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ABSTRACT. f(z) z + Z amzm is said to be in V(6n) if the

analytic and univalent function f in the unit disc E is nozmallsed

by f(O) O, f’(O) I and arg an (n for all n. If further there

exists a real number p such that On+(n-l) p x(mod 2=) then f is

said to be in V((n,). The union of V(en,) taken over all possible

sequence 6 and all possible real number is denoted by V.

Vn(A,B) consists of functions f V such that

Dn+If(z) 1+Aw(z)
Dnf (z) I+BW (Z)

-I < A < B <_ l, where n E N U 0} and w(z) is analytic, w(O) 0

and Iw(z)l < 1, z g E. In this paper we find the coefficient

inequalities, and prove distortion theorems.
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kTHEATICS SUBJECT CLASSIFICATION No. 3OC45

INTRODUCTION.

Let A denote the class of functions f(z) analytic in the

unit dsc E {z zl < X Let S denote the subclass of A

consisting functions normaltsed by f(O) O and f’ (O) I tch

are univalent n E. e Hadamard pruct (feg)(z) of two functions

f(z) az= and g(z) Z bmz= in A Is given by,

(-) (z) z b=zm.
m
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Let Dnf(z) (l_z)n+l * f(z), n E N U [0 where N

Ruscheweyh [2] observed that Dnf(z) z(zn-lf(z))(n)/n!. Dnf(z)

is called the nth Ruscheweyh derivative of f(z) by AI-AmSri Ill.

DEFINITIC 1. (Stlverman [3]). f(z) z+ Z amzm is said

to be in V(en) if f E S and ag an en fo all n. If futhe

there exists a real nber such at en+(n-l)p (= 2x),

then f Is said to be in V(en,). e union of V(en,) taken

overall possible sequences [e and a possible ea numbe

is denoCed by V.

Now we define the class Vn(A,B) consisting of functions

V such that
Dn+lf(z)

-l < A < B < I veephi(z) =’
N U tO} and w(z) is analytic, w(O) O and I*(=)1 < z,

z E E. Let Kn(A,B) denote the class of functions f V such

that zf’(z) E Vn(A,B).

2. COEFFZCIENT INEQUALITIES.

HECEM I. Let f V. Then f Vn(A,B) if and only if

(n+m.l):E On+l)! (m-z)’ c=lami < (B-A).
ms2

whe.e Cm (B+Z)(n)-(I+A)(n+I).

PROOF. Suppose f Vn (A, B). Then

Dnf(z) l+B(z) - <- A < B <_ 1

w(z) is analytic, w{O) O and I*(=)1 < , = E. get

Since Re w(z) < [w(z)l < 1, obatn on =tmpZtftcaon,

n+l== 1= =’ )-(n)jamzm-

" .-. ;- (nz) ]a===_.’-" < z.

" )2 (n+l)) (=’1)1 [a(n)-A(n+l)

Since f V, f Zie, in V(%,) fo ,=e ,equenc, [ and

eaZ nbe such that

em+(m-z)p = =(rood 2). t = eP.

(2.2)
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Then we get,

i(e +"-I )(n+m-l).
e m2 (ni)(mL1)., (n+l)-(n) ]lamlzm-Ae m

’-"m2 (n+l)-(m-i)l [B(n+m)-A(n+l)]lamlz e

<.
(n+m-I) m-1Z (n+1mLi)"--.-[(n+m)-(n+l)]aml r

m=2

(n+m-)’ m-1< (B-A)- Z -(+1.)(mi’l), [B(nm)-A(n+l)][amzm=2

E (ne.l)’
m=2 (a+1)I(m-[) [(B+)(n+m)-(1)(n+l)]laml rm-i < (B)

(2.3)

Hence,

n+m-I ) rm-1Z (n+(i) (m-l)’ CmJam] < (B-A).
m=2

(2.4)

Letting r-> 1 we get (2,1).

Conversely, suppose f V and satisfies (2.1). In view of

(2.4) which is implied by (2.1), since rm-I < 1, we have,

which gives (2.2) and hence follows that f Vn(A,B).

