

ASYMPTOTICS OF REGULAR CONVOLUTION QUOTIENTS

BOGOLJUB STANKOVIĆ

Institute of Mathematics
University of Novi Sad
Yugoslavia

(Received October 10, 1991)

ABSTRACT. The asymptotic behaviour of a class of generalized functions, named regular convolution quotients, has been defined and analysed. Some properties of such asymptotics, which can be useful in applications, have been proved.

KEY WORDS AND PHRASES. S-asymptotics, convolution quotient, regular convolution quotients, distributions, generalized functions.

1991 AMS SUBJECT CLASSIFICATION CODE 44A40

1. INTRODUCTION.

T.K. Boehme in [1] defined and investigated a class of generalized functions named regular convolution quotients. This class is a generalization of the Schwartz distributions and also of the regular Mikusinski operators (see [2], [3] and [4]). On the other hand, for the Schwartz distributions a theory of the asymptotic behaviour, S-asymptotics, has been developed (see for example [5], [6], [7] and [8]), which can be applied in solving a lot of mathematical models. A distribution T has S-asymptotics related to a positive and measurable function c iff $\lim_{h \rightarrow \infty} (T*w)(h)/c(h) = (S*w)(0)$ for every $w \in D$. We write: $T \underset{S}{\sim} c(h).S$, $h \rightarrow \infty$. In this paper we shall enlarge the definition of S-asymptotics of distributions to the regular convolution quotients having in view the application of this class of generalized functions.

2. REGULAR CONVOLUTION QUOTIENTS.

By Boehme [1], an approximate identity is a sequence of functions $(u_n) \subset L(R)$ satisfying the following conditions:

- i) $\int_R u_n(x) dx = 1, n \in \mathbb{N};$
- ii) there is an $M > 0$ such that $\int_R |u(x)| dx \leq M, n \in \mathbb{N};$
- iii) there exists a sequence $(k_n) \subset \mathbb{R}_+$ such that $k_n \rightarrow 0$ as $n \rightarrow \infty$ and $\text{supp } u_n \subset [-k_n, k_n], n \in \mathbb{N}.$

Δ will be the set of all approximate identities and $\Delta^\infty = \{(u_n) \in \Delta, u_n \in C^\infty, n \in \mathbb{N}\}$. A defining sequence for a regular convolution quotient is a sequence of pairs $((f_n, u_n))$, where $(f_n) \subset L_{\text{loc}}(R)$, $(u_n) \in \Delta$ and for all $m, n \in \mathbb{N}$ the following convolution products are equal:

- iv) $f_n * u_m = f_m * u_n$ (the asterisk is the sign of the convolution).

Two defining sequences $((f_n, u_n))$ and $((g_n, v_n))$ are said to be equivalent if:
 v) $f_n * v_m = g_m * u_n$ for $n, m \in \mathbb{N}$.

By f_n / u_n we shall denote the equivalence class containing the defining sequence $((f_n, u_n))$. A regular convolution quotient X is an equivalence class of defining sequences. The regular convolution quotients are a vector space when the usual multiplication by scalars and addition of fractions is used; we denote it by $B(L_{loc}, \Delta)$. The space $B(L_{loc}, \Delta)$ contains D' (space of Schwartz's distributions) under the isomorphism: $D' \ni T \Leftrightarrow (T * v_n) / v_n \in B(L_{loc}, \Delta)$, where $(v_n) \in \Delta^\infty$. Moreover, $B(L_{loc}, \Delta)$ contains the class of all regular Mikusinski operators. Both of these containments are proper.

Let (h_n) be any continuously differentiable approximate identity. By $D = h_n' / h_n \in B(L_{loc}, \Delta)$ is defined the differentiation operator. The derivative of an $X = f_n / u_n \in B(L_{loc}, \Delta)$ is, now, defined to be $DX = (f_n * h_n') / (u_n * h_n) \in B(L_{loc}, \Delta)$.

For a distribution $T \in D'$ and $w \in D$ we shall write $T(w) = \langle t, w \rangle$. We shall use the following properties of elements belonging to Δ^∞ and distributions defined by local integrable functions:

1. For $(f_n) \in L_{loc}$ and $(v_n) \in \Delta^\infty$ we have $\langle f_n(x+h), \hat{v}_n(x) \rangle = (f_n * v_n)(h)$, $h \in \mathbb{R}$, where $\hat{v}_n(x) = v_n(-x)$.
2. If (u_n) and (v_n) belong to Δ^∞ , then $(u_n * v_n) \in \Delta^\infty$, as well.
3. If $(f_n * v_n)(0) = 0$, $n \in \mathbb{N}$, for every $(v_n) \in \Delta^\infty$, then $f_n(x) = 0$ for almost all $x \in \mathbb{R}$.

