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In 1948, Samuel [2] pointed out that the intersection of two group topologies need not be a group
topology. However, a number of properties that hold for a group topology still hold for a
topological space that is an intersection of group topologies. In order to study these properties, we
shall describe a class of topologies that can be placed on a group which we call semicontinuous
topologies. (We point out here that Fuchs [1] calls these spaces semitopological groups).

One important attribute of topological groups is separation. In particular, a topological group
is Hausdorff if and only if the identity is a closed subset. While this is not true for semicontinuous
groups, we shall see that an interesting “echo” of this property is true.

For each group G we have a bijection inv: G—G defined by inv (z) = z~!. Also for any fixed
a € G we have bijections 1,: G—G defined by 14(z) = az and r,: G—G defined by ry(z) = za.

DEFINITION. A semicontinuous group is a group G and a topology = on G making inv, 1,
and rg continuous for a € G.

Clearly a semicontinuous group is a homogeneous space. Thus a great deal can be determined
by considering a basis for the topology at the identity. In a manner analogous to that found in the
theory of topological groups, one can demonstrate the following:

PROPOSITION 1. If (G,7) is a semicontinuous group and ¥ is a neighborhood base at the
identity, then ¥ satisfies
(i) KU,V €Y, then there exists W € ¥ such that W cUNU.

(ii) Ifa €U and U € ¢, then there exists V € ¥ such that Va C U.
(iii) If U € ¥ then there exists V € ¥ such that V-1 c U.
(iv) HU € ¥ and z € G then there exists V € ¥ such that zV,"1 c U.

Furthermore, if ¥ is any collection of subsets of G, each containing the identity, and ¥ satisfies
(i)-(iv) above, then there exists a unique semicontinuous topology 7 on G for which ¥ is a
neighborhood base at the identity.
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Any collection of subsets ¥ satisfying (i)-(iv) is called a semifundamental system. Let
V=(-L1)—{z|z=r+2 and r€ Q} C R and let W be the collection of all translation sets
a+V such that 0 € a+V. Finally let ¥ be the collection of all finite intersections of elements of
w.

A moment’s reflection shows that ¥ is a semifundamental system that generates a topology
which is finer than the usual topology on R. The set @ is closed in (R,7). Yet the quotient
topology generated on R/Q by projection from (R, 7) is the finite complement topology. Therefore
the separation properties for semicontinaous groups are clearly different from those found in
topological groups.

Another interesting example of a semicontinuous topology can be described as follows; let By,
be the open ball of radius 1/n centered at the origin of the plane, and let
Va=Bp—{(z,y)|0< %z <y<nz}. The collection of sets {V,}3_, forms a semifundamental
system for the group (RZ, +). The relative topology on (Q2 +) is an example of a second
countable metric space that cannot be a topological group since no square of an open set can be
placed inside V.

Let (G,t) be a semicontinuous group and m:G x G—G the multiplication map. We let ¢(t)
denote the quotient topology on G generated by m when the product topology txt is placed on
GxG. If N is a normal subgroup of G and (G,t) is a semicontinuous group, we shall denote the
quotient topology on G/N generated by the natural map »:G—G/N, by =(t).

LEMMA 2. If (G,t) is a semicontinuous group, then both m and = are open maps and both
G/N and (G, ¢(t)) are semicontinuous groups.

PROOF. Let UxV be a basic open set in tx¢. Then m~}(m(UxV))= UG(ngg'lV).

Therefore m is an open map. Likewise #~(x(u)) = UN which is open in (G, tf svhenever Uet.
Thus = is an open map.

Since 14x id: (GxG,txt)—+(GxG,txt) is continuous and ¢(t) is a quotient topology,
14:(G,q(t))—(G,q(t)) is continuous. Similar arguments show that the maps r,: (G, ¢(t))—(G,¢(t))
and inv: (G,q(t))—(G,q(t)) are continuous. The proof that the quotient topology on G/N is
semicontinuous is done in the same fashion.

LEMMA 3. IfSCGthen S= ) VS.
Ve?
PROOF. z ¢ [ VS iff there exists W € $ with = ¢ WS iff W-lzns =¢.

Vey
THEOREM 4. G/N is Hausdorff iff N = ) V2N.
Ves
PROOF. We consider the following commutative diagram:

GxGEXL G/N xG/N
m lm
G—=—=G/N

We have that {V2|V€9¥} is a semifundamental system for g(t) whenever ¥ is a
semifundamental system for t. The identity element in (G/N,=(g(t))) will be closed if and only if
N= V2N. The identity element in (G/N,g(x(t))) will be closed if and only if the diagonal is

Ve?
closed in G/N xG/N. However x(q(t)) = g((t)) since the maps are open.
COROLLARY 5. (G,t)is Hausdorff if and only if [} V2= {e}.
Ve?
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COROLLARY 6. If (G,t) is a minimal Hausdorff semicontinuous group then (G,t) is
topological group if and only if [} V* = {e}.
Vet

We can define an equivalenie relation on (G,t) by defining z ~ y if and only if there does not
exist V € ¥ such that zVNyV =¢. Let K denote the equivalence class of e under this equivalence
relation. We call K the Hausdorff Kernel of (G, ).

THEOREM 7. K =) V? and K is the minimum normal subgroup with the property that
G/K is Hausdorff. ves

PROOF. We note by Lemma 3 that (] V2 is the closure of {e} in (G,g(t)). Therefore by an

argument similar to that for topological g‘;oi;s, N V2 is a normal subgroup of G. Since we can
without loss of generality assume that V is sym‘xlnityric, it is clear the K = ) V2. The proof of
Theorem 4 shows that G/K is Hausdorff if and only if K is closed in (VG,G‘IL)) But K is the
smallest closed normal subgroup in (G, ¢(t)).

In a like manner we can define an equivalence relation on (G,t) by declaring z ~ y if and only
if there does not exists a continuous function ¢:G—R with ¢(z) # ¢(y). The equivalence class of e
under this relation will also be a closed normal subgroup that we call the completely Hausdorff
kernel of (G, t).
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