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ABSTRACT. We prove: If ry,...,r; are (fixed) positive real numbers w1th 1'[ r;>1, then the only
entire solutions ¢: C — C of the functional inequality
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are ¢(z) = cz™, where c is a complex number and n i s a positive integer.
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1. INTRODUCTION.
Inspired by a problem of H. Haruki, who asked for all entire solutions of

lo(z +w) 2+ | p(z —w) [2+2]9(0) |22 2] p(2) |2 + 2| p(w) | 2, (1)
J. Walorski [1] proved in 1987 the following interesting proposition:

Let r > 1 be a (fixed) real number. Then the only entire solutions ¢: C — C of the functional
inequality

le(rz)| 27 {e(2) |

o(z) =c2", (12)

where c € C and n €N.

As an application of this theorem, Walorski showed that the only entire functions ¢:C — C
satisfying (1.1) and ¢(0) = 0 are the monomials (1.2). The aim of this note is to prove an extension
of Walorski’s result by using a method which is (slightly) different from the two approaches
presented in [1].

2. MAIN RESULTS.

k
Theorem. Let ry,..,r; be (fixed) positive real numbers with [T r ;> L Then the only entire
i=1



414 H. ALZER

solutions p: C — C of

T 12| 2 (f1 r)leta) | * (21)
i=1 J 1=1

are the functions ¢(z) + cz®, where c is a complex number and n is a positive integer.
PROOF. Simple calculations reveal that the functions ¢(z) = cz" (c € C, n € N) satisfy (2.1).
Next we assume that ¢ is an entire solution of inequality (2.1).

Because of [] r;>1 we conclude from (2.1) with z =0 that ¢ has at 0 a zero. Let n be the
i=1
order of this zero; we define

f(z) = p(2)/2", (22)
then f is an entire function with f(0) # 0. From (2.1) we obtain
1117621 2 (A=D1 (23)
ji=1 J i=1

We suppose that f has a zero z;. By induction it follows from (2.3) that zy/rT" is a root of f for all
non-negative integers m. From the identity theorem we conclude f(z) =0 which contradicts the
condition f(0) # 0. Hence f has no zero which implies that the function

k
o) = (24)
I ,f("f)
J =
is entire. From (2.3) we conclude
k on-1
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j=1

and Liouville’s theorem implies that g is a constant. Therefore we have

@ =K1 frz). Kec. (25)

Since f(0) # 0 we get from (2.5): K =1;

hence

f@* =11 fra). (29)

Differentiation leads to

Setting

e =m§::0 ™ (28)
we obtain from (2.7) and (2.8):
io: ka,,z™ = f (am zk: 1“',-""'1)z"l , (29)
m=0 m=0 i=1
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and comparing the coefficients of z™ yields for all m > 0:
ka;, = apy Z] pmtl (2.10)
j=

We assume that there exists an integer my > 0 such that a,, # 0, then we get from the arithmetic

mean-geometric mean inequality and from (2.10):

k mg+1 l/k k m0+l
J.Z Ti z_: T

k
which contradicts the assumption z r;> 1L Hence, a,,, = 0 for all m > 0. This implies that f is a

J =
constant, say ¢ € C, and therefore we obtain ¢(z) = cz™.
It is natural to look for all entire functions ¢:C — C which satisfy the following additive
counterpart of inequality (2.1):

> .
(]Z_:ltp(rz)) E 1'J lo(2)] (2.11)
where r,..r; are (fixed) positive real numbers with Z r;>k. The monomials
¢(z) = cz™(c € C,n € N) are solutions of (2.11). Indeed, mequa.hty (2 11) with ¢(z) = cz" reduces to

k k
2323 (212)
j=1 j=1

k
which follows immediately from Jensen’s inequality and the assumption r;>k. By an

argumentation similar to the one we have used to establish the theorem it cail—be shown that the
functions ¢(z)cz" (c € C,n € N) are the only entire solutions of (2.11). This provides another
extension of Walorski’s result.

If the expression on the left-hand side of (2.11) will be replaced by Z |<p(rz) |, then we
conclude from the triangle inequality that ¢(z) = cz" (c € C, n € N) also solved =1

Jz_:l lo(rs) 2 2 rilel@)] (2.13)
where ry,...,r, are (fixed) positive real numbers with Z r.> k. We finish by asking: Are there
more solutions of (2.13) (if ¥ > 1)? =1’
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