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ABSTRACT. The main results established are (i) a connection between the matching and
chromatic polynomials and (ii) a formula for the matching polynomial of a general complement of a
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1. INTRODUCTION.

The graphs considered here are finite, undirected, and contain no loops and no multiple edges.
Let G be such a graph. A matching in G is a spanning subgraph of G, whose components are nodes
and edges only. Let a; be the number of matchings in G with k edges and let n be the number of
nodes in G. Then the matching polynomial of G is '

[n/2

M(G;w) = 5
K

]
, a w?'z" w3,

where w; and wy are indeterminates or weights associated with each node and edge respectively, in
G. If we put w) = wy = w, then we obtain
[n/2] \
MGiw)= 3" apw”~F%,

which is called the simple matching polynomial of G. The basic properties of the matching
polynomial can be found in the introductory paper by Farrell [1].

The chromatic polynomial of a graph G is the polynomial P(G;)) which represents the number
of ways of coloring the nodes of G with A colors, in such a way that adjacent nodes receive different
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colors. The basic properties of P(G;)\) can be found in Read [10]. In this paper, we will assume
that P(G;)) is expressed in the complete graph basis, i.e.,

PGN=3 o, s
k=0
where ¢, is the number of color partitions of the nodes of G into n — k non-empty indistinguishable
classes and (A), = AA—=1)(A—2)---(A—r+1).

Let m(G) denote the vector of the nonzero coefficients of M(G;w), written in ascending powers
of wy. This vector is called the matching vector of G. Graphs G and H are matching equivalent if
m(G) = m(H). Analogously, let ¢(G) denote the vector of the nonzero coefficients of P(G;A). This
vector is called the chromatic vector of G. Graphs G and H are chromatically equivalent if
¢(G) =c(H). Let V(G) denote the node set of G and |V(G)| denote the cardinality of V(G).
Graphs G and H are called co-matching if |V(G)| = |V(H)| and G and H are matching
equivalent. Graphs G and H are called co-chromatic if |V(G)| = |V(H)| and G and H are
chromatically equivalent. A graph G is matching unique if M(G;w) = M(H;w) implies that H is
isomorphic to G. The term chromatically unique is analogously defined.

A chain is a tree with nodes of valencies 1 and 2 only. The chain with n nodes will be denoted

by 'Pp. The notations K, K, , and Cp, will be used for the complete graph with p nodes, the

complete m by n bipartite graph and the cycle (circuit) with p nodes, respectively. Let S be a
subset of V(G). Then G — S will denote the graph obtained from G by removing the nodes in S. If
S is a subset of E(G), then G — S will denote the graph obtained from G by removing the edges in
S.

We extend a result of Frucht and Giudici (3], by showing that their necessary condition for the
matching vector to be equal to the chromatic vector is also a sufficient condition. A formula for
the matching polynomial of a complement of a subgraph of a labeled graph is then derived. Also,
we obtain connections between matching and chromatic equivalence and uniqueness. Finally, we
deduce some results for §-graphs.

In the material which follows, the upper and lower limits of summations will be omitted when
they are obvious from the contents of the summand. For example, the lower summation limit is
zero and the upper summation limit is [n/2] in all matching polynomials of graphs with n nodes.
The notation G; UG5 U---UG, will denote the disjoint union of graphs G;,Gy,. . . and G,. The
notation (G, H) will be used for a pair of two equivalent, co-matching or co-chromatic graphs; this
pair will be referred to as an equivalent, co-matching or co-chromatic pair, as appropriate.

2. CONNECTIONS BETWEEN THE MATCHING AND THE CHROMATIC POLYNOMIALS.

The following lemmas can be easily proved.

LEMMA 1. Every proper coloring of a graph G with r colors induces a partition of V(G) into
r parts in which nodes z and y belong to a part only if zy ¢ E(G).

LEMMA 2. Let G be a graph (without loops or multiple edges). Then

PGN =3 ),k

where a; is the number of partitions of V(G) into exactly p—k parts such that nodes z and y
belong to the same part only if zy ¢ E(G); and the summation is taken over all (nonnegative
integral) values of k less than p.

DEFINITION. A color partition of G is a partition of V(G) induced by a proper coloring of
G.
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LEMMA 3. Let {R,R,,. . .,R,} be the set of all color partitions of V(G), where
Ry ={S,1So,p- - "S"k"’}° Then |S; ;| <2 for all integers 7 and j such that 1 <i<r; and

1< j<n,if and only if G is A-free (triangle free). Hence, if P(G;)) = Eab()‘)p-k' Then a; is
k

the number of matchings in G with p — k components if and only if G is A -free.

