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ABSTRACT. Suppose X and Y are reflexive Banach spaces. If K(X,Y), the space of all

compact linear operaters from X to Y is an M-ideal in L(X, Y), the space of all bounded linear operators from X to

Y, then the second dual space K(X,Y)** of K(X,Y) is isometrically isomorphic to L(X,Y).
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1. INTRODUCTION

It is well known that if X and Y are reflexive Banach spaces one of which satisfies the approximation property

then the second dual space K(X,Y)** of K(X,Y), the space of compact linear operators from X to Y, is

isometrically isomorphic to L(X,Y), the space of bounded linear operators from X to Y (Diestel [1, p.17]).

Harmand and Lima [2] proved that if X is a reflexive Banach space and K(X) is an M-ideal in L(X) then K(X)**
is isometrically isomorphic to L(X).

The purpose of this paper is to generalize the result of Harmand and Lima to the case of K(X,Y) and L(X,Y)
by modifying their proof. In Theorem 3.3 we will prove that if X and Y are reflexive Banach spaces and K(X, Y) is

an M-ideal in L(X,Y) then K(X,Y)** is isometrically isomorphic to L(X,Y).
2. NOTATIONS AND PRELIMINARIES.

Let X and Y be Banach spaces. X
_
Y means that X and Y are isometrically isomorphic. L(X,Y) (reap.

K(X,Y)) will denote the space of all bounded linear operators (reap. compact linear operators) from X to Y. If

X Y, then we simply write L(X) (reap. K(X)). X* will denote the dual space o X and we will write < z,z* >
for the action of z* ( X* on z ( X instead of z*(z). BX will denote the closed unit ball of X.

A closed subepace J of a Banach space X is called an L-summand if there exists a projection P on X such that

PX:./ and [[z[[ [[Pzl[ + z- Pz for every z in X. In this case we write X--J$1’ where

’ (I- P)X. A closed subspace of a Banach space X is called an M-ideal in X if J o, the annihilator of in

X*, is an L-summand in X*.
Let X Y be the projective tensor product of Banach spaces X and Y. If u ( X Y, then there exist

sequencesoo(zi) in X and (Yi) in Y such that u,lZi@lli,= with
i=1 [[zi[[ [[yi[[ < oo. Moreover, we have

u [[x in2__=1 zi 11Yi l[ < oo, the infimum being taken over all representations u =Z’ izi @ Yi’ zi 6 X, Yi 6 Y

and/=El zi Yi < oo" (Diestel and Uhl [3, p. 227]).
Let Z be another Sanach space and TEL(X,Z). We define Tu,lZi@Tlii= for uZ’= lZiOliEXY.oo

z.* X*Then TuGXZ and I[Tul[ -< I[T[I I[u[[. If uZ’ @zi X with

< *=i =i < oo, the map u--,tr(u) - f zi’zi > defines a bounded linear functional on X* (X with norm
i=1
no larger than 1.
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THEOREM 2.1 (Diestel and Uhi [3], Shatten [4]). Let X and Y be Banach spaces. The Banach space

L(X,Y*) is isometrically isomorphic to (Y X)* and under this identification T L(X,Y*) act on u Y X by

< u, T > tr(Tu).
THEOREM 2.2 (Feder and Sapher [5]). Let X and Y be Banach spaces. If either X** or * has the Radon-

Nikodym Property, then map V:Y* X**---,K(X,Y)* defined by < T,V(u) > tr(T**u) for T K(X,Y) and

u Y* X** is a quotient map.

3. SPACES OF COMPACT OPERATORS

Harmand and Lima [2] proved that if K(X) is an M-ideal in L(X) then there exists a net (To) in BK(X) such

that

(i) Taz-*z for all z X

(ii) Tz*-,z* for all z* X*
(iii) II T- I ]]--,1.