3. S-ASYMPTOTICS OF REGULAR CONVOLUTION QUOTIENTS

Let Σ be the set of all real valued, positive and measurable functions: $\mathbb{R} \rightarrow \mathbb{R}_+$.

DEFINITION 1. A regular convolution quotient X has S-asymptotics at infinity, related to $c \in \Sigma$ and with the limit $U = f_n / u_n \in B(L_{loc}, \Delta)$ if there exists $((f_n, u_n))$ belonging to the class X such that

$$\lim_{h \rightarrow \infty} \frac{(f_n * v_n)(h)}{c(h)} = (F_n * v_n)(0), \quad n \in \mathbb{N}$$

for every $(v_n) \in \Delta^\infty$. We shall write $X \xrightarrow{S} c(h).U$, $h \rightarrow \infty$.

This definition does not depend on the defining sequence $((f_n, u_n))$ in the equivalence class X . Let $((g_n, j_n)) \in f_n / u_n$, and let $G_n / j_n \in B(L_{loc}, \Delta)$ such that

$$\lim_{h \rightarrow \infty} \frac{(g_n * v_n)(h)}{c(h)} = (G_n * v_n)(0), \quad n \in \mathbb{N} \text{ and } (v_n) \in \Delta^\infty.$$

Then $((F_n, u_n))$ and $((G_n, j_n))$ belong to the same class because of:

$$\begin{aligned} \langle (F_n * j_m), \hat{v}_n \rangle &= ((F_n * j_m) * v_n)(0) = \\ &= \lim_{h \rightarrow \infty} \frac{(f_n * (j_m * v_n))(h)}{c(h)} = \lim_{h \rightarrow \infty} \frac{(g_m * (u_n * v_n))(h)}{c(h)} \\ &= ((G_m * u_n) * v_n)(0) = \langle G_m * u_n, \hat{v}_n \rangle \end{aligned}$$

for every $(v_n) \in \Delta^\infty$ and $m, n \in \mathbb{N}$. Hence, $F_n * j_m = G_m * u_n$ for $m, n \in \mathbb{N}$.

PROPOSITION 1. If a distribution T has S-asymptotics, $T \xrightarrow{S} c(h).S$, $h \rightarrow \infty$, $c \in \Sigma$, then the regular convolution quotient $X = (T * u_n) / u_n$ which corresponds to T , has S-asymptotics, as well and $X \xrightarrow{S} c(h).(S * u_n) / u_n$, $h \rightarrow \infty$.

Proof. For every $(v_n) \in \Delta^\infty$ we have:

$$\lim_{h \rightarrow \infty} \frac{((T^*u_n^*)v_n)(h)}{c(h)} = \lim_{h \rightarrow \infty} \frac{(T^*(u_n^*v_n))(h)}{c(h)}$$

$$= (S^*(u_n^*v_n))(0) = ((S^*u_n^*)v_n)(0), \quad n \in \mathbb{N}.$$

$(S^*u_n^*)/u_n$ belongs to $B(L_{loc}, \Delta)$ because of $(S^*u_n^*)u_m = (S^*u_m^*)u_n$ for every $m, n \in \mathbb{N}$. Hence $X \underset{S}{\sim} c(h) \cdot (S^*u_n^*)/u_n$, $h \rightarrow \infty$. Let us remark that $(S^*u_n^*)/u_n$ corresponds to $S \in D'$ by the mentioned isomorphism. In such a way, S -asymptotics of regular convolution quotients, defined by Definition 1, generalizes S -asymptotics of distributions.

PROPOSITION 2. If X has S -asymptotics, $X \underset{S}{\sim} c(h) \cdot U$, $h \rightarrow \infty$, $c \in \Sigma$, then $D^n X$ has S -asymptotics, as well and $D^n X \underset{S}{\sim} c(h) \cdot D^n U$, $h \rightarrow \infty$: D is the differentiation operator in $B(L_{loc}, \Delta)$.

