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1. INTRODUCTION.
In this paper we consider the first order neutral differential equations of the form

(2(t) — ca(t — 7)) — p(t) 2(g(t)) =0, t21, (1.1)
(2(2) + ca(t — 7)Y — p(t) z(9(t)) = F(2) , (12)

and nonlinear neutral differential equation of nth order of the form
(2(t) — h(t) £ ((r(O))™ + p(t) Fa(z(9(1) =0, t>1¢,. (13)

Most of the works on oscillation theory for neutral equations deal with stable type equations.
There are a few papers (see e.g. [2], [3], [5]) where nonoscillation of unstable type equations of order
larger than one is discussed. In Section 2 we establish a result for the existence of an unbounded
solution of Eq. (1.1) which tends to infinity exponentially. Some  results on oscillation and
nonoscillation for Eq. (1.3) are given in Section 3. To the best of our knowledge this is the first
time that a differential equation with nonlinearity in the neutral term is being studied. As pointed
out by Hale [1] it is useful to study neutral nonlinear differential equations of the form

(2(t) - G(t,2(t — 7)) = H(t,2(t — 7))

As usual a solution z(t) of Eq. (1.j), j = 1,2, is said to be oscillatory on [ty,00) if the set of zeros of
z(t) is unbounded, otherwise it is called nonoscillatory. In Section 3 we need the following lemma:

LEMMA. (see [6]). Let X be a Banach space, I' a bounded closed and convex subset of
X,A, B be maps on I to X such that Az + By € T for every pair z,y € . If A is a contraction and
B is completely continuous then the equation

Az+bz =1z

has a solution in I'.
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2. RESULTS FOR EQUATIONS (1.1) AND (1.2).
We assume that

c20, 7>0 g(t)<t, lim g(t)=oco p(t)20,
and the functions p, g, F are continuous on [tg,00), ¢y > 0. In case
pit)=p. gt)=t-o, >0,

from the analysis of the characteristic equation of Eq. (1.1) we know that Eq. (1.1) has always an

unbounded solution
z(t) = Ae®t, a>0.

The question arises whether Eq.(1.1) has always an unbounded solution z(t) which tends to infinity
exponentially as t tends to infinity. We explore that possibility.
For ¢ > 0, let z(t) be a positive solution of Eq. (1.1). We put 2(t) = z(t) — cz(t — 1) .
Then 2/(t) > 0, and therefore two possibilities exist:
(i) z(t)>0, eventually, or
(i1) 2(¢) <0, eventually.
Consequently, the nonoscillatory solution z(t) must satisfy one of the following type of asymptotic
behavior:
(a) tlimooa:(t) =0;

(b) . limcox(t) =1#0;

(c) tl_i'mooz(t) =00;

We prove the following:
THEOREM 2.1. Based on the value of ¢ we have the conclusions:
(i) I ¢ >0, Eq. (1.1) has always a positive solution z(t) satisfying (b) or (c);
(ii) If ¢ >1, Eq. (1.1) has always an unbounded solution z(t) satisfying (c);
(i) f¢>1, Eq. (1.1) goas always an unbounded solution z(¢) which tends to infinity exponentially;

(iv) If0<c<1, and J p(t)dt = oo, T > tg, Eq. (1.1) has always an unbounded positive solution,

and every bounded sohﬁion of Eq. (1.1) either oscillates or tends to zero as t tends to infinity.
PROOF. For a given continuous function p there exists a continuous function H(t) > 0 such
that

T POH()dt =co lim o) =0, 21)
iy | exp (] p)H(9)ds)
0
Define t s
2(t) = exp J exp (Ip(u)H(u)du)ds . (2:2)

t ty

Let BC([ty,0) ,R) be a Banach space of bounded and continuous functions y:[ty,00) = R. Define
a subset 2 of BC as follows:

D={yeBC:0<y(t)<1, ty<t<oo}.
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Clearly 0 is a bounded, closed and a convex subset of BC. Now we define a mapping S on  as

follows:

Z(t—1) 1t s .
- { i [P0 y(a(e)ds+ gl ife2T, -
L)@ +a-4), ifty<t<T,
where T is chosen sufficiently large so that t —7 > tg, y(t) > ¢y, 2(t)>1,
and ,
c "i(;)”u(l—t)l plo)z(s(s)ds <}, (24)
for t > T. Using (2.1) and (2.2) one finds that
st=1) f p(s)z(g(s))ds
(t) 0 and T 00, as t—oo,
which shows that (2.4) is possible. Thus we have SQC Q.
Let y;, and y, be elements of . Then
|12 Sw) O] <e LT [t r) -yt - 7)1
t
+4 1[ P(9)2(9(s)) | ya(9(s)) — y(9(s)) | ds
| <glw-ul, t=T.
and
| Syg — Syy || =sup | (Sya)(t) - (Syy(¥) |
= e [ (Sy9)(8) — (Syy) ()|
<tly-ull,
which shows that S is a contraction on 2. Hence, there is an element y €  such that Sy=y.
That is,
Ao+ Al vtaNds + by ite2T,
y()—{ T +1-4), iftg<t<T, (2.5)
Obviously y(t) >0 for t > t;. Set
, () = (D)= (1) (26)
that is, .
o(t)—cz(t—7) = j ps)z(g(s)ds+4, 27T, @.7)
T

which shows that z(t) is a positive solution of Eq.(1.1) for ¢ > T. This proves (i), (ii) and first part
of (iv); In case ¢ > 1 we have

z(t) 2 cz(t—7)> - - - 2 r(t—nT).
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or
2(t) > a(ty)e” =t for ¢> t
where p = lnc > 0, which shows that (iii) is true. In order to prove the second part of (iv) we let
z(t) to be a bounded positive solution of Eq. (1.1). Put
u(t) = z(t) —cz(t—71) .

The u'(t) > 0 and lim,_, u(t) exists. Let lim;_, u(t) =1. If 1> 0 then z(g(t)) > 1. Consequently,

t
u(t) - w(T)) = j p(s)z(g(s))ds > 1 Jp(s )ds ,
t T T,
since I T, p(s)ds—oo as t—oo we have a contradiction to the boundedness of z(t). In view of (2.7)
we can assume that c¢#0. Now for 0 <c<1 we cannot have the case that /<0. Thus
lim;_,,u(t) = 0 and hence we have lim,_, z(t) = 0. This completes the proof of the theorem.
EXAMPLE 2.1. Consider the equation
( 2(t) - fz(t-l)) ta(t-1), for t22 (28)
which satisfies the assumptions of theorem (2.1(1). In fact, (2.8) has a solution: z(t) =1 +%—.
EXAMPLE 2.2. The equation
(zt)—z(t—1)) =(1—eDz(t), for t>2 (2.9)
satisfies the hypotheses of theorem 2.1(ii). We note that (2.9) has an unbounded solution z(t) = €’.
EXAMPLE 2.3. The equation
(z(t)—2z(t-1)) =
satisfies the assumptions of theorem 2.1(iii). In fax:t, (2.10) has a solution z(t) = tel.

EXAMPLE 2.4. Consider the equatlon
((t) Lage— 21)) z(t-3n). @11)

(e )He z(t—1), for t>2 (2.10)

One can easily check that z(t) = sint is a bounded oscillatory solution of (2.11).
EXAMPLE 2.5. The equation

(x(t) - —x(t - 1)) (— - l)z(t) (212)

satisfies the hypotheses of theorem 2.1(v). In fact, (2.12) has a solution z(t) = e~

OPEN PROBLEM. What is a criterion for the existence of oscillatory solutions for Eq.(1.2)?
THEOREM 2.2. Consider the Eq.(1.2) and assume that there exists a function f such that

F(t)= f'(t) and

lim sup f(t)= +o0,
t—o00

li&oigf ft)= —o0. (2.13)

Then every bounded solution of Eq. (1.2) is oscillatory.
PROOF. Set

2(t) = z(t) + cz(t — 1)
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and let z(t) be a bounded positive solution of (1.2). Then (1.3) reduces to
(2(t) = (1)) = p(D)z(g(t)) 20 .
If 2(¢) — f(t) < 0 eventually, then 0 < z(t) < f(t) eventually, a contradiction. Hence 2(t) — f(t) >0
eventually, which is impossible, in view of that fact that z(¢) is bounded. This completes the proof.
EXAMPLE 2.6. The equation

(z(t) + z(t — 7)) — te(t —27) = — ¢t sint , (2.14)
satisfies the assumptions of Theorem 2.2. Hence every bounded solution of (2.14) is oscillatory. In
fact, z(t) = sint is such a solution.
3. NONLINEAR NEUTRAL EQUATION (1.3)
() heC(Ry,R),
(i) f;€C(R,R), zffz)>0, i=12, as z#0

|f1&) - H1)| SLlz-y|, zyelo]

f is a nondecreasing function, L is a positive constant;
(iii) 7,g€ C(R4,R), 0<t—7(t)< M, Misa constant

tlggor(t) =00, tllxg)g(t) =00
(iv) there exists a > 0 such that
Lht)et-D<e<,

and
o]