PROOF. Suppose that G is A-free. Let us assume that |S'~’ jl > 2 for some ¢ and j. Let
z,y,2 € Si, P Then z, y and z are nonadjacent in G. Thus, zyz is a triangle in G. This is a
contradiction. Therefore, our assumption is false. |S; jl <2 for all i and j.

Conversely, suppose that |S,~' jl <2 for all ¢t and j. Then G does not contain a proper
coloring in which three nodes can be colored the same. Thus, G does not contain a set of three
mutually nonadjacent nodes. Therefore, G is A -free. This proves the first part of the theorem.
When |S; ;| <2 for all i and j, the subgraph of G induced by S; ; is either a node (if IS5 ;1=1)
or an edge (if |S; jI =2). It follows that each color partition of V(G) induces a unique matching
in G.

Since the number of matchings in G with r components is the coefficient of w" in the simple
matching polynomial of G, we immediately obtain the following theorem.

THEOREM 1. Let G be a graph. Then P(G;)\)= M(G;w') (where w' means that w® in
M(G;w) is replaced by ()),) and dually, M(G;w) = P(G;)’) (where )’ means that (A) is replaced
by the monomial w%k TP b k¥ and p is the number of nodes in G) if and only if G is A -free.

COROLLARY 1.1. m(G) = ¢G) if and only if G is A -free.

This corollary is an improvement of the main result in [5], since it gives both a necessary and
sufficient condition for the matching vector of a graph to be equal to the chromatic vector of the
complement graph.

Suppose that G is not A-free. Then the sets S i, j may have more than two elements. In this
case, for some k, there will be other k-color partitions of V(G) (viz those which contain Si, j’s for
which |S; ;| >2). This observation and Theorem 1 yield the following result.

THEOREM 2. Let G be a graph;

MGw)=Y" bkwp_k
k
its simple matching polynomial and
Pa)rx) = 2 ak(A)p— k
k

the chromatic polynomial of its complement. Then a; > b, for all values of k.  Furthermore,
equality holds (for all values of k) if and only if G is A -free.

We note that Theorem 2, not only characterizes graphs whose matching vector is equal to the
chromatic vector of its complement, but also gives (i) a lower bound for the coefficients of the
chromatic polynomial and (ii) a criterion for determining whether or not a given graph contains
triangles.

3. MATCHING POLYNOMIALS OF COMPLEMENTS OF GRAPHS.

DEFINITION. Let H be a graph and G a subgraph of H. A complement of G in H is a
graph obtained from H by removing the edges of an isomorph of G.

Thus, if R is a complement of G in H, then V(R) = V(H) and E(R) = E(H) — E(G'), where G’
is an isomorph of G. Since H is unlabeled, there could be, in general, several complements of G in
H. However, if we take H to be a labeled graph, then there is only one (labeled) complement of G
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in H. In this case, we denote the unique complement of G in H by G . If we take H to be the
complete graph K, then again the complement is unique and is denoted by ép, or simply by G,
when it is unnecessary to specify the number of nodes. Notice that if in addition, G also has p
nodes, then the complement is the usual graph complement. If H is the labeled bipartite graph
K, 5, then we denote the complement by ém,,,, or G p» Where B is a complete bipartite graph, if
it is unnecessary to specify the cardinalities of the disjoint node sets.

The following theorem gives the matching polynomial of the complement of a graph G relative
to any labeled graph H which contains G as a subgraph.

THEOREM 3. Let G be a graph with e edges. Let H be a labeled graph containing G as a
subgraph. Then

M(Gpiw)= 3 (~1)kuf T M(H - V(Syw)
where S is a set of k edges of G belonging to a matching in H and the second summation is taken
over all such matchings in H containing k edges of G.

PROOF. Our proof is based on the Principle of Inclusion and Exclusion. Let p; be the
property that the edge ¢ of G is used in the a matching of H. Then there are e properties -- one for
each edge in G. Let N(p;,py,. . .,p;) denote the contribution to M(H;w) of the matchings
containing the edges 1,2,. . .,k of G. We must find N(p},ph,. . .,pe), i.e., the contribution to
M(H;w) of the matchings which do not contain any of the e edges of G. Therefore, this is the
contribution of all the matchings in G e, M (G W)

Let D, be a matching in H which contains the set S = {1},75,. . .,i;} of k edges of G. The
edges in S are independent and therefore cover 2k nodes of H. Suppose that H contains n nodes.
Then the remaining n — 2k nodes of H can be covered by a matching a; of H —V(S,). Clearly, no
edge of ;. can be incident to any of the k edges in G.