Proof. It is enough to prove for $n=1$. Let $X = f_n/u_n$ and let for every $(v_n) \in \Delta^\infty$

$$\lim_{h \rightarrow \infty} \frac{(f_n^*v_n)(h)}{c(h)} = (F_n^*v_n)(0), \quad n \in \mathbb{N}.$$

By definition, $DX = (f_n^*h')/(u_n^*h_n)$, where (h_n) is any continuously differentiable approximate identity. Now, the following relation is true:

$$\lim_{h \rightarrow \infty} \frac{((f_n^*h')^*v_n)(h)}{c(h)} = \lim_{h \rightarrow \infty} \frac{(f_n^*(h_n^*v_n))(h)}{c(h)} = ((F_n^*h')^*v_n)(0), \quad n \in \mathbb{N}.$$

Hence, $(f_n^*h')/(u_n^*h_n) \underset{S}{\sim} c(h) \cdot (F_n^*h')/(u_n^*h_n)$ and $DX \underset{S}{\sim} c(h) \cdot DU$, $h \rightarrow \infty$, where $U = F_n/u_n$.

This proposition can be useful in applying regular convolution quotients to differential equations. The next proposition precises the analytical form of the function $c \in \Sigma$, which measures the asymptotical behaviour of a regular convolution quotient and the form of the regular convolution quotient U , the limit in Definition 1.

PROPOSITION 3. Suppose that $X \in B(L_{loc}, \Delta)$ and $X \underset{S}{\sim} c(h) \cdot U$, $h \rightarrow \infty$, where $c \in \Sigma$ and $U = F_n/u_n$. If $F_n \neq 0$ for one $n \in \mathbb{N}$, then $c(h) = \exp(ah) L(\exp h)$, $h \geq h_0 > 0$, and $F_n(x) = C_n \exp(ax)$, where $a \in \mathbb{R}$, $C_n \in \mathbb{R}$, $C_n \neq 0$ and L is a slowly varying function.

Proof. L is a slowly varying function, by definition iff $L \in \Sigma$ and $\lim_{x \rightarrow \infty} L(x)/L(x) = 1$, $x > 0$. (For slowly varying functions see, for example [9]). By Definition 1, there exists $((f_n, u_n)) \in X$ such that

$$\lim_{h \rightarrow \infty} \frac{(f_n^*v_n)(h)}{c(h)} = (F_n^*v_n)(0), \quad n \in \mathbb{N} \quad \text{for every } (v_n) \in \Delta^\infty.$$

Now, the proof of Proposition 3 follows directly from Proposition 4.3 in [5], or propositions 9 and 10 in [7].

PROPOSITION 4. If $X \in B(L_{loc}, \Delta)$, then X has a compact support if and only if: $X \underset{S}{\sim} c(h) \cdot 0$, $|h| \rightarrow \infty$ for any $c \in \Sigma$.

Proof. We know (see [10]) that $X \in B(L_{loc}, \Delta)$ has compact support if and only if there is a $(u_n) \in \Delta$ such that $u_n X = f_n$, $n \in \mathbb{N}$ and f_n , $n \in \mathbb{N}$, has compact support. Moreover, if X has compact support, then this is true for every $g_n = x_j n$, $n \in \mathbb{N}$, $((g_n, j_n)) \in X$. Suppose that $\text{supp } f_n \subset [-a_n, a_n]$ and $\text{supp } v_n \subset [-k_n, k_n]$, $a_n > 0$, $k_n > 0$, $n \in \mathbb{N}$ and $(v_n) \in \Delta^\infty$. Then we have: $(f_n^*v_n)(h) = 0$ for $|h| > a_n + k_n$. Hence,

$$\lim_{h \rightarrow \infty} \frac{(f_n^*v_n)(h)}{c(h)} = 0, \quad n \in \mathbb{N}, \quad \text{for any } c \in \Sigma \text{ and any } (v_n) \in \Delta^\infty.$$

Suppose, now, that $X \underset{S}{\sim} c(h).0$, $|h| \rightarrow \infty$ for every $c \in \Sigma$, where $X = f_n/u_n$ and suppose that for every $(v_n) \in \Delta^\infty$ we have:

$$\lim_{h \rightarrow \infty} \frac{(f_n * v_n)(h)}{c(h)} = 0, \quad n \in \mathbb{N},$$

then by Proposition 8.1, p. 98 in [5] or by Proposition 12 in [7], f_n , $n \in \mathbb{N}$, has a compact support.