In the case of K(X,Y) and I,(X,Y), we have the following analogue which also plays a key role in the proof of our

main result (Theorem 3.3).
THEOREM 3.1. If X and Y are Banach and K(X,Y) is an M-ideal in L(X,Y), then for each T in

BL(X,y) there is a net (Ta) in BK(X,y) such that

(i) Taz-Tz for all z X

(ii) TI/*-*T*I/* for all I/* Y*-
PROOF. Suppose K(X,Y) is an M-ideal in L(X,Y). Then we can write I,(X,Y)* K(X,Y) o 1j for rome

subspace J of L(X, Y)*.
The map --+K(X,Y) defines an isometry from J onto L(X,Y)*/K(X,Y) and the map

+ K(X,Y) o ._,#] K(X,Y) defines an immetry from L(X,Y)*/K(X,Y) o onto K(X,Y)* (Rudin [6, p.91]). Hence

the map t- K(X,Y) gives an immetry from J onto K(X,Y)*.
Let Q be the projection on L(X,Y)* with the range J. Then L(X,Y)* is in the range of Q if and only if

the restriction of to K(X,Y) has the same norm as . If T L(X,Y)C L(X,Y)** with IITll < 1, then for

, K(X,Y)o we have (Q*T) TQ(,)= 0 thus Q*T K(X,Y)o o j. K(X,Y)**. Since Q*T K(X,Y)**
and II Q*T H <- 1, by the Goldetein’s theorem there is a net (Ta) in BK(X, y) such that

Ta-,Q*T in the wenk*-topology on J* K(X, Y)**.
We claim that Taz--,Tz for all z X and TI/*--,T*I/* for all y* Y*. For z** X** and y* Y*, define

#z** @It* L(X,Y)* by

< A,z** @#* > < A*l*,z** >
Then we can easily see that z** @1/* J K(X,Y)* and hence

< Tl/*,z** > < T*It*,z** >
By the weak*- compactness of BX** we get that

T---,T*It* for all p* Y*.
Similarly, for #* Y* and z X the functional @If @z on L(X,Y) defmed by < A,I/. @z > < Az, ll* > for

A L(X,Y) is in the range of Q and hence Taz--.Tz for all z X.

The following proposition is essentially due to Harmand and Lima [2] who treated a special case X Y.

PROPOSITION 3.2. Let X and Y be Banach spaom and V the map defined in Theorem 2.2. If K(X,Y) is an

M-ideal in L(X,Y), then T** (terV) o for every T L(X,Y).
PROOF. Recall that by Theorem 2.1 we have (Y* X**)*_ L(X**,Y**) and under this identification

S L(X**,Y**) acts on u Y* X** by < u,S > tr(Su).
Let T L(X,Y), II T II < 1. By Theorem 3.1 there is a net (Ta) in BK(X,y) such that Ty*--*T*I* for all

** h * ** *** Y*. Let u - oo= lli* @ zi /erV wit = II ui II II s II < so. We may amume that [[ z II < for all and
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*

O= < Ya, V(u) >

tr(T*u)

= <y*,1 z >
i=1

T* * **aYi’ zi

tr(T**u)

< u, T** >.

Thus T** (kerV) o.
THEOREM 3.3. If X d Y e reflexive Banh sp and K(X,Y) is M-ide in L(X,Y) then

K(X,Y)** is imetrilly imorphic to L(X,Y).
PROOF. Since X d Y e reflexive, X d Y* have the on-Nikym prorty and hence by Threm

2.2 the map V:Y* X**K(X,Y)* defin by

< r, v() > t(r**.) fo * x**, r x(x,)
is a quotient map. Thus V*:K(X,Y)**(Y* X**)* is metry with the rge (kerV)o and hence we have

(x, r)** = (v)*
(Y* x**)*

= L(X**, Y**)
(x,v).

Since X and Y e reflexive, T T** for all T L(X,Y) d by Proition 3.2 (Y* X**)* (KerV) o.
Th (X,Y)** = (X,Y).
1 that for p the/p-sum (EXn)p of a uence of (Xn) of Bhs is the Bh se of

1 uenc (z,) with z, Xn and with the norm (n)II ( II . II )1/ <.
COROLLARY 3.4. Sup X d Y e cl su of (EXn)p d (EYn)q (1 < pq,

dimXn < , dimYn < ), rtively. If K(X,Y) den in L(X,Y) in the strong orator tolo, then

(x,Y)** = (x,Y).
PROOF. X d Y reflve d K(X,Y) is M-id in L(X,Y) (Cho [7]).
REMARK. If X d Y e in Corolly 3.4 d either X or Y tfi the comet appromation

prorty, then K(X,Y) den in L(X,Y) in the strong orator tol [7] d hence K(X,Y)** = L(X,Y).
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