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ABSTRACT. In this paper we consider the nonlinear degenerate evolution equation with strong damping,

in Q-x]O,T[
*) u(x,O)-uo,(Ku’)(x,O)-O in

[ufx, t)- 0 on --r,
where K is a function with K(x, t) > O, K(x, O) 0 and F is a continuous real function satisfying

(**) sF(s) O, for all s E R,

f is a bounded domain of R", with smooth boundary I". We prove the existence of a global weak solution

for (*).
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1. INTRODUCTION.
In this work we study the existence of global weak solutions for the degenerate problem

[g(x,t)u’- au -,’+F(u)-O
u(O)- uo
/(u’)(0) o
[u-0 in

in the cylinder x ]0, where is a bounded domain in R" wi smooth boundary, T > 0 is nn

arbitrary real number, ] is n lateral boundary of,F is a continuous real function such that sFCs) 0, for

all s R. K R is a run.ion subh that K(x,t) > 0, (x,t) , K(x,0) 0, A is the Laplace
operator and u -.

Equation (1.1) is a nonlinear perturbation of the wave equation. For n I or n 2, (1.1) governs the

motion of a linear Kelvin solid (a bar ifn 1 and a plate ifn 2) subject to no nonlinear elastic constraints,

where K(x,t) is a mass density.

(1.1)
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Problem (1.1) with K(x,t)= 1 without the term -Au was studied by Strauss [1]. He proves the

existence of global weak solutions and the asymptotic behavior as approaches to infinity. The global
weak solutions for the equation

Kt(x,t)u + K2(x,t)u’- Au +F(u)- O (1.2)

with Kl(x,t) O, Ki(x, 0) ct > 0 and K2(x,t) 15 > 0 was studied by Maciel [2].

Problem (1.2) was also studied by Mello [3] for F E C(R), F(0) 0, fF(Dd 0, F’ dominated

by Is ’, p > 0, K, independent of non-zero inital data.

In [4] and [5], Larkin studied problem (1.2) withF(u) -[ u ’ u andF(u) "l u u’,p > 0, respectively.

In both cases the initial data are zero.

Problem (1.1) withK(x, t) I was studied by Angand Dinh [6] withF CI(R), F(0) 0 and F’ -C

with C > 0 "small." They proved the existence ofglobal weak solutions and the asymptotic behavior when

approaches to infinity.

We denote by (,), [-],((,)),-[[ the inner and norm of LZ(f) and H0t(f), respectively, and

f dx represents Dirichlet’s form in Ho(f).a(u,v)- ,.
2. ASSUMPTIONS AND MAIN RESULTS.

We consider the following hypothesis:

(H.1) F R R is continuous with sF(s) O, Ws R;

0-I.2) K .CI([O,T] L"())withK(x,t)O, (x,t).Q andK(x,0)-0

(H.3) [ s 6 + C(6, V6 > 0 where C(6) is a positive constant.

Then we have the following result:

THEOREM 1. Under hypothesis (H.1)-(H.3) if G(s)-/F()d and Uo H0(f), G(ue)
0

then there exists a function u [0, T] L) such that:

, z’(0, r n())

vK(x,t)u’_L’(O,T L2())
r’(x,t)u’L2(O,T Ho(t))

d (Ku’,v)-(K’u’ v)+a(u,v)+a(u’,v)+(F(u),v)-O in O(O,T),Vv (F.H(f)
dt

u(O) u,

(Ku’) (0) 0

We divide the proof in two parts:

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

i) We consider F Lipschitzian and derivable except on a finite number of points with sF(s) a: O,
Vs E//R.
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2.1

ii) We consider F continuous with F(s) 0, Vs 6/R and approximate F by a sequence (F,),e .,
Fn Lipschitzian and derivable except on a finite number of points with sFn(s) O, Vs 6/IL

16/N, with F, F uniformly on bounded sets of R.

LIPSCHITZIAN CASE
We have the following result:

THEOREM 2. Let F R R be such that sF(s) a: 0, Lipschitzian and derivable except on a finite

number of points. Let be u0 6/H() NH2()with G(u0)6/L(), where G(s)-fF()cl.
Then there exists a unique function u Q R satisfying:

u 6/L"(0, T;Ho())

K(x,t)u"- Au Au’ +F(u)- O in LZ(O,T;H-(g2))

u(0)- uo, u’(o)- o.

