060 1.00000 0.96445

Table 2. Values of 8(0), -8'(0), -8°(0)/8(0) and f’’(0) for n = 1 (Cone)
It is interesting to note that the solutions corresponding to dif-

ferent values of m are dependent as stated in the following properties:

Property 1 : The equations (2.7) - (2.9) are invariant under the transformation,

s* = A g, Da* = A2 Da, £¥(s*,Da*) = f(g,Da)/A, 0*(s*,Da*) = 6(s,Da)/At (3.1)
where A is any positive real number.
Property 2 : If f(g,Da), 6(¢,Da) is the solution of the boundary value problem (2.7) -
(2.10) for any particular value of m, say mgy, then the solution for any m is given by
the equations (3.1) provided A is the positive root of the equation,

A5 - (1-m) A 6(0,Da) + m 8'(0,Da) = O (3.2)

Property 3 : If the solution of the boundary value problem (2.7) - (2.10) is same for
any two distinct values of m, then the solution is same for all values of m.

The mixed boundary conditions (2.12) includes the following as special cases :
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1. Prescribed Temperature (PT) ‘: ag > 0, ag =0, ag > 0.
Hence L = {( (402a0)/(azgﬂ cosa ) )1/4, m = 0 and equation (2.10) becomes
0(0) = 1 (3.3)
2. Prescribed Heat Flux (PHF) : ag =0, a; > 0, ap > 0.
Hence L = ( (4oza1)/(azgﬂ cosa ) )1/5, m = 1 and equation (2.10) becomes

8’(0) = -1 (3.4)
3. Prescribed Heat Transfer Coefficient (PHTC) : ag < 0, a; > 0, ap = 0.
Hence L = -allao. m = o and equation (2.10) becomes
6(0) + 8°(0) = O (3.5)
— PT PHF PHTC
PT 1 [-6’(0,Da)}1/5 -0’(0,Da)
PHF [B(O,Da)]}/: L s 1/6(0,Da)
PHTC (e(0,pa)11/ [6(0,Da)] 1

Table 3. Values of A for transition

Table 3 gives the values of the parameter A required for transition from one
case to the other. The transition is illustrated by the following example for cone
case ( n = 1) with pa~l = 0.1.

1. For PT we have, 6'(0) = - 0.80193, f'’'(0) = 0.50079 which gives

A = 0.95681 , pa~! = 0.10923 , 6(0) = 1.19314 , f£'’(0) = 0.57171 for PHF
A =0.80193 , Da~l = 0.15550 , @(0) = 2.41799 , f'’(0) = 0.97106 for PHTC
2. For PHF we have, 0(0) = 1.19229, f'’(0) = 0.57206 which gives

1.04495 , Da-1 0.09158 , 6'(0) = -0.80264 , f''(0) = 0.50137 for PT
A = 0,83872 , Da’l = 0.14216 , 6(0) = 2.40940 , f’’'(0) = 0.96959 for PHTC
3. For PHTC we have, 0'(0) = - 2.38060, f'’(0) = 0.96445 which gives
1.24214 , pa~! = 0.06481 , 8'(0) = -0,80506 , f’'’'(0) = 0.50323 for PT
1.18943 , Da'1 0.07068 , 6(0) = 1.18943 , f''(0) = 0.57315 for PHF

In Table 4, critical values of P, for different values of Darcy number, for which
the solution is independent of m (property 3) are given. An interesting aspect of this

n
n

value of P., say Pg is that it bifurcates the class of solutions for different P. as
follows:

For P, > Pg, the values of 6(0), -8'(0) and -8'(0)/6(0) decrease with m whereas
they increase with m for P, ¢ PS.

n pa~l 0 0.001 0.01 0.1

0 P 1.70954 1.71004 1.71450 1.75903
t5(0) 0.47737  0.47728  0.47648 0.46863

1 Py 1.36790 1.36823 1.37116 1.40052
t¥(0) 0.45549  0.45542 0.45476 0.44836

Table 4. Critical values of P. for different Darcy numbers

The results of free convection on a vertical plate subjected to prescribed
temperature or prescribed heat flux can be obtained from the present study as

special cases of m = 0 or 1 respectively when n = 0, a = 0 and Da"l = 0.
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