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ABSTRACT. The Darcy-Brinkman free convection near a wedge and a cone in

a porous medium with high porosity has been considered. The surfaces are

subjected to a mixed thermal boundary condition characterized by a

parameter m; mr0,1,(R) correspond to the cases of prescribed temperature,

prescribed heat flux and prescribed heat transfer coefficient respec-

tively. It is shown that the solutions for different m are dependent and

a transformation group has been found, through which one can get solution for any m

provided solution for a particular value or m is known. The effects of Darcy number on

skin friction and rate of heat transfer are analyzed.
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1. NTRODICTION.

The problem of free convection adjacent to a heated vertical surface

has received a great deal of attention. These studies assume that the

surface is subjected to a prescribed temperature or a prescribed heat

flux. In the existing literature these two cases have been studied

independently. The present paper aims to present a unified treatment of

these cases. It also i::l,des the case of prescribed heat transfer

coefficient hitherto not consi.ered by earlier researchers.

Further the free convection on heated surfaces subjected to mixed

thermal boundary condition has not received sufficient attention. In

this paper we shall consider Darcy-Brinkman free convection [1,2] on n

-edge and a cone in a porous medium ,ith high porosity. The free convec-

tion on a vertical plate subjected to a prescribed temperature and

prescribed heat flux are obtained as special cases.

2. ANALYSIS.

The configuration of free convection adjacent to a wedge and a cone is shown in
Fig. 1. The surfaces are subjected to a mixed thermal boundary conditions. The boundary
layer equations governing the Darcy-Brlnkman free convection are
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(rnu}x + (rnv)y O, n 0 for wedge

1 for cone

(2.1)

u ux + v Uy o Uyy (o/K) u + gfl(T-T(R))coso (2.2)
u Tx + v Ty (o/Pr) Tyy (2.3)

w th boundary cond itions,

u 0 v O, a0 (T-T(R)) a Ty a2x at y 0 (2.4)
u----> 0 T-----> T(R) as y----> (R) (2.5)

where u,v are the velocity components along x and y directions respec-

tively. T is th.e temperature and T(R) is the ambient temperature. The

symbols g, , o and Pr denote gravitational acceleration, coefficient of

thermal expansion, kinematic viscosity of the ambient .fluid and Prandtl

number respectively, aO, aI 0, a2 0 are prescribed constants.
Introducing the following nondimensional quantities,

y eL, u 4 ox f,()/2, v 40 (n+l) f()/L
40X

0(), Da= K/L2, the Darcy numberT T(R) +
L4 g coma

(2.6)

where L is to be determined from the thermal boundary condition {2.4) in

a manner to be explained [3]. Equations (2.2} (2.5) become

f"’ / 4 ((n/l) ff" f,2) Da-lf, / O 0

8" + 4 Pr ((n+1} fS’ f’8 0

f(0) f’(0) : f’((R)) 8((R)) 0

(z-a) e(0) m o’(0)

where primes denote differentiation with respect to e,

s al/(a + LaO) and L is the positive root of the equation,

a2g coma L5 /(4o2) aoL a 0

(2.7)

-(2.8)

(2.9)
(2.10)

(2.11)

This equation has a unique positive root by Descartes rule of signs

for a1 0, a2 0. The local Nusselt number defined by

Nu x Ty /(T’T(R)) Jy:O becomes,

Nu (x/L) 8’(0)/8(0) (2.12)

If p is viscosity, the stress at the surface is given by

r p Uy ly=0 4pox f"[0)/L3 (2.13)

3.DISCUSSION ,AND CONCLUSIONS.

The solution of the boundary value problet (2.7) (2.10) has been
obtained by shooting method for different values of m 0. The values of
8(0), -8’(0), 8’(0)/8(0) and f’’(0) are given in the tables 1 & 2
for n 0, and 1 respectively with Pr 0.733. It is seen that for
n 1 (cone) the’surface temperature 8(0), the surface heat flux -8’(0),
the heat transfer coefficient -8’(0)/8(0) and the surface stress f’’(0)
increase with m. 8(0) decreases with increase in Darcy number, whereas
the dimensionless Nusselt number -8’(0)/8(0) increases with increasing

Da. All these effects are more pronounced for n 0 (wedge) than for

n (cone). It is observed that the porous medium transports larger
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amount of energy compared to the corresponding fluid medium {Da-I 0).
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Da-I m e(O) -e’(o) -e’(o)/e(o) r"(o)

0.01

0.1

0 1.00000 0.75859 0.75859 0.54935
0.5 1.12302 0.87698 0.78092 0.59930
1 1.24736 1.00000 0.80169 0,64841
I0 2.37825 2.24043 0.94205 1.05207
(R) 3.01972 3.01972 1.00000 1.25843

0 1.00000 O. 75786 O. 75786 O. 54854
O. 5 1.12342 O. 87658 O. 78027 O. 59862
1 1.24823 1.00000 O. 80113 O. 64788
10 2. 38334 2. 24500 O. 94196 1.05274