(2.8)

(2.9)

(2.11)

(2.12)

PROOF. Let (wv)+ Es be a basis ofH(f) CI H2(f) and V,, []| Will] the subspace generated by

the m first vectors of

2.1.1 APPROXIMATION PERTURBED PROBLEM

Fix e > 0 and for each m 6/lq consider a function of the form

u.(t)- 2

such that u,.(t) is a solution of the problem:

((K + e)u,w) + a(u.,w) + aCu’,,,, w) + (F(u,.),w) 0, Vw 6/V., (2.13)

u.(0) uo, uo strongly in H() f3H2() (2.14)

u(0)- 0 (2.15)

By Caratheodory’s theorem, u,,(t) exists on [0, T,,[, T,,, < T. The a priori estimates will allow us to

extend u,(t) to whole interval [0, T].
2.1.2 A PRIORI ESTIMATES

I) Consider w u’.(t) in (2.13). We obtain

2at +lu,.12+2

Integrating from 0 to m T,.. and using (H.3) we get:

<
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By (2.14) and because G(uo) L’() we have:

fG(uo,,,)dx fG(uo)clx (2.16)

By (2.14)-(2.16)and Gronwall’s inequality, it follows that:

where M is a positive constant independent of .,m,t,e is a positive constant such that v[ ell v 2 and

g<min 2,/:

(,.,) is bunaed i L’(0,r;H()) (2.1a)

I Since F is Liphitzian and devable ecept a finite number fin of R, we can differemiae

wih respect obtain

OKu" ] (Ku2,w)+ a

Taking w u(t) in (2.21), we get

But

2CF’fu.)uL, uL).21F’Cu.)luLI luZ1 s 2filugl I.LI (2.23)

where a sitive tant.
Inteating (2.22) om 0 ding (2.14(2.15), (2.)d.3 it follows at

(r,2+lLi 2 fO
1()1 [+ C, u2l + (r,u2)] (2.24)

where Cx is a sitive constant.

Now, we e going m timate e e u(O)12 nsider 0 (2.13 and w u(O). en
we get

1 u(0)l I1 + IF() C (2.25)

where C is a positivent dependent of e, md t.

(2.20)

(2.22)
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By (2.24), (2.25) and Gronwall’s inequality, there exists a positive constant M, independent of e, m

and t, such that:

(K,u) + e [u’, [2 +[I .11
So,

is bounded in L(R)(0, T; L2()) (2.26)K u,,

(vru,,) is bounded in L(R)(O,T;L2(g))) (2.27)

(u,,) is bounded in L(R)(0, T; H0()) (2.28)

(u,,) is bounded in L2(O,T;HJ(V2)) (2.29)

2.1.3 Limits of the Approximated Solutions

From the estimates (2.17)-(2.20) and (2.26)-(2.29), there exists a subsequence of (u,,,,), which we still

denote by (u,,), such that:

u,,, u weakly star in L(R)(0, T;H()) (2.30)

u’,,. u’ weakly star in L(R)(0, T; Ho(fl)) (2.31)

u’, u’ weakly in L2(O,T;H()) (2.32)

vCu",,, 0 weakly star in L(R)(O,T;L()) (2.33)

Ku",,, Ku" weakly star in L (R)(0, T; L2(f)) (2.34)

By (2.18), (2.19) and compactness arguments we conclude that there exists a subsequence of (u,),

which we still denote by (u,,,), such that:

u,--u strongly in L2(O,t;LZ())-L(Q). (2.35)

Thus,

u, u almost everywhere in Q.

whence, by (H. 1) we have

F(u,) F(u) almost everywhere in Q (2.36)

Since K

_
C([O,T;L(R)()), using (2.32) we obtain

(Ku,) is bounded in LZ(Q) (2.37)

Then,

Ku, Ku" weakly in L(Q) (2.38)

Taking w u.(t) in (2.13), integrating from 0 to and using (2.18), (2.19) and (2.37), we get

F(u,(t))um(t)drdt C (2.39)

where C is a positive constant.

By (2.36), (2.39) and Strauss’s theorem (see Strauss [1]) it follows that

F(u.) F(u) weakly in L(Q) (2.40)
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Multiplying (2.13) by 0 EL2(0, T), integrating from 0 to and taking the limit as rn o and 0,

we obtain, by (2.30)-(2.34), (2.38) and (2.40):

Ku Odt,o + -AuOdt, w + -Au Odt,w + F(u )Odt, w O, 7w V,.

Since the V, is dense in Ho(W), the above equation is true for all w EHo() and the proof of (2.11) is

complete.
The initial conditions (2.12) are obtained from (2.30)-(2.32).
The uniqueness is trivial because F is Lipschitzian.

