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ABSTRACT. The asymptotic behaviour of a class.of generalized functions, named regular
convolution quotients, has been defined and analysed. Some properties of such asympto-
tics, which can be useful in applications, have been proved.
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1. INTRODUCTION.

T.K. Boehme in [1] defined and investigated a class of generalized functions
named regular convolution quotients . This class is a ge-
neralization of the Schwartz distributions and also of the regular Mikusinski opera-
tors (see [2] , [3] and [4] ). On the other hand, for the Schwartz distributions a
theory of the asymptotic behaviour , S-asymptotics, has been developed (see for exam-
ple [5],[6],[7] and (8]), which can be applied in solving a lot of mathematical mo-
dels. A distribution T has S-asymptotics related to a positive and measurable fun-
ction ¢ iff hl.i’nl’ (T*w)(h)/c(h) = (S*w)(0) for every weD . We write: T2 e(n).s,
h- o . In this paper we shall enlarge the definition of S-asymptotics of distribu-
tions to the regular convolution quotients having in view the application of this

class of generalized functions.

2. REGULAR CONVOLUTION QUOTIENTS.
By Boehme [1] ,an approximate identity is a sequence of
functions (u )¢ L(R) satisfying the following conditions:

i) SR un(x) dx =1, neNj;
ii) there is an M>0 such that SR Ju(x)| dx<M, neN ;
iii) there exists a sequence (k )c R, such that k, = Oas n-o and

supp u ¢ [~k k ] » neN .

, Ne

€eN}. A defining se quence for a regular convolution quotient is a se-
qu..xence of pairs ((fn,un)), where (f‘n)c Lloc(R)’ (un)eA and for all m,ne N the follo-
wing convolution products are equal:

[\ will be the set of all approximate identities and A" = { (un)e A, u € c”,

iv) f n*um = fm*un ( the asterisk is the sign of the convolution).
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Two defining sequences ((fn,un)) and ((gn,vr)) are said to be equivalent if:
* - *,
v) f v =gy u, for nmeN .

By 1t‘n/un we shall denote the equivalence class containing the difining sequence
((fn,un)).A regular convolution quotient X is an equi-
valence class of defining sequences . The regular convolution quotients are a vector
space when the usual multiplication by scalars and addition of fractions is used; we
denote it by B(Ll oo’ B ) .The space B(Lloc, A) contains D’ (space of Schwartz’s di.:
stributions) under the isomorphism: D’ 3 T <> (T*v n)/vn € B(Lloc, A), where (vn)e 7N
Moreover, B(Ll oc? A) contains the class of all regular Mikusinski operators. Both of
these containments are proper.

Let (hn) be any continuously differentiable approximate identity. By D
[ B(Lloc,A ) is defined the differentiaticn operator. The derivative of an X
€ B(l"loc’A) is, now, defined to be DX = (fn*hr’!)/(un‘hn) € B(Lloc,A.).
For a distribution TeD’ and weD we shall write T(w) =<t,w > . We shall
use the following properties of elements belonging to A% and distributions defined

hr’llhne
fn/hne

by local integrable functions : }

1. For (f)cL,  and (vn)eA“‘ we have <f (x+h),¥ (x)> = (f *v )(h) , heR ,
where Gn(x) = v (=x) .

2. If (u)) and (v) belong to Aw, then (u *v )e A% | as well.

3. If (f‘n*vn)(o) =0, neN, for every (vn)e A™ , then t‘n(x) = 0 for almost
all xeR .

3. S-ASYMPTOTICS OF REGULAR CONVOLUTION QUOTIENTS
Let I be the set of all real valued, positive and measurable functions: R - R+.
DEFINITION 1. A regular convolution quotient X has S-asymptotics at infinity,
related to ceZ and with the limit U = Folu, € B(Lloc,A) if there exists ((fn,un))
belonging to the class X such that
—(—)——(f“’v“)(h) (F,*v,)(0)
lim = (F *v )(0 neN
h 08 c(h ] n 'n ’
for every (vn)e A" . Ve shall write X & c(h).U, h > o0 . -
This definition does not depend on the defining sequence ((t‘n,un)) in the equi-

valence class X . Let ((gn,jn)) € fn/un , and let G n/ jn € B(Lloc’A) such that
(g_*Vv )(h)
1im _(—)__gnc : = (Gn*vn)(O) , neN and (Vn) &A“ .

h—> o

then ((Fn,un)) and ((Gn:jn)) belong to the same class because of:

CE*G),0 5 = ((F 3% )(0) =

- Lin (fn*(Jm*vn))(h) . 1im (gm*(un*vn))(h)
h-s oo C(h) h— oo c(h

((Gyru)*v ) (0) =< G *u 5

for eve v)e A” j
ry ( n) and m,neN . Hence, Fn*‘]m = Gm* u for mneN .

PROPOSITION 1. If a distribution T has S-asymptotics, T 2 o(h).S h = oo
ceXl , then the regular convolution quotient X = :

(T*u )/u_ which corres
ponds to T
has S-asymptotics, as well and X 2 c(h).~(s*un)/u.1n ) ﬁ.,l . ,
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Proof. For every _(vn)éAw we have:

((T*u )*v ) (h) (T*(u_*v_))(h)
lim - -ﬁ—j—
h o cth h-—ycb c(h

= (S*(un*vn))(o) = ((S*un)*vn)(O) , neN .

