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ABSTRACT. In this paper we present explicit analytic solutions of coupled Riccati matrix
differential systems appearing in open-loop Nash games. Two different cases are considered.
Firstly, by means of appropriate algebraic transformations the problem is decoupled so that an
explicit solution of the problem is available. The second is based on the existence of a solution of a

rectangular Riccati type algebraic matrix equation associated with the problem.
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1. INTRODUCTION. When noncooperative problems are tackled, a game theoretic approach is
necessary: each control agent (decision maker or player) tries to optimize his own cost function
which conflicts more or less with others. An equilibrium solution must be sought, and the Nash
strategy is a natural choice. In this case, a player cannot improve his payoff by deviating
unilaterally from his Nash strategy. Due to this noncooperation, the optimization problem of
various players are strongly coupled and necessary conditions for open-loop Nash strategy lead to
complex two-point boundary value problems.
Consider a N-players linear quadratic differential game defined by
'=Az+ ﬁl: Bu;  2(0) =z, (1.1)
i=1
with the cost functionals associated with the players
t, N
J;= %{z}‘K”zl + I(xTQi"' +jz:luJTR,~juj)dt}, o(ty) = x4 (1.2)
0 =
where all matrices are n xn symmetric with R;, for 1 <i < N, positive definite. It is well known

that the open-loop Nash control must satisfy [12]:
w=—-R;'BIY; W=-Qz-ATY, Y(t;)=K s, 1<i<N (13)
where ¥; is the costate vector associated with player “”. When the transformation ¥; = Kz, is
introduced, for 1 < i < N, the open-loop Nash strategy (u:‘)fv= 1 is given by
u} = —R;'\BTK (t)®(t,0)z,, 1<i<N (14)
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where
K= —ATK,-K,A-Q;+K; jf:l SiKj Kft)=K;p 1<i<N (15)
with
S;=B;R;'BT, 1<i<N (16)
and ®(¢,0) is the system’s transition matrix satisfying

¥(t,0)=(4- 3 S;K)®(t0); B(tH)=1I 17
i=1

Note that the matrices R;; for i # j do not appear in the necessary conditions due to the fact that
under open-loop strategy assumptions, each player optimizes his criterion knowing that du;/dz =0,
for 1 <7< N. For the open-loop Nash strategy and under the existence of a solution of the coupled
Riccati system, the optimization problem has only one solution [2].

The solution of system (1.5) is generally difficult to obtain due to the permanent coupling
between the players’ strategies. In [4] a series solution of system (1.5) is proposed but the
coefficient are obtained solving several linear matrix equations. In [14] a numerical algorithm for
the integration of (1.5) is given. A singular perturbation method for solving (1.5) is proposed in
[10]. For the case N =2, an iterative algorithm for solving (1.5) is given in [5]. For the case N =2
and Q, = aQ,, where a is a scalar, an analytic solution of system (1.5) was pointed out in [1]. In
this paper we obtain an explicit solution of system (1.5) for a case more general than the one
proposed in [1]. Also, a different type condition expressed in terms of the existence of certain
coupled algebraic Riccati matrix system is proposed.

2. ANALYTIC SOLUTION OF COUPLED RICCATI SYSTEM BASED ON ALGEBRAIC
TRANSFORMATIONS.

For convenience, the necessary conditions to be satisfied (1.1), (1.3), are rewritten in a matrix

form as
T’ F A _Sl '—52 A —SN T T T
s5l=1-Q 0 -aT ... 0 U| =M | ¥, (21)
vy -Qy 0 0 ... AT ‘I'NJ Ty
2(0) =z, Yi(tg)=Kyzp, 1<i<N (22)
Now, let us introduce the change of basis
- - - - -
z T F I 0 0 e 0
¥, v, 0 I o - 0

for appropriate matrices_L2, Ly, - -,Ly in R"*" to be determined. Thus p-roblem (2.1), (2.2) is
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equivalent to the following one

o 1 r 7

z r A —SI—S2L2—'—SNLN —'52 e —SN T

' -Q, -AT 0 - 0 7,

wh |= LyQ1-Q, L,AT-ATL, -AaT ... o0 wy (24)
wy LNQI—QN LNAT—ATLN 0 A —AT i LwN

The purpose of this transformation is to find under what conditions the player’s optimization
problem can be decoupled. In fact, note that if Ly, Ls,.., Ly satisfy the system

L;Q=Q;, LAT=ATL, 2<j<N (26)

the matrix T~!MT is reduced to a block triangular form and the costate vectors ¥, wy, - - -, wy,
are coupled only via the terminal conditions (2.2).

Note that for the case N =2 and the matrices @, and Q, are proportional, i.e., @ = a @, for
some scalar a, taking L = al, one gets solutions of system (2.6) for N = 2. Thus the case studied
in [1] is a particular case of (2.6).

In order to characterize the existence of solutions for the algebraic system (2.6), we recall the

RMXn kas

concept of tensor product of matrices. If A, B are matrices in and , respectively, then

the tensor product of A and B, denoted A ® B, is defined as the partitioned matrix

a B apyB e a,B
A®B=
a B a,,B -+ apm,B
If A€ R™*™ we denote
ay; M,
Aj=]: [,1<j<n veecM=| :
O M.

If M,N and P are matrices of suitable dimensions, then using the column lemma (7, p. 410}, we get
vec(MNP) = (PT @ M) vecN (2.7)

Taking into account (2.7), if we apply tensor products in each equation of system (2.6), it may be

written in the equivalent form

CvecL;= vec[O,Qj] (2.8)
where 2 < < N and
10AT-A®1
C= (2.9)
el

If we denote by Ct the Moore-Penrose pseudoinverse of C, then from Theorem 2.3.2 of [11, p.24],
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the system (2.9) is compatible if and only if
CC* veclo, Q;l= vec[0,Q;] (2.10)
Furthermore, under condition (2.10), the general solution of (2.9) for L j is given by

vecL; = C* vec[0,Q,) +(I-C*+C)2 (2.11)

2 2 2
where I denotes the identity matrix in R® x™ and z is an arbitrary vector in R" . We recall that
Ct may be computed by using MATLAB [8].
Let us assume the existence of solutions L; of (2.8) for 2 < j < N, then from (2.4), (2.5) it

follows that

- -
i [ ~S, -Sy
z' \%4 z
3 0 0 ¥
w'2 = U)2 M
| -AT 0
| 0 -AT
B B (2.12)
where
A ~8§1—8S9Lg—- - - =SyLy
V= (2.13)
-Q AT

Let us consider the change t = t(s) = ty—s8,0<s<tp and let

Z(s) = z(ty — s) = x(t)
Ty(s) = Uy(t;—s) = ¥y(2) (2.14)

Hence problem (2.11) may be written in the form

[ -5, —Sy
B -V 2]
¥, | 0 0 ¥,
(d/ds) Dy | = gy
| -AT 0
Wy 0 : Dy
o [ 0 —aT |
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(2.15)
Ht) =20 ¥(0)= K\ #0), @;0)=(K;~L;K )&0), 2<j<N
Solving (2.15) we obtain
#j(s) = exp(sAT)®0), 2<j<N (2.16)
#(s) %(0) N & S
.| = exp(=sV V)| AT“-Od} 2.17
5| = ){ 5,0 +3, l exp(u )[ ; ] exp(uAT) @;(0)du (217)
From (2.14) and (2.16) we have
Z(s)
R = G(s)%(0) (2.18)
1 S

where

N ¢ S.
G(s)= exp(—sV){ !: ] 22 I exp(uV) [0{' exp(uAT)du (K;p— LjK”-)} (2.19)
Thus we have —oo

#(s) = [1,01G(s)2(0);  ¥(s) = [0,1]G(s)%(0) (2:20)

Note that [I,0)G(0) = I, and from the continuity of G, there exists an interval 0 <s<§é, such
that

[I,01G(s) is invertible for all s € [0,6] (2.21)
From (2.19) and (2.20) we obtain
#(0) = {I1,01G(s)} ' &(s)
¥(s) =[0,1]G(s){[1,01G(s)} ' &(s), 0<s<$ (2.22)
Now, from (2.3) and (2.13), it follows that
Fis)=L; ¥)(s)+Djs), 2<j<N
and from (2.15) and (2.19)

¥ j(s) = {exp(sAT) (K ;; — LK f) + L;[0, I1G(s){{1,0)G(s)} ' &(s) (223)
for0<s<$é.
From (2.13) and the relations ¥;(¢) = K j(t)z(t), 1<j< N, it follows that
K(t) = [0,1]G(t; - ){[1,01G(t; - 1)} ! (2.24)
K j(t) = {exp(AT(t; — ) [K ;s - L;Ky g+ L;[0,11G(t, — )1, 01G(¢, — )} 1,
tp-6<t<t;; 2<j<N (2.25)

where G is defined by (2.18). Thus the following result has been proved:

THEOREM 1. Let us assume that matrices A and Q; for 1 <1 < N, satisfy the condition (2.9)
where C is defined by (2.8), and let L; be the solution of (2.8) for 2 < j < N. Then there exists a
positive number § such that on the interval [t 1 -6t f] the unique solution of the coupled Riccati
system (1.5) is given by (2.23), (2.24).
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REMARK 1. Note that the case N =2, Q) = a @y, where a is a scalar, is a particular case of
the previous theorem taking Lo = al. It is important to note that from (2.23) and (2.24), we have
the following relation between K'(t) and Ko(t):

Ky(t) = LyK(t) + exp(AT (¢ — 1)) [K o — LoK MILL0IG(E - 1)) !

and since the function {[I,0]G(t I t)}~! is involved in the computation of K 1(t), the
computational cost is reduced because Ko(t) is expressed in terms of K(t). Finally we recall that
efficient methods for computing matrix exponentials and integrals involving them and that appear
in the expression of G(s), may be found in {13]. These procedures are extremely easy to implement
and yield an estimation of the approximation error.

3. ANALYTIC SOLUTION OF COUPLED RICCATI DIFFERENTIAL SYSTEM BASED ON
THE EXISTENCE OF A SOLUTION OF A COUPLED ALGEBRAIC RICCATI SYSTEM.

Riccati type matrix equations with rectangular coefficients arise for instance in the problem of
finding a state estimate feedback controller (3] and in the transformation of ill-conditioned linear
systems to a block diagonal form [6,9]. An efficient method to find solutions of such equations may
be found in [15). The aim of this section is to propose another way to find an analytic solution of
the coupled Riccati differential system (1.5). Note that system (1.5) may be written in the

following compact form

K'(t)= —Q— K(t)A— BK(t) + K(t)SK(t); K(ty))=K; (3.1)
where
K, @ Kyf
K=|:|; @=| : |; B=Diag(AT,AT,..AT), K =l (32)
Ky n Knyg
and
§=[5,59-Sn] (33)
Let us assume that the rectangular algebraic Riccati equation
-Q-XA-BX+XSX=0 (34)
admits a solution X, € CNmX7 and let us consider the change
Ut)=K(t)= X, (3.5)
Then problem (3.1) is equivalent to the following one
U'(t) = BoU(t) - U(t)A, + U(t)SU(t); Ul(ty)=Uy (3.6)
where
Bo=X,5-B; A,=A-5X,; Us=K;-X, (3.7

Now, let us consider the extended linear system

o =S ||V
@i ve| | 4 ) | V| | 1 08
ze)| | o B, ||z 2ty | | Uy
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where V(t) € C**™ and Z(t) € CN"*™. If we define the matrix function

i
exp((t-5)45)  ~ [ expl(t-v)Ao)Sexp((v—2)B,)dv
S(t,s) = i (3.9)
0 exp((t—3s)B,)
then an easy computation yields
A, =S
(8/3t)S(t,s) = o B ]S(t,s) (3.10)

and thus S(t,s) is a fundamental matrix of (3.8) and the unique local solution of (3.8) in a
neighborhood of ¢ 7 is given by

V(t) I
[Z(t)] =S(tty) [UJ i Stptp) =TIy 41y

Note that V(Itv,) = I, and thus in a neighbourhood J containing ¢, V(t) is invertible. Now, let us
define the CV"*"_values matrix function U(t) = Z(t)(V(t))~! for teJ. Note that from (3.8) it
follows that
Vi(t)= A,V(t)-SZ(t) and  Z'(t) = B,Z(t)
Computing it follows that
U't) = Z'(t) (V) - 2@ (V)T VI (V) = B,U() - U(H) A, + U()SU(2)
for all teJ. Hence K(t)=U(t)+ X, is the solution of (3.1), defined on the interval J. From
(3.10) it follows that .
V(t) = exp((t — tr)Ao) - Iexp((t —v)A,)Sexp((v— tf)B,,) dvU,
t
/

t
=exp((t—t f)Ao}{I - Iexp((t I v)A,)Sexp(vB,)dv exp( —t fBo) U f}
t
2(t) = expl(t—t))B)U,
-1
t
K(t) = X, +exp((t — t;)B,) Uf{I - lexp((tf —v)A,)Sexp(vB,)dv exp( — t,Bo)Uf} exp((t! -1)A,))
4
(3.11)

Thus if the algebraic Riccati equation (3.4) has a solution X, chen the solution K(t) of (3.1) is
defined by (3.11) where U Ao and B, are given by (3.7). The solution is defined in the
neighbourhood of ¢, where V(¢) is invertible.
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