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ABSTRACT. The asymptotic behaviour of a class, of generalized functions, named regular

convolution quotients, has been defined and analysed. Some properties of such asympto-

tics, which can be useful in applications, have been proved.
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I. INTRODUCTION.

T.K. Boehme in [I defined and investigated a class of generalized functions

named r e g u i a r c o n v o i u t i o n q u o t i e n t s This class is a ge-

neralization of the Schwartz distributions and also of the regular Mikusinski opera-

tors (see [2] [3] and [4] ). On the other hand, for the Schwartz distributions a

theory of the asymptotic behaviour S-asymptotics, has been developed (see for exam-

ple [5], [6], [7] and [8] ), which can be applied in solving a lot of mathematical mo-

dels. A distribution T has S-asymptotics related to a positive and measurable fun-

ction c iff lim (T*w)(h)/c(h) (S’w)(0) for every w D We write" T s c(h).S,

h In thls paper we shall enlarge the definition of S-asymptotics of distribu-

tions to the regular convolution quotients having in view the application of this

class of generalized functions.

2. REGULAR CONVOLUTION QUOTIENTS.

By Boehme [I] an a p p r o x i m a t e

functions (un) c L(R) satisfying the following conditions"

i) 5 R Un(X) dx nN

ii) there is an M0 such that R lu(x) dxM

iii) there exists a sequence (kn)CR+ such that kn
supp unc[-kn,kn neN

identity

nN;

is a sequence of

- 0 as n and

/ will be the set of all approximate identities and (Un)e ung C, n
N}. A d e f i n i n g s e q u e n c e for a regular convolution quotient is a se-

quence of pairs ((fn,Un)), where (fn) C Lloc(R), (Un)e and for all m,ngN the folio-
wing convolution products are equal-

iv) fn*Um fm*Un the asterisk is the sign of the convolution).
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Two defining sequences ((fn,Un))
v) f *v

n m gm*Un for n,mN
and ((gn’Vn) are said to be equivalent if"

By fn/Un we shall denote the equivalence class containing the difining sequence

((fn,Un)).A r e g u 1 a r c o n v o 1 u t i o n q u o t i e n t X is an equi-

valence class of defining sequences The regular convolution quotients are a vector

space when the usual multiplication by scalars and addition of fractions is used; we

denote it by B(Lloe, ).The space B(oe, A contains D’ (space of Schwartz’s di-

stributions) under the isomorphism: D’9 T - (T*Vn)/Vn B(Lloe, ), where (Vn)E
Moreover, B(Lloc, contains the class of all regular Mikusinski operators. Both of

these containments are proper.

Let (hn) be any continuously differentiable approximate identity. By D n/hn
e B(Lloc,6 is defined the differentiation operator. The derivative of an X fn/hn %
& B(LIoc i) is now, defined to be DX (fn hn)/(Un*hn) & S(hoc’)"

For a distribution T e D’ and w&D we shall write T(w) < t,w > We shall
use the following properties of elements belonging to and distributions defined

by local integrable functions

I. For (fn)Lloc and (Vn) e we have <fn(x+h),%(x)> (fn*Vn)(h)
where n(x) vn(-x)

2. If (un) and (vn) belong to , then (Un*Vn) e as well.

3. If (fn*Vn)(O) 0 ,neN for every (vn) e Zi then fn(x) 0 for almost

all x R

3. S-ASYMPTOTICS OF REGULAR CONVOLUTION QUOTIENTS

Let E be the set of all real valued, positive and measurable functions: R - +
DEFINITION i. A regular convolution quotient X has S-asymptotics at infinity,

related to c e r. and with the limit U Fn/Un E B(oc,) if there exists ((fn,Un))
belonging to the class X such that

fn*Vn h
lira c(h) (Fn*Vn)(0) n N
h-

for every (vn) e Zi We shall write X ,s c(h).U h -This definition does not depend on the defining sequence ((fn,Un)) in the equi-

valence class X Let ((gn,Jn)) e fn/Un and let Gn/Jn & B(Lloc,/i) such that

im
(gn’Vn)()

h- c(h) (Gn*vn) (0) nS and (vn)e
Then ((Fn,un)) and ((Gn,Jn)) belong to the same class because of"

< (Fn*Jm) ,n> ((Fn*Jm)*Vn)(O)
fn" Jm’Vn ).(h) (Un.Vn)lira (gin* (h)

h-, e(h) lira

< %’Us,% >
for every (Vn) and m,n,N Hence, Fn*Jm Gin* un for m,n S

PROPOSITION I. If a distribution T has S-asymptotics, T c(h).S, h-c 7. then the regular convolution quotient X (T*Un)/Un which corresponds tohas S-asymptotics, as well and X s c(h).(S,Un)/Un h -
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Proof. For every vn) e we have"

((T*Un)*Vn) (h) (T* (Un*Vn) )(h)
lim c(h)

lim C(h)
h-

(S*(Un*Vn))(0) ((S*un)*vn)(O) neN

(S*un
Hence
g D’

)/un belongs to B(Lloc,)because of (S*Un)*Um (S*Um)*Un for every m,n
X s, c(h).(S.Un)/Un h-. Let u’remark that (S*Un)/Un corPesponds to Se

by the mentioned isomorphism. In such a way S-asymptotics of regular convolu-

tion quotients, defined by Definition generalizes S-asymptotics of distributions.

