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ABSTRACT. Generalizations of Banach’s fixed point theorem are proved for a large
class of non-metric spaces. These include d-complete symmetric (semi-metric)
spaces and complete quasi-metric spaces. The distance function used need not be

symmetric and need not satisfy the triangular inequality.
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Let (X,t) be a topological space and d : X X X » [0,») such that d(x,y) = 0 if
@

and only if x = y. X is said to be d-complete if X d(xn,xn+1) < » implies that
n=1

the sequence (xn) is convergent in (X,t). In a metric space, such a sequence is a

Cauchy sequence. If T : X -+ X, 0(x,») = (x,Tx,sz,---) is called the orbit of x.

*
G : X~ [0,0) is T-orbitally lower semi-continuous at x if (xn) is a sequence in

0(x,») and lim X = x* implies G(x*) < lim inf G(xn). T: X » X is w-continuous at
x if x_ - x implies Tx_ - Tx.
n n

The basic idea of a d-complete topological space goes back to Kasahara [1] and
[2], Iseki [3], and their L-spaces.

LEMMA 1. X is aset, T : X+ Xandd : X X X > [0,o). Then there exists
¢ : X » [0,o) such that

(a) d(x,Tx) < ¢(x) - ¢(Tx) for all x € X, if and only if

-]
(b) = d(Tnx,Tn+1x) converges for all x.
n=0

L]
(c¢) If (a) holds for all y ¢ O(x,»), then Z d(Tnx,Tn+1x) converges.
n=0

LT S S | a i
PROOF. Suppose (a) holds. For x € X, Sn = 2 4d(Tx, T "x) £ T [¢(T'x) -
i=0 i=0

i+l n+l
X

$(T" "x)] = 4(x) - #(T

) £ ¢(x). (Sn) is non-decreasing and bounded above and

therefore convergent.
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© . .
Suppose (b) holds and let ¢(x) = = d(T'x,T'1x). 4(x) - ¢(Tx) = d(x,Tx)
i=0
L S S | Do i+l 142 n+l_  n+2
since Sn-Tn - T d(Tx,T x) - T d(T x,T x) = d(x,Tx) - d(T x,T X) ~

i=0 i=0
d(x,Tx) as n + o,
The proof of (b) gives (c).
LEMMA 2. X is a topological space, T : X » X and d : X x X » [0,«) such that
d(x,y) = 0 if and only if x = y. Suppose there exists an x € X such

that lim T'x = x* exists. Then:

(a) Tx* - x* implies G(x) = d(x,Tx) is T-orbitally lower semi-continuous at

*
X .

n+1
P

(b) G is T-orbitally lower semi-continuous at x* and lim inf d(Tnx,T ) =0

imply Tx* = x*.

* *
PROOF. Assume that Tx = x and (xn) is a sequence in 0(x,w) with

lim x_ - x*. Then G(x') = d(x*,Tx") = 0 < lim inf d(x_,Tx ) = lim inf G(x ).

* *
If xn - Tnx + x and G is T-orbitally lower semi-continuous at x , then

0 < d(x*,Tx") = G(x*) < lim inf G(x) = lim inf a(t%, 1™ 1%) = 0. Thus, Tx* = x*.

The next theorem is a version of Caristi’s theorem [4 or 5] in this more
general setting. Caristi’'s theorem for metric spaces is a generalization of
Banach’s fixed point theorem.

THEOREM 1. Let X be a d-complete topological space. Suppose T : X -+ X and
¢ : X+ [0,0). Suppose there exists an x such that

d(y,Ty) < é(y) - ¢(Ty) for all y e O(x,=). 1)
Then we have:

(a) 1lim ™k = x* exists.

(b) Tx* - x* if and only if G(x) = d(x,Tx) is T-orbitally lower semi-
continuous at x.

PROOF. From Lemma 1, = d(T™x,T
n=0

n+1x) is convergent. X is d-complete so lim

™% = x* exists. Note that lim d(Tnx,Tn+1x) = 0. Now apply Lemma 2.

Even in this general setting one obtains a version of Banach’s theorem
as a corollary of the above theorem.

COROLLARY 1. Let X be a d-complete topological space and 0 < k < 1.
Suppose T : X + X and there exists an x such that

d(Ty,T%y) < k d(y,Ty) for all y ¢ 0(x,=). (2)
Then:

(a) 1lim ™ = x* exists.

() Tx* = x* if and only if G(x) = d(x,Tx) is T-orbitally lower semi-

continuous at x.
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PROOF. Set ¢(y) = o d(y Ty) for yeO(x,»). Let y = T in (2). Then

n+l n+2 n+l 1

a(T™ %, T %) < k d(Tnx,Tn+1x) and d(Tnx ™) -k a(t™, ™5 < a1, 1™ ) -

n+1x n+l n+l n+2

e+l o2 ) € T [T, T %) - ar™ ik, T

d(T™ "%, T""“x). Thus, d(T"x,T x)] or

d(y,Ty) < ¢(y) - ¢(Ty). Apply Theorem 1.

In [6], it was shown that many generalizations of Banach’'s theorem hold
for quasi-metric (d(x,y) » d(y,x)) spaces. However, we do not have the triangular
inequality in the present setting, so standard proofs and theorems do not
necessarily hold. Before proving more theorems, we give the definitions of some of
the special d-complete topological spaces we had in mind when we formulated the
results of this paper.

DEFINITION. A symmetric on a set X is a real-valued function d on
X x X such that:

(a) d(x,y) 2 0 and d(x,y) = 0 if and only if x = y; and

(b) d(x,y) = d(y,x).

Let d be a symmetric on a set X and for any € > 0 and any x ¢ X, let S(x,¢) =
(y € X: d(x,y) < €). We define a topology t(d) on X by U ¢ t(d) if and only if
for each x € U, some S(x,¢) < U. A symmetric d is a semi-metric if for each x ¢ X
and each € > 0, S(x,¢) is a neighborhood of x in the topology t(d). A topological
space X is said to be symmetrizable (semi-metrizable) if its topology is induced by
a symmetric (semi-metric) on X.

THEOREM 2. Suppose X is a d-complete Hausdorff topological space, T : X -+ X

is w-continuous and satisfies d(Tx,T x) k(d(x,Tx)) for all x e¢ X, where k:[0,») —+
[0,@), k(0) = 0, and k is non-decreasing. Then T has a fixed point if and only if

@0
there exists an x in X with = k“(d(x,Tx)) < o, In this case, xn - Tnx -+ p = TP.
n=1

[k is not assumed to be continuous and k2(a) = k(k(a))].
PROOF. If Tp = p, d(p,Tp) = 0, and kn(O) = 0 for every n.

Assume the condition holds and let x, - T x. d(Tx,T x) k(d(x,Tx))

and d(T2x,T3x) < k(d(Tx,T x)) k (d(x,Tx)). By induction, .

d(x ,x_,q) = At T 1%) < K(d(x,Tx)).

n’ n+
<0
Now nfld(xn,xm_l) < » and X is d-complete. Thus, lim X, =P exists. T

w-continuous implies x =T x = Tp. Since X4 P Tp = p.

n+l
In many special cases of Theorem 2, one has d(Tx,Ty) < k(d(x,y)) for all x, y
€ X and the special form of k forces w-continuity of T. It may also force the
uniqueness of p and enable us to obtain error bounds. In other cases, T need not
be w-continuous so the following theorem is needed.
THEOREM 3. Suppose X is a d-complete Hausdorff topological space, T : X - X

and there exists a y such that 4(Tx,T x) k(d(x,Tx)) for every x ¢ 0(y,»), where

a0
k : [0,») > [0,0), k(0) = 0, and k is non-decreasing. Suppose I kn(d(y.Ty)) <
n=
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@

: n
and (xn) in 0(y,») with nEld(xn,xn+l) < o imply lim X, exists. Let X, - Ty.

