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ABSTRACT. It is shown that for a particular case of the surface heat flux the equations for small
Prandtl number have simple analytical solutions. These are presented and compared with

numerical solutions of the general equations.
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I. INTRODUCTION.
In a recent paper [I], the solution for the free convection boundary-layer flow on a vertical

plate with a prescribed surface heat flux valid for small Prandtl numbers was derived. The surface
heat flux was taken to be proportional to zA, where z is the distance from the leaAing edge and A is

a constant, with the governing equations then being reducible to similarity form. Results in [1]
were given for the case of uniform wall heat flux, i.e., A 0. A urther consideration of this

problem reveals that, for the case when A- 1, simple analytical solutions are possible. It is the

purpose of this note to present these solutions, and, as analytical solutions in free convection

boundary-layer theory are somewhat of a rarity, this analysis is worth describing.
2. ANALYSIS.

Following [1], the governing similarity equations are, for A 1,

f" -1- 0 + ff" f2 0 (2.1a)

0" -I- o(fO f’O) 0 (2.1b)
with,

f(0) 0, f’(0) 0, 0’(0) 1, f’ -- 0, 0 -- 0 as r/--, oo, (2.1c)

where primes denote differentiation with respect to the independent variable r/and r is the Prandtl
number. There is an inner region, in which

f r-I/10F(), 0 u-2/SH(), -1/10/. (2.2)
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A consideration of the equations in this region leads to,

H a0 4- rl/2(a ’) 4- (2.3a)
The equation for F is, at leading order, given by a FSlkner-Skan equation, and, as --, o,

[ ’2 1 ] (2.3b)F a/2 + b0 + t1/2
a/2 + (a0a b0)" + b +

The constants a0 and a are determined from the matching with the outer region, and b0 is

determined from the solution of the equation for F in the inner region. In the outer region,

jr a-3/5b(y), 0 tr-2/sh(y), Y tr2/5/. (2.4)

Using (2.4) in equations (2.1abc) gives the equations for the outer region as

h +" ,2 ,,,+ o (2.5)

h" + bh’- ’h 0 (2.5b)

(where primes now denote differentiation with respect to Y). The boundary conditions to be

satisfied by equations (2.Sab) are that,

’--,0, h--,0 asY--,oo (2.6a)

and, from matching within the inner region, that

h a0 Y + + trl/2(a + ...) + (2.6b)

r-1/2 ,,;,n
+ trl/2(b0 +a0

(a0a bo)Y + ...) + (2.6c)

for Y small.

(2.6bc) suggests looking for a solution of equations (2.5ab) by expanding

b b0 + cr1/2 b + h h0 + cr1/2 h + (2.7)

At leading order we obtain the equations

0 +0’ 2 0 (2.so)

h’ + b0h h0 0 (2.8b)

It is straightforward to show that the solution of equations (2.Sab), which satisfies boundary
conditions (2.6abc) is

a0 1, 0 1 e-Y, h0 e-Y. (2.9)

The solution can be continued to higher order terms. We find that, at 0(trl/2),
al bo, 1 boe-Y, h boe-Y (2.10)

Using the value for a0 given by (2.9), the appropriate Falkner-Skan equation for the leading
order term F0 in the inner layer can be solved. This gives, [2],

F’(0) 1.23259, b0 0.64790.

Then using the value for b0, the (linear) equation for F1, the term of 0(tr1/2) in the inner region,
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can be solved, giving

Fi’(0 0.41392, b! 0.62264.

3. RESULTS.
The analysis presented above gives, from (2.2), (2.3ab), (2.4), (2.9) and (2.10)

Fd2fl r-1/1(1.23259 0.41392 r1/2 + O(cr))

#(0) r-25 (1 + 0.64790 r1/2 + 0()) (3.1b)

f() r-315 (1 + 0(r)) (3.1c)

for r small.

To check on the validity of the series approximations (3.1abc), we compared these with values
obtained from a numerical solution of equations (2.1abc). The results are shown in figures 1, where

we give the numerically determined values of rd2fl r1/10, #(o)r2/5 and f(oo)cr3/5 (shown by theL /o
broken line) and these quantities as calculated from (3.1abc) (shown by the full line). In all three

cases we can see that the numerically determined values and (3.1abc) are in good agreement, even

at the relatively large value of 0.2, and that the agreement between the two sets of results

improves as is decreased. It is worth noting that the linear slope of the numerical results in

figure lc appears to suggest that the correction to (3.1abc) is of 0() and that no extra powers of

are required (at least up to this order) in the expansions in the inner and outer regions (as was

required in the general case given in [1]).

(3.1a)

Graphs of (a) rI/I ----dZf I (b) r2/Se(O) anddw2 o

(c) $1Sf() obtained from a nrlcal solution of eqtlo (11 (broken

line) from series exlo (II) (full II1.
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