The S-asymptotic behaviour of a regular convolution quotient is a local property. This property precises the following proposition.

PROPOSITION 5. Suppose that X and Y belong to $B(L_{loc}, \Delta)$ and $X \underset{S}{\sim} c(h).U$, $h \rightarrow \infty$, $c \in \Sigma$. If $X = Y$ on an interval (a, ∞) , $a \in \mathbb{R}$, then $Y \underset{S}{\sim} c(h).U$, $h \rightarrow \infty$, as well.

Proof. Let $X = f_n/u_n$, $Y = g_n/j_n$ and for every $(v_n) \in \Delta^\infty$

$$\lim_{h \rightarrow \infty} \frac{(f_n * v_n)(h)}{c(h)} = (F_n * v_n)(0), \quad n \in \mathbb{N}.$$

By properties of the convolution it follows:

$$\lim_{h \rightarrow \infty} \frac{((f_n * j_n) * v_n)(h)}{c(h)} = ((F_n * j_n) * v_n)(0), \quad n \in \mathbb{N}, \quad (v_n) \in \Delta^\infty.$$

If $X = Y$, then $X - Y = 0$, where $X - Y = (f_n * j_n - g_n * u_n)/(j_n * u_n)$. Hence, there exists a sequence $(b_n) \in \mathbb{R}$ such that $\text{supp } (f_n * j_n - g_n * u_n) \subset (b_n, \infty)$. Now,

$$\lim_{h \rightarrow \infty} \frac{((f_n * j_n - g_n * u_n) * v_n)(h)}{c(h)} = 0, \quad n \in \mathbb{N}, \quad (v_n) \in \Delta^\infty.$$

Therefore,

$$\lim_{h \rightarrow \infty} \frac{((g_n * u_n) * v_n)(h)}{c(h)} = ((F_n * j_n) * v_n)(0), \quad n \in \mathbb{N}, \quad (v_n) \in \Delta^\infty.$$

The equivalence class $(g_n * u_n)/(j_n * u_n)$ is just Y because of $(g_n * u_n) * j_m = g_m * (j_n * u_n)$ and $Y \underset{S}{\sim} c(h). (F_n * j_n)/(j_n * u_n)$. It remains only to see that $(F_n * j_n)/(j_n * u_n) = F_n/u_n$. This follows from the relation $(F_n * j_n) * u_m = F_m * (j_n * u_n)$, $m, n \in \mathbb{N}$.

ACKNOWLEDGEMENT. This material is based on work supported by the U.S.-Yugoslavia Joint Fund for Scientific and Technological Cooperation, in cooperation with the NSF under Grant (JF) 838.

REFERENCES

1. BOEHME, T., Two theorems on the differentiation of regular convolution quotients, Generalized functions, convergence structures and their applications, Proc. Int. Conf., Dubrovnik, Plenum Press, New York and London, 1988.
2. BOEHME, T. and MIKUSINSKI, J. Operational Calculus, V. II Pergamon Press, New York 1987.
3. MIKUSINSKI, J. and MIKUSINSKI, P. Quotients de suites et leurs applications dans l'analyse fonctionnelle, C.R. Acad. Sci. Paris, 293 (1981), 463-464.
4. MIKUSINSKI, P. Convergence of Boehmians, Japan J. Math. (N.S.) 9 (1983), 159-179.
5. PILIPOVIĆ, S., STANKOVIĆ, B. and TAKAĆI, A. Asymptotic Behaviour and Stieltjes Transformation of Distributions, Teubner Verlagsgesellschaft, Leipzig 1990.
6. STANKOVIĆ, B. S-asymptotic expansion of distributions, Internat. J. Math. Math. Sci. Vol. 11, No. 3 (1988), 449-456.
7. STANKOVIĆ, B. S-asymptotic of distributions, Generalized functions, convergence structures and their applications, Proc. Int. Conf., Dubrovnik, Plenum Press, New York and London, 1988.
8. PILIPOVIĆ, S. and STANKOVIĆ, B. Wiener Tauberian Theorems for Distributions, J. London Math. Soc. (to appear).
9. BINGHAM, N.H., GOLDIE, C.M. and TEUGELS, J.L. Regular Variation, Cambridge University Press, 1989.
10. BOEHME, T. The support of regular operators, Trans. Am. Math. Soc. 176 (1973), 319-334.

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from "Qualitative Theory of Differential Equations," allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk