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ABSTRACT. A regular measure j on a locally compact topological semigroup is called
right invariant if up(Kx) = p(K) for every compact K and x in its support. It is
shown that this condition implies a property reminiscent of the right cancellation
law. This is used to generalize a theorem of A. Mukherjea and the author (with a new
‘proof) to the effect that the support of an r*-invariant measure is a left group iff

the measure is right invariant on its support.
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1. INTRODUCTION.

In what follows S will denote a T2 ’locally compact topological semigroup
(jointly continuous multiplication) and p a positive regular (Radon) measure on the
Borel c-algebra of S with support F = {s € S; for every open VD 8, u(V) > 0 }, as
in [1] and [2] . We shall use the notation Bx-1 = t;l(B) = {s € 8; sx ¢ B}, tx
denoting the right continuous translation s + sx . The measure is called r*-invari-
ant on S if u(Bx-l) = u(B) for all Borel B and x in S. Such measures received
considerable attention in the past in connection with the (still unsolved) conjec-
ture of L.N. Argabright (Proc. Amer. Math. Soc. 17 (1966), 377-382) that their sup-
port is a left group i.e., F is left simple (Fx =F for all x in F) and right
cancellative (equivalently , if it is left simple and contains an idempotent element),

The measure u 1is called right invariant on its support if

u(Kx) = p(K) for every compact K C F and every x € F (1.1)
In [1] A. Mukherjea and the author proved the "rather tight" result
THEOREM 1. The support of an r*-invariant measure on S is a left group 1iff the
measure is right invariant on its support.
Professor Mukherjea in a meeting at University of South Florida asked the questions
(1) whether the "intriguing" condition (1.1) (introduced by himself) implies some
sort of right cancellation on F in view of the fact proven by Rigelhof [3] that
(1.1) plus that the t 's, x € F, are open maps, imply right cancellation on F. (i1)
Whether Theorem 1 (above) can be substantially generalized. In this note we show:

As for question (i) indeed there is a generalized" right cancellation on S (See
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Lemma 1, below) but as for question (ii), Theorem 1 cannot substantially be general-
ized except that we may only assume that u(Bx—l) 2 u(B) for every Borel B and
cvery x ¢ F. (Unlike condition (1.1), no extra generality is obtained whether we
assume B C S or B C F ). Moreover, our proof (although patented on that of [1])
does not use the functional analytic apparatus of [1] since it uses a version of

cancellation from the intrinsic properties of the measure.

2.
We begin by showing in what sense S is pre- right cancellable mod F.

LEMMA 1. Let u be right invariant on its support (i.e., u satisfies (1.1)). Then
(1) 1t for f4, fz, 13 e F, 1112 = tsfz , then ffl = ffs for every f € F
that is, we can cancel on the right by premultiplying by any element of
the support.
(i1) If F is also a right ideal of S, then for sy, 85 € S, 12 € F, the equa-

tion slfz = safz implies tsl = fsa for all f € FF = closure(FF)

and in particular for any idempotent element e ¢ F.

PROOF. We shall argue by contradiction as in Rigelhot [3, p. 175] . We prove

(ii): (The proof of (i) is dune similarly). Assume s =s.f but fs1 # tsa so

172 ~ 53f2
that we can find disjoint compact neighborhoods U and V respectively of these two

3
neighborhood W of £ which in turn must contain a right translate of some compact

distinct points (with f some point in ff ). Now Uszlf\ Vs must contain a compact

neighborhood of the form Ko for some ¢ € F (£ € FF ), i.e.,
-1 -1
K C ¥ C Us; N Vsg© , so that

u(K) + u(K) = u(Kwsl) + u(Kwsa) = u(Kwsl\J K«vsa)tz) = u(K U K)wslfz) = u(K),
which is a contradiction.

COROLLARY 1. Let u satisfy (1.1). Then
(1) For any pair of idempotents el, e2 € F, we have ele2 = e1 so that
the idempoterts in F form a left-zero subsemigroup of F.
(ii) For any idempotent e € F, eF 1is right cancellable.

(iii) It LYZYX = 2yX for x,y,z € F, then 2y is idempotent.

PROOF. (i): It rollows since elez = eleze2 and by Lemma 1 we zay caucel €y
by premultiplying by ey and use the fact that e, is idempotent. (ii):Similarly
by the above Lemma. (iii): First cancel x by premultiplying by y and then cancel

zy by premultiplying by z and obtain zyzy = zy .
Ncv we are ready to give the generalization of Theorem 1 as follows:

THEOREM 2. Suppose u satisfies

u(Bf-l) > y(B) for every Borel B and every f ¢ F (2.1)
Then F 1is a left group iff u satisfies (1.1).

PROOF. Clearly (1.1) plus inner regularity of u imply u(Bf—l) < p(B) for all
Borel B and f ¢ F so that we have (Bt-l) = u(B) for every f € F and Borel B.
Also (2.1) implies that Ff = F for all f ¢ F. In the proof of Theorem 1 in {1},
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we produced an idempotent e in Fa, for a ¢ F, so that Fe = Fe = FC Fa and
so Fa =F for all a e F (cf. [ll,p. 974) . Now, the same proof goes through with-
out any difficulty except that instead of the right cacellation on Fa, a € F, we use
Corollary 1 (iii) above.

We give next a result summarizing certain important conditions on F and yu
that are equivalent to F being a left group.
COROLLARY 2. For a locally compact second countable semigroup S admitting an r*-in-

variant measure u, these are equivalent:

(1) F is right cancellable

(ii) u is right invariant on its support, i.e., satisfies (1.1))

(111) S is pre- right cancellative with respect to F, 1i.e., 8183 = 838, with
sl,sz,s3 € F, implies fsl = f33 for all f ¢ F.

(iv) F 1is a left group.

(v) F has the right translations tf closed for all f € F.

(vi) F has the right translations open and u satisfies (1.1).

REMARK. It is not known to our knowledge if (v) and (iv) are equivalent in the
absence of second countability.

PROOF. Most of these follow from Theorem 1 or Theorem 2. Note that right can-
cellation implies that tf are one-to-one and for compact K, Kxx_ll\ F = Kx ,so0
that right invariance on its support follows from r*-invariance, so (i) => (ii) =>
(1ii) => (iv) (cf. Theorem 2). Since F is metrizable being regular the technique in
[4] for producing an idempotent in Fx applies and thus F becomes a left group.

By the result of Rigelhof, (vi) implies (1).([3]p. 175). For (iii), see our Lemma
2, below.

REMARK. The following will show the "tightness" of the conditions of Theorem 2.
It is well krown that a property that '"melds' naturally (at first sight) with condi-
tion (1.1) is that of lower r*-invariance, i.e., that u(Bx-l) < u(B) for all Borel
BC S and x . S, for it and (1.1) are equivalent to the condition (cf.[2] and
(5, p. 92])
u(Kx) > u(K) for all compact K C S and x ¢ § with_ (2.2)
this inequality becoming equality whenever K and x are in F.
This condition (2.2) implies that F is a right ideal and Fe = F for :very idempo-
tent e € S, but these are not enough to make Theorem 2 valid, for the example of
[0 , ®) with addition and Lebesgue measure shows that u 1is not r*-invariant (it
does not satisfy (2.1) of Theorem 2). However this S is pre- right cancellative as
the following Lemma generally indicates.
LEMMA 2. Suppose u satisfies (2.2) and suppose that 8,85 = 3352 for 81185183 €

€ F, then fs_ = fs for

S. Then fs, = fs, for all £ ¢ FF . If moreover s 1 3

1 3 1
all f € F.
PROOF. Suppose first that 8,8, ¢ F. Then the second equality in the proof of

Lcmma 1 (ii) with f£_ replaced by s, becomes less or equal and the last remains

2
equality and thus a contradiction obtains. Next assume that 8,85 = 838, and 898, €

F. Again, as before (See proof of Lemma 1) there are disjoint compact neighborhoods
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1

U, vV of fsl , fs3 respectively, such that the intersection of Usl1 and Vs;
contain a compact neighborhood W of f (we use W/ F instead of W). Then we have

again the inequality

(W) + u(W) < u(Wsy) + u(Wsy) < u(Ws, U Wsjz)sy) = u(WUWs; s,) = uW),

again a contradiction.

REMARK. The most difficult part in problems involving the nature of the support
F is producing an idempotent element in Fx or in F itself. For this, it would be
intersting to have a "survey paper" giving all known methods for producing an idempo-
tent in the presence of measure and/or topological invariance conditions. Apart for
having some compact subsemigroup or a compact fiber xx_l # 9 or a two-sided
version of (2.2) and a subsemigroup of positive finite inner measure, we know only
the technique in [1] which is in some : :nse an adoptation of a method of Gelbaum
and Kalisch (Canad. J. of Math. 4 (1952), 396-4C.J), and the technique of [4] which
needs metrizability !. (For example, when the tx are closed mappings, can the "onto-
ness" of the tx be used to prove that the operator L f(x) = f(xs) on Lz(S, u)
is onto in the non-second countable case ? (that will suffice to prove that the

support of an r*-invariant measure is a left group when the tx's are closed).
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