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ABSTRACT. In this paper we investigate the oscillatory and nonoscillatory behavior of solutions of
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1. INTRODUCTION.

In this paper we study the oscillatory and nonoscillatory behavior of the solutions of certain third and
fourth order difference equations. Until recently, excepting the studies by Cheng {1}, Hooker and Patula
[2],and[4, 5, 6, 7], there has not been much research devoted to the oscillation theory of difference equations
of order greater than two.

For a sequence U,, and a fixed real constant a, we define A,U, = U, ,, —aU,. When a = 1 we shall
write AU, instead of A,U,. We can define inductively AfU, = A (A% ~'U,) for k > 1. The operator A, was
introduced by J. Popenda [3] in his study of certain nonlinear second order difference equations.

The objects of this study will be the mixed difference equations

AAU)+(-1YPU, =0  i=1,2, 1.1)
and

AAU)+(-1YPU, =0  i=1,2, 1.2)
where P, is a sequence of positive numbers having a positive limit inferior, that is, there is a positive
constant ¢ > 0such that P, > ¢ for all n sufficiently large. We consider only nontrivial solutions. A solution
is called nonoscillatory if it is eventually of constant sign (positive or negative) otherwise it is called

oscillatory. The equations (1.1) and (1.2) are called mixed because of the two difference operators A and
A, appearing in the equations.
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2. ASYMPTOTIC BEHAVIOR OF NONOSCILLATORY SOLUTIONS.
In this section we study the asymptotic behavior of the nonoscillatory solutions of (1.1) and (1.2).

THEOREM 1. Suppose U, is a nonoscillatory solution of

A(AU,)+P,U, =0 (2.1)
where 0 <a s 1. Then for all n sufticiently large we have
sgn U, =sgn AU, = sgn AU, = sgn AU, (2.2)
and
lim U, = 0. (2.3)

PROOF. For a =1, Popenda and Schmeidel [4] have recently shown that (2.1) has a solution
satisfying (2.2). A nonoscillatory solution may not exist if 0 <a < 1, but if it does exist we show that it
must satisfy (2.2) and (2.3). As the negative of a solution of equation (1.1) is also a solution of the same
equation, it suffices to prove that an eventually positive solution of (2.1) satisfies (2.2). In this paper, we
will assume that all inequalities about sequences hold for all n sufficiently large. Let U, > 0 be a nonos-
cillatory solution of (2.1). Set

Z, =AU =U,, -aU, (2.4)
then by (2.1)

A’Z, --PU, <0 (2.5)
so AZ, is (eventually) strictly decreasing. From (2.5) it follows that if A Z, is eventually negative we must
have Z, — -, however this is contradictory since Z, = U, ,,—aU, = AU, +(1 -a)U, — - implies
AU, — -, which forces U, to be eventually negative. We must have

AZ, >0 (2.6)

for all large n. Indeed we will show that lim U, = 0.

n—>o®

Writing (2.1) as A’Z, = —-P,U, and summing from N tom — 1, where N is chosen large enough so that
AZ, >0foralln =N, we get

m-1
AZ, -AZy=- ; PU,.
The lim inf condition on P, yields

o«'iv, s.;dP,U, <AZ,.

Letting m — o we see that ZU, < « and therefore lim U, = 0. Because U, — 0 as n — it follows that
N

R

Z, — 0asn — «. From (2.6), Z, is increasing, hence Z, < 0 eventually. It then follows from the inequality
Z, =AU, +(1-a)U, <0 that AU, <0 and from (2.6) AZ, = A?U, +(1 —-a)AU, >0 and thus A’U, > 0.
Finally from (2.5), A’Z, = AU, +(1 - a)A’U, <0 and we get A*U, < 0 and the proof is complete.
Our next result though similar to the previous one requires a > 1.
THEOREM 2. Consider the following equation
AAU)-PU,=0 2.7
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where a > 1. If U, is a nonoscillatory solution of (2.7) then for all n sufficiently large
sgnU, =sgn AU, =sgn AU,
and
lim|U,| = lim|AU| = lim|A%0,| = .

PROOF. Assume without loss of generality that U, > O for all n sufficiently large. Set
Z, =AU =U,, -aU,

n+l
then by (2.7)
A’Z,=P,U,>0. (2.8)

SoAZ, isincreasing. If AZ, is eventually positive thenasn — o, Z, — o andsince Z, = AU, +(1 -a)U,
anda > 1 it follows that AU, — o, which in turn implies U, —» . To see why A2U, — =, note that U, —
implies A%Z, — o and A Z, — o because of (2.8). ButAZ, ~ A, +(1 -a)AU, and the result follows.
Now, if AZ, were eventually negative and increasing then A Z, would have a limit as n — «. However
A Z, having a limit implies that §U, < o and this implies U, — 0. But U, — 0 implies Z, — 0 also and
therefore since Z, is decreasing to zero, Z, > 0. But Z, = AU, +(1 -a)U, > 0 implies AU, > 0, a contra-
diction since U, > 0 and AU, > 0 is inconsistent with U, — 0. Hence (2.7) cannot have a nonoscillatory
solution with A Z,A’Z, <0 for all n sufficiently large.