3. PROOF OF THEOREM 1

We first approximate u0 by a sequence of bounded functions (uoi)i e N in H(). In fact, let’s consider

s if I,,l’=,S
[3s0)- j if ,>j

-j if s<-j

it follows by Kinderlher-Stampacchia [8] that [$s(Uo) uos E Ho(g’/), V# E N, uos Uo strongly inH() and

ull uoll.
Let (Fq)q E N be a sequence of functions defined by:

where

"C-T0 G s- G(s) if -1 s s s

(n) G s+ GO) if
1

1 1
linearby pa on --s- ith Fn(O)-O
appropriated onstan for Is

a(s)- l F()e.
It follows, by Strauss [1], Cooper-Medeiros [7] that Fq is Lipschitzian, for each Vl N, sFn(s 0 and

Fq F uniformly on the bounded sets of R. If we consider Gq(s)- fo Fq()d we get, Gq(O)- 0 and

sG,,(s) O, V, I,

Let /E(f) such that

% uo strongly in H() as o (3.1)

It follows by Theorem 2 that there exists a ique ffion uo, stisfying the conditions:
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(3.2)

(3.3)

(3.4)

We now prove that u,, converges to u and u is the solution of Theorem 1. Taking the inner product

of (3.5) by ui, and integrating from 0 to T, we have:

,ll + 2 Gn(%i + [1.. ..)] . (3.7)

Since u,i is bounded in , fixing ], we obtain:

Fn(uo(X)) F(uo(X)) unifoly in as q , (3.8)

a(Oia(i if +. (3.9)

and

(G,(uoi(x))---G(uo(X)) uniformly in as 1---oo. (3.10)

Whence, there exists a subsequence (G,0)i e, of (Gn) e ,, which we still denote by (Gi)i e , such at

.lo C=o )-OCUo )l 

o if j . (3.11)

Moreover, G(uo) G(%)a.e. in and G(%i) G(%). SinG(%)L(),byebesgue’s dominated

convergence theorem we get

lG(uo)-G(%)[

0 as j , (3.12)

us, by (3.11) and (3.12), it follows that

By (3., (3.9), (3.13) and Gronwall’s equali, we ve

(K,uZ)+uU+2 f.G,(u+(2-C6) IoUU;II ,C, (3.14)

where C is n sitive conslanl independent of j and t.

en, ere exis n subequene of (u) u, which we denote by (u), nnd nctions ui nnd u

such at
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as IX 0% and

and

KrZu,i Kauj weakly-star in L (R)(O, T; L 2(g)))
u,j u weakly star in L (R)(0, T; Hot(g)))
u i u weakly in L2(0, T;

KV2u’j
K/2u’ weakly-star in L(R)(O,t;L2(g)))

u u weakly star L2(0, T;

u’i u’ weakly in L2(0, T; Hot())

Moreover, by (H.2) and K:u’//L (R)(0, T; L2(g2)) if follows that:

Ku’, _L(R)(O, T; L

as Ix , and

Ku’j Ku’ weakly star in L (R)(0, T; L

(3.15)

(3.16)

(3.17)

(3.18)

Ku’ Ku’ weakly star in L(R)(O,T;L2()) (3.19)

asj

By (I-I.2), (I-I.3), (3.3) and (3.4) we get

(ru’)’
_
L2(0). (3.20)

So, by (3.18) and (3.19) we have that Ku’i is weakly continuous of [0,T] in L2(). Moreover,

(Ku’,j) (T) is bounded in L

Multiplying (3.5) by u(t) and integrating from 0 to T, we obtain

8t ii, uii dt + --u ii, u ii dt

+ 0 r[ a(u’,ua)[ dt +

Using .2), .3) and a priori estimates, it follows at

Fi(u C, (3.22)

C sitive constant independent ofj and t.

Just as in eorem 1, we prove at:

Fi(uz) F(ui) a.e. in Q as (3.23)

whence by (3.22), (3.23) and Strau’s eorem (see Stra [1]), we have

Fi(u) F(i) weakly in L (Q) . (3.24)

Also, by .3)d (3.14) it follows at

(K’u’a.) is bounded in L(Q). (3.25)

So

K’u’a K’u’ weary in L(Q) j (3.26)
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and

K’u K’u weakly in L2(Q) as j o. (3.27)

Multiplying (3.5) by w v0 with v 6/H(g2) and 0 6/9(0, T), integrating from 0 to T, taking the limit

as p, oo, and using (3.15), (3.16), (3.18), (3.24) and (3.26) we get

t (Ku’, v)- (K’u, v) + a(u, v) + a(u’, v) + (F(u), v) 0 Vv 6/H0(f2) in D’(0, r). (3.28)

Ku" Au Au’ +F(u 0 in the weak sense in Q

u(0) u0

u’(O)-u
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