Then:
(a) 1lim X, =P exists.
(b) Tp = p if and only if G(x) = d(x,Tx) is T-orbitally lower semi-continuous
at p.
PROOF. The proof of Theorem 2 gives (a). Lemma 2 gives (b) since

0 = lim d(xn,xn+1

COROLLARY 2. Let 0 < A < 1. Suppose X is a d-complete Hausdorff topological
space, T : X » X is w-continuous and satisfies d(Tx,Ty) < A d(x,y) for all x, y ¢

) = lim a(T%, ™ y) - 0.
n

X. Then T has a unique fixed point p. For any x ¢ X, p = lim ™x.

@
PROOF. Let k(t) = At. Then kK"(d(x,Tx)) = A"d(x,Tx), so £ k™(d(x,Tx)) <
n=1

for any x in X. T is w-continuous so Theorem 2 gives X, - ™x - P = Tp for any x ¢

X. Clearly, p is unique since 0 < A < 1.

In Corollary 2, if one replaces topological by symmetrizable, then d(Tx,Ty) <
A d(x,y) forces T to be w-continuous. We now give several examples of a specific
function k where Theorem 2 or Theorem 3 applies to yield another corollary similar

to Corollary 2. To apply the theorems, one needs a non-decreasing function k and

]
an x in X with 2 kn(d(x,Tx)) < «. The following examples satisfy these
n=1

conditions. The reader can consult [7] for the details that are not obvious and

not provided here.
EXAMPLE 1. Suppose 0 < A < 1. Let k(t) = At for t > 0. Then d(Tx,sz) <

k(d(x,Tx)) = k d(x,Tx) gives k™(d(x,Tx)) = Ad(x,Tx).
EXAMPLE 2. Suppose T satisfies d(Tx,Ty) < ¢(d(x,y)) d(x,y) for all x,y in X,

where ¢: [0,o) » [0,1) and ¢ is non-decreasing. Then k(t) = t ¢(t), k is non-

decreasing, and k : [0,») + [0,). It follows by induction that kq(t) < t[¢(t)]“.

Since ¢(t) < 1, I k™(t) < .
n=1

EXAMPLE 3. Consider k(t) = t ¢(t) where ¢ : [0,o) - [0,») and ¢(t) < t for t
<1. If t <1, it follows that k"(t) < t[#(t)]". If k is non-decreasing, the

theorems apply.
EXAMPLE 4. k(t) = t ¢(t) where ¢ : [0,0) - [0,o) and ¢(at) < a ¢(t) for

a e (0,1]. If ¢(t) <1, K™(t) < (kt)((t))™ for all n > 2. If k is non-
decreasing, the theorems apply.

EXAMPLE 5. Assume k is non-decreasing, k is convex on [0,1], and k(t) < t for
all 0 <t <1l. Fix t < 1. Now k(t) < t gives k(t) = at for some

@
0 <a=a(t) <1l. By induction, kn(t) < o™t for all n and thus % kn(t) < o,
n=1

THEOREM 4. Suppose (X,d) is a Hausdorff d-complete symmetrizable space,
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T : X - X, and d(Tx,Ty) < [d(x,y)]p where p > 1. If there exists x such that u =

d(x,Tx) < 1, then X, = ™% - p = Tp.
PROOF. Let k(t) = tP for ¢t > 0. k(0) =0, k is increasing, k(t) < t if t <

@
1, and k is convex. Since 0 € u <1, X kn(p) < w, T is w-continuous so Theorem 2
n=1

applies.
REMARKS. Given a topological space (X,t), when does there exist a distance
function d such that X is d-complete? Let X be an infinite set and t any 'l‘1 non-

discrete first countable topology for X. Then there exists a complete metric d for
X such that t < td and the metric topology td is non-discrete. Now (X,t) is d-

complete since I d(xn,xn+1) < o implies that (xn) is a d-Cauchy sequence. Thus, X,

+ x in ty and therefore in the topology t. In [8], the construction gives t < te

where te is a complete uniform space and the uniformity has a countable base.