COROLLARY 1. If f V is in Vn(A,B ) then,

[’am’ < (n+l) (m-) (B-A)
(n+m-i’): Cm

m _) 2. The equality holds o the unction given by,

f(z) z + (n+l); (m-l) (B-A) elem zmc,. z e.(n+m-Z).’

THEOREM 2. Let f E V. Then f(z) z+ Z amzm is in
m=2

(A,B) if and only if

(n+m-l) mClm amZ (n/i): (m-i): < (B-A)
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HEOREM 3. Let f(z) z+ Z amzm g --V"(A’B)’ with arg am ,=e-
where [m+(m-l)] (m 2). flne fl(z) z and

(B-A)ef(z) z + (n-l) C’ m 2,3,..., z E.
m

f g Vn(A,B) if and only if f can be expressed as f(z) mfm(z)
where m O and m 1.

PR. f f(z) mf(z) th . , ZO, then,

(n+m-1) Cmm (n+,) (m-,)Z (nl) ’mi) (nm-1) cmm=2

z m(S) (i-.,) (s-A) (S).

Hence f V (A B)

Convezsely

f(z) z + Z amzm g Vn(A,B)
(n-l) [amlCmdefine, m ’n+l)(ml)(B) m 2,3,... and define

1 I Z m" om eozem 1, Pm 1 and o 1 Z O.
m=2 m=2

Since, mfm(Z) pmZ+amzm,

Z mfm(Z) z + amzm

THEOREM 4. Define fl(z) z and

(n+l) (m-l) :_(,-A) zmfro(z) z + -(n+m-t)! mCm
m -’2,3,... z E.

Then f Kn(A,B ) if and onZy tf f can be exp.---essed as

f(z) Pmfm(Z) whez’e pro_> O and ]: IZa -1.
m:l

3. DISTORTION THEOREMS.

THEOREM 5. Let; the function f(z) z+ E a_zm be in the
m2

class Vn(A,B). Then,

IzI-(B-A)Izl2/C2 <_. If(z)l <_. Izl+(B..-)lzl2/c2
t-2(B-A)Izl/C2 ! It"()l <_ Z*2(B-)I=I/C2.
Poo, I’(=)1 Iz+ z aBz’I <_ I=1+1=12 z I%1m:2 m=2

(3.1)

(3.2)
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and If(z)[ > Izl-ll 2 z fatal. Since-(+.l)!(m.l) is an

inceasln9 function of m and f(z) (A.). by Theorem I.

we have

(n+l-(nJ)[) C2mZ I%1 < ===Z (n+)(..) %1%1 < ()
=2

that is,

B-Az ,1%1 <
m=2

(3.3)

(3.3) we get (3.1)

and

m=2 m=2

I’()1 z- I1 z -1%1.

Since (+i)!-ml:- is an increasing function of m >_ 2 and

(n+m-l) mCm (n+m-l) mCm
’(n+l’)!’ (+’1): < (nl):! m!- by Theorem 1, we have,

(n+l)! C2 (n+-): cml%lz =1%1 ! = "(n+’l) ’(-l)’!’ <- (B-A)(n:+1) !" 2 m=2 m=2
that is,

z =1%1m=2 -2

From (3.4) we get (3.2). Further for the function f(z) z (B’A) z2
%

we can see that the results of the Theorem are sharp.

COROLLARY 2. Let f(z) z+ Z amzm be in the class Vn(A,B).
Then f(z) is included in a disc with its center at the origin

and radius r given by r (C2+B-A)/C2 and f’(z) is included

in a disc with its center at the origin and radius rI given

by rI [C2*2(B-A) ]/C2.

THEGREM 6. Let the function f(z) z+ amzm be in the

Izl-(B-)lzl2/2 C2 ! If(z)l IzI+(B-A)Izl2/2 C2
and

Z-(B-A)Izl/C2 I,’(z)l <_ Z+(B-)Izl/C2
for z g E. The results are sharp for the function f(z) z+(B-A)z2/2 C2.
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