It should be noted that the condition 0 < @ < 1 was crucial in the proof of Theorem 1. Our next result
requires @ > 1 and is similar to one obtained in [2] for the equation

A‘Un -P,..U,.,=0.
THEOREM 3. Consider the equation

A(AU)-PU, =0 (2.9)
where a = 1. If U, is a nonoscillatory solution of (2-) then for all a sufficiently large either
5] sgn U, = sgn AU, = sgn A?U, = sgn A°U,
or
an sgn U, =sgnA(A,U,) »sgn A U, =sgnA%(A,U,).

PROOF. We prove the case for a > 1. The proof for a = 1 is similar. There is no loss of generality
in assuming U, is an eventually positive solution of (2.9). SetZ, =AU, = U, ,,-aU,. Then by (2.9)
A’Z =PU,>0. (2.10)

Clearly A’Z, is increasing. In case A’Z, is eventually positive we will have lim AZ, = lim Z = , and since

Xl n—-w®

Z,<U,,,itfollows that U, — . Since P, > ¢ for large n

lim A’Z, = lim A’Z, = .

Since Z, = AU, +(1 -a)U, — = and a > 1 it follows that AU, — . Examining A Z, = A’U, + (1 -a)AU,
we see that AU, — o as n — . Continuing in this manner we see that () holds eventually.

Next we consider the case where A’Z, > 0 and A’Z, <0. Then lim A?Z, exists and summing (2.10)

Ao

from N tom -1 yields
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2 Y 2 m-1 m-1
A2y > NZ,-NZ, = 3 PU,z¢ 3 U,

Lettingm — it then follows that ; U, <o and hence lim U, = 0 which implies Z, — 0. Thus if A2, 50

n—®

and A’Z, < 0 then eventually we must have

NZ,>0, A’Z, <0, AZ, >0, (2.11)
because A’Z, <0and AZ, <0 is inconsistent with Z, — 0, it then follows that either (i) Z, > O or (ii) Z, <0
eventually. We will show that (i) is impossible. If (i) held then since Z, = AU, + (1 -a)U, > 0 it follows
that AU, > 0, in fact we have that AU, > k +(a — 1)U, > k for some positive constant k and so U, — = as
n — o, But this implies A’Z, — , so we must have A’Z, > 0 eventually, contradicting (2.11). So (i)
cannot hold, resulting in (ii) holding eventually.

3. SUFFICIENT CONDITIONS FOR OSCILLATION AND/OR NONOSCILLATION.
THEOREM 4. Every nontrivial bounded solution of
A¥AU)+PU, =0 3.1
where a > 1, is oscillatory.

PROOF. Suppose (3.1) has abounded nonoscillatory solution U, satisfying U, > O for large n. Letting
Z,=AU,=U,, ~aU, we see that Z, =-aU,. From (3.1), A’Z, =-P,U, <0. Obviously A’Z, is
decreasing, and if A’Z, is eventually negative, we see that Z, — . This clearly contradicts the boundedness
of U,. Thus, we consider the case where A’Z, >0. In this case lim A’Z, =t =0. Using the fact P, is
bounded away from zero for large n, it follows that A Z, < 0 and Z, > O for large n. Furthermore, lim U, =0,
since A’Z, — ¢ implies YU, <. Sincea > 1 and

Z, =AU, +(1-a)U, >0,
AU, > Ofor all nsufficiently large. But this is a contradiction, since U,AU, > Qis incongruent with U, — 0.

EXAMPLE. The equation
1
3,
N(AU,) +5U, = 0.

has the sequence U, = (;)“ as a solution. Hence equation (3.1) may have nonoscillatory solutions.

Before stating our final results consider the constant coefficient case P, = Q, Q > 0.
Equation (1.1) with P, = Q is

AU, +(1-a)A%U, +(-1YQU, =0  i=1,2. (3.2)
So the characteristic polynomial is
[(oh) f)=@-1P+(1-a)t-1P+(-1YQ i=1,2
Similarly, equation (1.2) can be written as

AU, +(1-a)A°U, +(-1YQU, =0  i=1,2 (3.3)

with characteristic polynomial
(& g0 =-1'+(1-a)-1P+(-1YQ  i=12.
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The proofs of our final results follow from a careful examination of the characteristic polynomials (C,) and

(G
THEOREM §. Consider (2.4) where 0 <a <1, P, =Q constant and Q > a, then all nontrivial

solutions of (2.4) are oscillatory.
EXAMPLE. The general solution of

AALU,)+6U, =0 (3.4)

U, =K (-1) + K, (1172)"*sinn@ + K,(11/2)"* cosn @

where @ = arc tan(v39/7) it follows from Theorem 1 or from Theorem $ that all solutions of (3.4) are

oscillatory.

THEOREM 6. Consider (2.7)where0 <a <1, Q = g constantand0 <a <1- %R ,then all solutions
of (2.7) are nonoscillatory.
THEOREM 7. Consider (2.9) where0 <a <1, P, = Q constantand Q > 0, then (2.9) has oscillatory

and nonoscillatory solutions. Moreover, all nonoscillatory solutions are bounded and converge to zero.

Note that whena = 1, P, = Q constant, equation (2.7) becomes AU, — QU, = 0. Clearly this equation
has oscillatory solutions for any Q > 0. Thus, the result of Theorem 6 depends upon 0 < a < 1. Furthermore,
it should be noted that Theorem 7 is interesting because, when a > 1 and P, is constant (2.7) must have an
unbounded nonoscillatory solution. Clearly the boundedness of the nonoscillatory solutions can be
attributed to the parameter a in the operator A,.
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