3.02647 3.02647 1.00000 1.25945

0 1.00000 O. 75132 O. 75132 0.54133
0.5 1.12949 0.87051 0.77072 0.59291

1.25597 1.00000 0.79619 0.64324
10 2. 42888 2. 28599 0.94117. 1. 05873
(R) 3. 08689 3. 08689 1. 00000 1. 26863

Table I. Values of O(0), -e’(0), -e’(0)/o(0) and f"(0) for n 0 (Wedge)

Da-1 m 8(0) -8’ (0) -S’ (0)/8(0) t"’(O)

0.01

0.1

0 1. 00000 0. 81449 0. 81449 0. 50853
0.5 1.09141 0.90859 0.83250 0.54301
1 I. 17840 I. 00000 0. 84861 O. 57515
10 1.87653 1. 78887 O. 95329 0.81533
(R) 2. 27224 2. 27224 1. 00000 O. 94115

0 1.00000 O. 81385 O. 81385 O. 50789
0.5 1.09174 0.90826 0.83193 0.54248
1 I. 17908 I. 00000 O. 84812 0.57474
10 1.88006 1. 79205 0.95319 0.81573
(R) 2.27700 2.27700 1.00000 O. 94184

0 1. 00000 O. 80193 O. 80193 0.50079
0.5 1.09790 0,90210 0.82166 0.53800
1 1.19229 1. 00000 0.83872 0. 57206
10 1. 91178 I. 82060 0. 95231 0. 81938
(R) 2. 38060 2. 38060 1. 00000 O. 96445

Table 2. Values of e(o), -e’(o), -e’{0)/0(0) and f"{0} for n (Cone)

It is interesting to note that. the solutions corresponding to dif-

ferent values of m are dependent as stated in the following properties:

Property The equations (2.7) (2.9) are invariant under the transformation,

* A Da* A2 Da f*(* ,Da*) f(,Da)IA, e*(*,Da*) (,Da)/A4 (3.1)

where A is any positive real number.

Property 2 If f{e,Da), e{,Da) is the solution of the boundary value problem {2.7)

(2.10) for any particular value of m, say m0, then the solution for any m is given by

the equations {3.1) provided A is the positive root of the equation,

A5 (l-m) A e(0,Da) + m e’(O,Da) 0 (3.2)

Property 3 If the solution of the boundary value problem (2.7) {2.10) is same for

any two distinct values of m, then the solution is same for all values of m,

The mixed boundary conditions {2.10) includes the following as special cases
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1. Prescribed Temperature (PT)’: a0 > O, a O, a2 O.

(40230)/(32213 cosa )1/4, m 0 and equation (2.10) becomesHence

e(o)

2. Prescribed Heat Flux (PHF) a0 O, a 0 a2 0.

Hence L (4o231)/{32g cosa )I/5 m 1 and equation (2.10) becomes

0’(0) -1

3. Prescribed Heat Transfer Coefficient (PHTC) a0 < O, a1 > O, a2 O.

Hence L -al/a0, m (R) and equation (2.10) becomes

o(o) / o’(o) o

(3.3)

(3.4)

(3.5)

---) PT PHF PHTC

PT 1 [-0’(0,Da)] /5’’ -0’(0,Da}
PHF [0(0,Da) ]1/4 l/0(0,Da)
PHTC [0(O,Da) ]1/4 [0(0,Da) ]1/5 1

Table 3. Values of A for transition

Table 3 gives the values of the parameter A required for transition from one

case to the other. The transition is illustrated by the following example for cone

case n 1) with Da-I 0.1.

1. For PT we have, 0’(0) = 0.80193, f"(0) 0.50079 which gives

A 0.95681 Da-I 0.10923 0(0} 1.19314 f"{0) 0.57171 for PHF

A 0.80193 Da"I 0.15550 0{0) 2.41799 f"{0) 0.97106 for PHTC

2. For PHF we have, 0(0) 1.19229, f"{O) 0.57206 which gives

A 1.04495 Da-1 0.09158 0’{0) -0.80264 f’’(0) 0.50137 for PT

A 0.83872 Da-1 0.14216 0(0) 2.40940 f’(O) 0.96959 for PHTC

3. For PHTC we have, 0(0) 2.38060, f"(0) 0.96445 which gives

A 1.24214 Da-1 0.06481 0’(0) -0.80506 f’’(0) 0.50323 for PT

A 1.18943 Da-1 0.07068 0(0) 1.18943 f’’(O) 0.57315 for PHF

In Table 4, critical values of Pr for different values of Darcy number, for which
the solution is independent of m (property 3) are given. An interesting aspect of this

c is that it bifurcates the class of solutions for different Pr asvalue of Pr’ say Pr
follows:

c the values of 0(0), -’(0) and -O’(O)/O(0) decrease with m whereasFor Pr ) Pr’
cthey increase with m for Pr < Pr’

n Da-I 0 0.001 0.01 O. I

1. 70954 1. 71004 1. 71450 1. 759030

’ (0) 0.47737 0.47728 0.47648 0.46863

P 1.36790 1.36823 1.37116 1.40052f"(0) 0.45549 0.45542 0.45476 0.44836

Table 4. Critical values of Pr for different Darcy numbers

The results of free convection on a vertical plate subjected to prescribed

temperature or prescribed heat flux can be obtained from the present study as

special cases of m 0 or respectively when n O, a 0 and Da-I O.
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Flg.l. Configuration the Physical System.
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