Hence, the uniformity is metrizable and the compatible metric d must be complete.

It should also be noted that any complete quasi-metric space (X,d) (d(x,y) =
‘d(y,x)) is a d-complete topological space. There are several competing definitions
for a Cauchy sequence, but Zd(xn,xn+1) < o will imply that (xn) is a Cauchy

sequence for any reasonable definition. One reasonable definition is obtained by
requiring that the filter generated by (xn) be a Cauchy filter in the quasi-

uniformity generated by d. This gives (xn) is a Cauchy sequence if for each ¢ > 0

there exists a positive integer ng = n(e) and x = x(¢) in X such that (x“: n > no) =

{(y € X: d(x,y) < €}. The metric space definition of a Cauchy sequence also holds

if Zd(xn,xn+1) < o,

REFERENCES

1. S. Kasahara, On some generalizations of the Banach contraction theorem, Math.
Seminar Notes, 3(1975), 161-169.

2. S. Kasahara, Some fixed point and coincidence theorems in L-spaces, Math.
Seminar Notes, 3(1975), 181-187.

3. K. Iseki, An approach to fixed point theorems, Math. Seminar Notes,
3(1975), 193-202.

4. Alberta Bollenbacher and T. L. Hicks, A fixed point theorem revisited,
Prof. Amer. Math. Soc. 102, No. 4, (1988), 898-900.

5. J. Caristi, Fixed point theorems for mappings satisfying inwardness
conditions, Trans. Amer. Math. Soc. 215(1976), 241-251.

6. T. L. Hicks, Fixed point theorems for quasi-metric spaces, Math. Japonica
33, No. 2(1988), 231-236.

7. T. L. Hicks, Another view of fixed point theory, Math. Japonica 35, No. 2
(1990), 231-234.

8. Wilson R. Crisler and Troy L. Hicks, A Note on '1‘1 topologies, Proc. Amer.
Math. Soc. 46, No. 1, (1974), 94-96.




Mathematical Problems in Engineering

Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years
for one-, two-, and three-dimensional space. Additionally,
such dynamical systems can exhibit a very important and still
unexplained phenomenon, called as the Fermi acceleration
phenomenon. Basically, the phenomenon of Fermi accelera-
tion (FA) is a process in which a classical particle can acquire
unbounded energy from collisions with a heavy moving wall.
This phenomenon was originally proposed by Enrico Fermi
in 1949 as a possible explanation of the origin of the large
energies of the cosmic particles. His original model was
then modified and considered under different approaches
and using many versions. Moreover, applications of FA
have been of a large broad interest in many different fields
of science including plasma physics, astrophysics, atomic
physics, optics, and time-dependent billiard problems and
they are useful for controlling chaos in Engineering and
dynamical systems exhibiting chaos (both conservative and
dissipative chaos).

We intend to publish in this special issue papers reporting
research on time-dependent billiards. The topic includes
both conservative and dissipative dynamics. Papers dis-
cussing dynamical properties, statistical and mathematical
results, stability investigation of the phase space structure,
the phenomenon of Fermi acceleration, conditions for
having suppression of Fermi acceleration, and computational
and numerical methods for exploring these structures and
applications are welcome.

To be acceptable for publication in the special issue of
Mathematical Problems in Engineering, papers must make
significant, original, and correct contributions to one or
more of the topics above mentioned. Mathematical papers
regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

December 1, 2008
March 1, 2009

‘ Manuscript Due

‘ First Round of Reviews

June 1, 2009

‘ Publication Date

Guest Editors

Edson Denis Leonel, Departamento de Estatistica,
Matemadtica Aplicada e Computagdo, Instituto de
Geociéncias e Ciéncias Exatas, Universidade Estadual
Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro,
SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State
University, Vorob’evy Gory, Moscow 119992, Russia;
loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers-4pt
	Guest Editors