Therefore the matchings which cover the n —2k nodes can be enumerated independently.
They will be all the matchings in H —V(S;). Therefore, the contribution of D, to the matching
polynomial of H is

N(py,pyy- - - Pp) = w§ M(H = V(S w).
The contribution of all such matchings of H with k edges belonging to G is therefore
Y- wf M(H ~V(S,)w),

where the summation is taken over all such matchings D, of H. The theorem follows by the
Principle of Inclusion and Exclusion.

Suppose, in the above theorem, H is the complete graph K. Then H —V(S;) will be the
complete graph K _,,. If G contains a; matchings with k edges, then the second summation will
become apM(K, _o;;w). Thus we have the following result (also essentially given in Zaslavsky [4]
and Wahid [5].

COROLLARY 3.1. Let G be a graph with p nodes and n > p, a positive integer. Also let

[p/2]
MGw)= )" akwf—2kw12°.
k
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Then
M(Gyw) = ;( — e, uk M(K, _opw).

In the case where H is the labeled complete bipartite graph K, ,,, we obtain the following
result, also given by Gutman [6)].
COROLLARY 3.2. Let M(Giw)=Y_ a, wf —2% wg, where G is a bipartite graph. Then
k

MGy niw) = zkx = 1)fay w M(K,, _ \_ iw).

We note from Corollary 3.2 that the matching polynomial of Gy, , depends only on the
coefficients of the terms in M(G;w). It follows that all the complements of G in K, 5, are co-
matching. We therefore speak of the matching polynomial of a complement of a graph in the
complete bipartite graph. The graph is not unique but the matching polynomial is.

Corollary 3.1 can be improved as shown in the following result which is essentially given in
Godsi (7].

THEOREM 4. Let G be a graph with p nodes. Then

MGw) =) q wp ~ 2k wh
if and only if k

M(G;w) = ;( - l)"a‘, w’sz(Kp_zk;y_)).

PROOQF. Corollary 3.1 establishes the sufficiency of the condition. Assuming the formula for
M(G;w), it can be deducted (after careful manipulations), that M(G;w) is the desired formula.

Corollaries 3.1 and 3.2 can be used to obtain results concerning equivalence, co-matching and
matching uniqueness. The following are deductions from these two corollaries.

THEOREM 5. If (G,H) is a matching equivalent pair, then so is (G, Hy,). I in addition, G
and H are bipartite, then (G, H g) is also a matching equivalent pair.

THEOREM 6. G is matching unique if and only if G is.

Theorems 5 and 6 can be used to substantially increase the presently known families of
equivalent graphs, co-matching graphs and matching unique graphs.

The following lemma is easy to prove.

LEMMA 4. Let G and H be matching equivalent graphs with p nodes and m nodes
respectively. Then M(G;w) = w] M(H;w), where r = p—m.

THEOREM 7. Let G be a graph which is matching equivalent to a A -free graph H. Then

P(H;)) = M(G;w*),
where w* is the transformation in which w* in M (G;w) is replaced by ()., where
r=|V(H)| — |V(G)|. Dually, M(G;w)= P(H;X), where X' represents the transformation in
which (3), +k is replaced by wlzr +2k-p wy? =7~k and p is the number of nodes in G.

PROOF. Since G and H are matching equivalent, we have from Lemma 4,

M(G;w) = w] M(H;w), where r = |V(G)| — |V(H)| = M(G;w) = w"M(H;w). (1)
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From Theorem 1, we have M(H;w') = P(H;)). From Equation (1), it is clear that the polynomial
M(H;w') is essentially the polynomial M(G;w) with wk replaced by (A),, ;. Hence the result
follows. The dual part of the proof can be similarly established.

We illustrate the theorem with the following example. Let G and H be the graphs shown in
Figure 1. In this example, r = 0 because both G and H have 5 nodes.
FIGURE 1:

The following polynomials are easily computed.

M(G;w) = w? + 5wi‘w2 + 4wlw%
and

P(G;)) = (A)5+ 5(\)4 + 4(2)3 = M(G;w*).
Notice that G = H. Also, it can be verified that

P(G;)\) = P(H;\) = ()5 + 5(\)g + 5(A)3 + (A)g
and
M(H;w) = M(G;w) = w? + 5w?w2 + 4w1w%

Thus G and H are matching equivalent graphs. Hence G is matching equivalent to a A -free graph
H. However, M(G;w*) # P(G;)). Thus, if G is matching equivalent to a A -free graph, it is the
complement of the A -free graph (and not the complement of G) that has equal chromatic vector.