PROPOSITION 2. If X has S-asymptotics X c(h).U h- c E then

Dnx has S-asymptotics,as well and Dnx s c(h).DnU h D is the differentia-

tion operator in B(Lloc,
Proof. It is enough to prove for n=1 Let X fn/Un and let for every (Vn)e

(fn*Vn)(h) (Fn*Vn)(0) ne Nlim (h)

By definition, DX (fn*h)/(Un*hn) where (hn) is any continuously differentiable

approximate identity. Now, the following relation is true"

fn*h)*vn (h) fn*(h*vn) )(h)
lim c(h) lim c(h) ((F

n hn)*Vn)(O) nN
h- h-

Hence , /(Un,hn) s
fn hn) c(h).(Fn*h)/(Un*hn) and DX s, c(h).DU, h- where

U Fn/Un
This proposition can be useful in applying regular convolution quotients to dif-

ferential equations. The next proposition precises the analytical form of the function

c g E which measures the asymptotical behaviour of a regular convolution quotient and

the form of the regular convolution quotient U, the limit in Definition I.

PROPOSITION 3. Suppose hat X B(Lloc, and X s c(h).U h- where

c. and U Fn/Un If Fn 0 for one n then c(h) exp(ah) L(exph)

>0 and Fn(x) C
n exp(ax) where a{R CneB C

n 0

varying function.

and L is a slowly

Proof. L is a slowly varying function by definition iff LeE and lim L(ux)!
X--

/L(x) u > 0 (For slowly varying functions see, for example [9] )- By Definition

there exists ((fn,Un)) e X such that

(fn*Vn)(h) /i
h-lim c(h) (Fn*Vn)(0) ne N for every (Vn)e

Now, the proof of Proposition 3 follows directly from Proposition 4.3 in [5]
or propositions 9 and 10 in [7].

PROPOSITION 4. If X B(Lloc,), then X has a compact support if and only if

X ,s c(h).O lhl-> for any eel

Proof. We know (see [10]) that X e B(Lloc,) has compact support if and only if

there is a (Un)e such that UnX fn n e N and fn ’neN has compact support

Moreover, if X has compact support, then this is true for every gn XJn ne N

((gn,Jn)) X Suppose that supp fn C I-an’an] and supp v
n c [-kn,kn], an> 0 kn> 0,

+k HenceneN and (vn) e’. Then we have’(fn*Vn)(h):0 for hl>an n

fn*Vn h
lira c(h) 0 neN for any ceE and any (vn) e -h-=
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Suppose ,pow, that X c(h).O lhl-w for every c e Z where X fn/Un
and suppose that for every (vn) eZi we have"

(fn*Vn) (h)
lim c(h) 0 n(N
h..

then by Proposition 8.1 p. 98 in 151 or by Proposition 12 in 71, fn ’neN has a

compact support

The S-asymptotic behaviour of a regular convolution quotient is a local property.

This property precises the following proposition.

PROPOSITION 5. Suppose that X and Y belong to B(Lloc,i) and X c(h).U

h-, c(.. If X Y on an interval (a,) a eR then y s. c(h).U h,

as well.

Proof. Let X fn/Un Y gn/jn and for every (vn) e Z-
(fn*Vn)(h)

lim c(h) (Fn*Vn)(O) n
h-

By properties of the convolution it follows:

((fn*Jn)*Vn)(h) /i.lim c(h) ((Fn*Jn)*Vn)(0) ne (Vn)e
h--

If X Y then X-Y O, where X-Y (fn*Jn gn*Un)/(Jn*Un). Hence, there

exists a sequence (bn)e R such that supp (fn*Jn gn*Un) C (bn,). Now,

((fn*Jn gn*Un)*Vn)(h)
lim c(h)

0 ne (vn) e ,
h--

Therefore,

((gn*Un)*Vn) (h)
lim- c(h) ((Fn*Jn)*Vn)(O) ne M (Vn)e
h-

The equivalence class (gn*Un)/(Jn*Un) is just Y because of (gn*Un)*Jm gin*
*(Jn*Un) and y .s c(h).(Fn,Jn)/(Jn,Un).it remains only to see that (Fn*Jn)/(Jn*Un)=

Fn/Un This follows from the relation (Fn*Jn)*Um Fm *(Jn*Un) m,n M
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