[s— = ple)fyle™ s <1
t

cat

tn—1)

Lht)e*t =™ 4

Then Eq.(1.3) has an eventually positive solution z(t) which tends to zero exponentially as t—oo.
PROOF. Let t; be sufficiently large so that
T= min {, é’}f, ), , xzngo 9(8)}

As before, BC([T,00)) denotes the Banach space of all bounded and continuous real valued
functions defined on [T,00). Let Q2 be a subset of BC as defined in Se. 2. Define operators S; and

Sy on ( as follows:
w)et fiy(rw)e W), t>4
swo={, T ;
3, ) +1-5), for T<t<t,
Gy 0RO Rtae ) 21

(Sqy)(8) =
2 {%(s2y)(t0)+(1-{3), for T<t<t,.

By (iv), for every z,y € we have S;z+Syy€Q. Condition (iv) implies that S, is a
contraction on §}. It is easy to see that

| &S] <M, fore

where M, is a positive constant. From this it follows that S, is completely continuous. By Lemma
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there exists a y € {2 such that
(S1+Sdy=vy.
That is, 00

ety (atr))e™0)+ gy
y(t) = {
It is easy to see that y(t) >0 for t > T. Set z(t) = y(t)e .
Then

t

oo
2(t) = K Fialr(0) + gy [(s= 0"~ N olataleD)ds, 21
t
or
n
(2(8) = h(t) F1(2(r(1))) + p(t) Fa(a(g(®)) =0, t>t.
This completes the proof.
EXAMPLE 3.1. Consider a nonlinear neutral equation of the form
' 1
(z(t) e 1)) +p(t)23(t) =0,
where
2 _8
pit)=e 3t—%e3e §t>0
for all large values of ¢. In our notation

K)=1, fi@)=2%, L=3, fya)=2"3.

[(s= 0"V p(s) £au(ase™) ds, if £ 21
t

%y(to)+(1—%), for T<t<t,.

(31)

Oi)viously the hypotheses of theorem 3.1 are satisfied. Therefore Eq.(3.1) has a solution z(t) which

tends to zero exponentially as t—co. In fact, z(t) = e~* is such a solution of (3.1).
Now we establish an oscillation criterion for Eq.(1.3) for the case n = 1.
THEOREM 3.2. Assume that

(i) 7,9,f; and f, are continuous, f, is nondecreasing

zfz)>0, forz#0, i=12, |f(z)| <L|=z|,

(i1) 0<h(t)<c and (cL)<1
- faly) _
(iii) lim % =q,
(iv) m(t)<t, lm 7(t)=o0, g(t)<t, Jim g(t)=00,
t
) liminf [ p(s)ds=p, pg>}.
9(t)

Then every solution of Eq. (1.3) is oscillatory.
REMARK. We first prove a lemma which we need in the proof of the theorem.
LEMMA 3.2. Let z(t) be an eventually positive solution of Eq. (1.3). Set
2(t) = =(t) — h(t) f1 (2(r(2))) -
Then 2(t) > 0 eventually.

PROOF. For convenience we put o =7, 0¥

= I =identity,oc® =00 L,n=0,1,--- .

(32)

From
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(1.3) it follows that z is nonincreasing. In case z(t) < 0 eventually, then
z(t) < cfy(=(7(t))) S cLz(o(t) < - - - < (cL)'z(a™(t)),
which implies that tllxgo z(t) = 0. Consequently, tl_l_‘rgo z(t) = 0, which is a contradiction.
PROOF OF THEOREM. Suppose the contrary, and let z(t) be an eventually positive solution
of Eq. (1.3). Then 2(t) > 0, eventually. Since z(t) > z(t) we have
fala(t) 2 fo(2(2)) (33)
Then from (1.3) and (3.3) we have
Z'(t)+ p(t) fo(2(g(t)) <O, (34)

which implies that (3.4) has an eventually positive solution. However (v) implies that (3.4) cannot
have a positive solution, by a known result [4]. This completes the proof.

EXAMPLE. Consider

(2(t) — cz(t — 2x) sinz(t — 27))' + p(t)z(t — %) =0, for t>2r (3.5)
where
p(t) =1—c sin®(sint) — ¢ cost sin(2 sint) >0, and 0 < ¢ < % (1 —32,) .
It is obvious that '
I p(s)ds>(1 —2c)%>%.
-3

Therefore the hypotheses of Theorem 3.2 are satisfied. Hence every solution of (3.5) is oscillatory.

In fact, z(t) = sint is such a solution.
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