It is well known (for example, see [1]) that the characteristic polynomial of a tree coincides
with its matching polynomial, except for the alternation of the coefficient signs. This observation,
combined with Corollary 1.1, yields the following theorem which gives a relation between the
matching, characteristic and chromatic polynomials.

THEOREM 8. For any tree T, m(T) = ®(T) = ¢(T), where §T) is the vector of the absolute
values of the coefficients of the characteristic polynomial of T.

Suppose that we take T to be the chain P,, with n nodes. From [1] (Theorem 9), we have

M(Pyw)=Y (" - ’)w;' -2y

T

It is well known (see Farrell [8] Corollary 7.1) that
B(Pyiz) = 3 ("7 )vren
From Theorem 7, we have

PN =L ("7 7)n-r

These results agree with Theorem 9 in Loerinc [9].
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Theorem 7 can be used to obtain combinatorial identities when explicit formulas for P(H;))
and M(G;w"*) are known. We give an example of this.
EXAMPLE.

O = T ),

PROOF. Since K,, UK, = K, p, it follows (Theorem 8) that
M(Km,n? w*) = P(Km,rﬁ’\) =P(K,UKy;))
= P(K 3 ) P(Kp; ) = (A)m(A)n-

The results follows by using the formula for M(K,;, ,;w) given in (1] (Theorem 20).

We note that this identity was also derived by Goldman et al. in [10] (Corollary 12).
4. DEDUCTIONS FOR CHROMATIC EQUIVALENCE AND UNIQUENESS.

The following theorem shows that for A -free graphs, chromatic equivalence of complements is
completely determined by matching equivalence.

THEOREM 9. Let G and H be A -free graphs. Then (G, H) is a chromatically equivalent
pair if and only if (G, H) is a matching equivalent pair.

PROOF. Suppose that (G, H) is matching equivalent. Then m(G)= m(H). Since G and H
are A -free, ¢(G) = m(G) and c(H) = m(H). This implies that ¢(G) = ¢(H), which implies that
(G, H) is a chromatically equivalent pair.

Conversely, suppose that (G, H) is a chromatically equivalent pair. Then ¢(G) = ¢(H). Since
G and H are A -free, by Theorem 5 we have m(G) = m(H), i.e., (G, H) is matching equivalent.

It is clear that if (G, H) is a co-matching pair, then (trivially) it is also a matching equivalent
pair. If, in addition, G and H are A- free, then by Theorem 9, (G,H) is a chromatically
equivalent pair. But G and H must have the same number of nodes because they are co-matching
graphs. It follows that G and H have the same number of nodes. Hence (G, H) is a co-chromatic
pair. The converse situation is also true, i.e., if (G, H) is a co-chromatic pair, then (G, H) must be
a co-matching pair. Hence, we have proven the following theorem.

THEOREM 10. Let G and H be A -free graphs. Then (G, H) is,a co-chromatic pair if and
only if (G, H) is a co-matching pair.

In Farrell and Wahid [4], many families of co-matching graphs have been identified, and
constructions are given for general families. Also, by suitably choosing the lengths of the chains
and cycles, these graphs can be made to be A-free. Therefore, by applying Theorem 10, many
families of co-chromatic graphs can be identified. For example, it can be easily verified that the
graphs G and H shown in Figure 2 are co-matching for all a,b > 2; this was proven in [9]. Note
that G and H are A-free. Therefore, by Theorem 10, (G, H) is a co-chromatic pair.

FIGURE 2:
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An interesting question at this point is the following: Is it possible for two A -free graphs to
have different chromatic polynomials, but have chromatically equivalent complements? Suppose
that there exist A-free graphs G and H such that (G,H) is matching equivalent but not
chromatically equivalent. Since G and H are A -free, (G,H) will be chromatically equivalent by
Theorem 9. Qur question would be answered if we can find a pair of matching equivalent but
chromatically nonequivalent A -free graphs. The graphs G = Py, , and H = P,UC, ,, form
such a pair, for all n > 2. Thus, the answer to our question is yes. We note that G and H were
shown to be co-matching in [4]. Their complements were shown to be chromatically equivalent in
[9]-

Suppose that G is A -free and matching unique. Does it follow that G will be chromatically
unique? The answer is no in general. Let G be the chain P,. It has been shown (Farrell and Guo
[3]) that Py, for n even, is matching unique. Therefore P, is matching unique. However, P, = P,.
But P, is not chromatically unique because it is chromatically equivalent to K, 3.

Notice that we cannot say that if G is matching unique then G is not chromatically unique.
For suppose that G is a graph consisting of isolated nodes and independent edges. Then G is
known to be matching unique. However, in [9], it was shown that G is chromatically unique.

At this point, let us consider the converse of the above question. Suppose that G is
chromatically unique, does it follow that G is matching unique? The following theorem answers
this question.

THEOREM 11. If G is A-free and G is chromatically unique, then G is matching unique up
to A -freeness. That is, there does not exist another A -free graph which is matching equivalent to
G.

PROOF. Let G satisfy the conditions given in the theorem. Suppose that there exists a A -
free G such that M(G;w) = M(G;w). Since G is A-free, M(G;w') = P(G;)). Since G, is A-
free, M(Gy;w') = P(Gy;A). Therefore, P(G;A) = P(G;)). Since G is chromatically unique, we
must have G 1 = G which implies that G 126
5. SOME DEDUCTIONS FOR THE THETA GRAPH.

We can use Theorems 1 and 7 in order to derive formulas for the chromatic polynomials of
complements of some graphs. For example, if G consists of m isolated nodes and n independent

edges, then

P(év’\) = Z:(?)(’\)m+n+r

This follows from Theorem 1 and the formula for the matching polynomial of G.
We can also obtain the chromatic polynomial of the complement of the graph consisting of two

components Py, and C,, , | (n>2). In this case,

POC, 0 = £ (4O 1 = PP 1)
r=

In [1], formulas are given for the matching polynomials of the basic graphs with cyclomatic
number 2. These graphs are A -free for suitable choices of the lengths of the chains and cycles of
which they are composed. From Theorem 1, it follows that the chromatic polynomials of the
complements of these graphs can be found. For example, ([1] Theorem 14), we have the following
matching polynomial for the 6-graph G(r,s,t) consisting of three chains of lengths r, s and ¢t whose
endpoints have been identified. Without loss of generality, we assume that r <s < t.
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M(G(r,s,tyw) = M(P,  ;,,_pw)+wy [M(P._;0)M(P, ,_ow)
+ M(P,_ jw)M(P, _ow)+M(P,_;w)M(P,  ,_ow)

—~ M(P w)M(P, _ ;w)M(P, _ |;w)], where r,s,t > 2.

r—1
Clearly, G(r,s,t) is A -free, for r,s,t >2. By Theorem 1, thus we have

THEOREM 12.

PG5, 1) = Z(r+s+f-1—i)mi+ Zz(r—} —iXs+t;2—i>/\)i+j+l

1 LI ]

222 U MR L TVES 2 (S PR LR

N Sr R

The following theorem shows that the matching polynomial of the 8-graph G(2,s,t) depends

only on the sum s +¢.
THEOREM 13.

M(G(2,s,thw) = w\M(P, , sw)+2waM(P,  _ j;w) + wjwoM(P,  y_giw)-

PROOF. Applying the fundamental edge theorem (Theorem 1 in [1]) successively to the two
edges of the path of length 2, we obtain

M(G(2,8,t)w) = w M(Cy 4 sw)+2w,M(P, y ,_yiw)
Applying the fundamental edge theorem to one of the edges of the cycle C, , ;, we have
M(Cy 4 pw) = M(P, | sw)+w,M(P, |, _gw)

The proof is completed by combining these two equations.
COROLLARY 13.1. The graphs G(2,s,,t;) and G(2,3,,t,) are co-matching if and only if

81+t1=32+t2.

PROOF. If s;+t; =sy+1ty, then G(2,39,t)) are co-matching by Theorem 14. If
sy +1t) #sg+1tythen |V(G(2,3),t)))| # |v(G(2,8,t5))| which implies that G(2,s,,¢;) and
G(2, 39,15) are not co-matching.

The following corollary appears as Theorem 3.2.4 in [9].

COROLLARY 13.2. The graphs (G(2,s,t;) and G(2,s,ty) are co-chromatic if and only if
1+t =39+,

PROOF. Since 2<s;<t; for i€ {1,2}, G(2,3;,t;) is A-free. I s+t =s9+1ty then
G(2,3),t) and G(2,s,ty) are co-chromatic by Corollary 13.1 and Theorem 9. If s; +1) # sy +1,,
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then |V(G(2,s1,t))| # | V(G(2,s,, t2)).| which implies that G(2,s,t;) and G(2,s,,1,) are not co-

chromatic.
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