(S*un)/un belongs to B(Lloc,A)because of (S*un)*um = (S*um)*un for every myneN .
Hence X ~ c(h).(S*\.xl,l)/x,\n , h —> 00, Let us remark that (S"‘un)/un corresponds to Se
€ D’ by the mentioned isomorphism. In such a way , S-asymptotics of regular convolu-
tion quotients, defined by Definition 1 , generalizes S-asymptotics of distributions.
PROPOSITION 2. If X has S-asymptotics , X = c(h).U , h >0 , c€Z , then
DX has S-asymptotics,as well and DX 2 o(h).D™ , h>e : D is the differentia-

tion operator in B(Lloc,A ) .
Proof. It is enough to prove for n=1 . Let X = f /u, and let for every (vn)e N~
*
1im (fn vn)(h) (Fn*vn)(o) , neN .
oo c(h

By definition, DX = (fn*hr'l)/ (un*hn) , where (hn) is any continuously differentiable
approximate identity. Now, the following relation is true:

((f *h’)*v )(h) (t‘ *(h’*v ))(h)
hl.l»m,:—cm)__ : h..-o_C(F)_'_ = ((F¥h)*v)(0) , neN .
Hence, (£ *n’)/(u *h ) S5, e().(F *n)/(u *h ) and DX A ¢(h).DU, h-» oo , where
=F /u .
nn

This proposition can be useful in applying regular convolution quotients to dif-
ferential equations. The next proposition precises the analytical form of the function
c €L , which measures the asymptotical behaviour of a regular convolution quotient and
the form of the regular convolution quotient U, the limit in Definition 1.

PROPOSITION 3. Suppose that X ¢ B(L, ,A) and X 2 ¢(h).U, h> o , where

ceZ and U = Fn/un . If Fn # 0 for one neN , then c(h) = exp(ah) L(exph) , h),h°>

>0, and F (x) = C exp(ax) , where a€R, Ch€¢R, C #0 and L is a slowly
varying function.

Proof. L is a slowly varying function , by definition iff L eI and lim L(ux)/
x> o
/L{x) =1, u>0 . (For slowly varying functions see, for example [9] ). By Definition

1, there exists ((fn,u )) e X such that

(£, v, ) (h) -
lm —cy— = (F *v )(0) , neN for every (ve A

h—=> oo

Now, the proof of Proposition 3 follows directly from Proposition 4.3 in [5] ,
or propositions 9 and 10 in [7] .

PROPOSITION 4. If XeB(Ll oc’A)’ then X has a compact support if and only if :
X A c(h).0, |h|—>e0 for any ceX .

Proof. We know (see [10]) that XeB(LloC,A) has compact support if and only if
there is a (un)e A such that uXs=f ,neN and f , neN, has compact support .
Moreover, if X has compact support, then this is true for every g, = Xjn , neN ,
((g,,3))€X . Suppose that supp f, € [—a ,a ] and supp v C [:—k n]’ a >0, k>0,
neN and (v, ) €. Then we have: (fn*vn)(h) =0 for |h|> an+kn Hence,

(f *v )(h)

n

o0
——c(—)__ 0, neN, forany cel and any (vn)eA .

h-»oo
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Suppose ,now, that X A~ c(h).0 , |h|~> e for every ceI , where X = £ /u,
and suppose that for every (vn) €A we have:
(fn*vn)(h) B
h]..im“——-g(m— =0, n¢eN,
then by Proposition 8.1 , p. 98 in [5] or by Proposition 12 in [7] , f‘n , neN , has a
compact support .

The S-asymptotic behaviour of a regular convolution quotient is a local property.
This property precises the following proposition.

PROPOSITION 5. Suppose that X and Y belong to B(Lloc,A) and X A c(h).U ,
h>o,c€f . If X =Y on an interval (a,») , aeR, then Y 2 e(h).U, h=oo,
as well.

Proof. Let X = f /u , Y =g /j and for every (v)e N7

n n’
—T—r(f“*v“)(h) (F,*v,)(0) N
lim = (F_%*v , heN,
hes 0o c(h nn
By properties of the convolution it follows:
((£ %3 )*v_)(h) -
n “n’” 'n _ PN
lim —m ((Fn Jn) Vn)(O) , neN, (Vn)eA .

he» oo

IfX=Y , then X-Y = 0, where X-Y = (fn*jn - gn‘un)/(jn‘un). Hence, there
N - *
exists a sequence (bn)e R such that supp (f‘n*jn -8, un) C (bn,oo). Now,
* *y )*
(£ %5, - &, u,) vn)(h)
c(h)

=0 , neN, (vn)e A“,
h~>o00
Therefore,
((gn*u )*v_)(h) .
. n_n - EYEY
hl_j"m”_c(_ﬁ)_—_ = ((E‘n jn) vn)(O) , neN , (vn)e A
The equivalence class (g *u )/(j *u ) is just Y because of (g *u )*3y = &*
- s % X . % 5 %y e
*(Jn un) and Y o c(h).(Fn Jn)/(Jn*un).It remains only to see that (["n jn)/(‘]n un)
- #* % - #* #*.
= Fn/un . This follows from the relation (Fn jn) up = Fm (jn un) ,mn N.
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