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1. INTRODUCTION.
Throughout this paper X is a complex Hilbert space. For any subset M of X, B(M) denotes

the algebra of all bounded linear operators on M. An algebra A means a strongly closed subalgebra
of B(X) containing the identity element I. 04 is said to be an algebra of finite strict multiplicity

(a.f.s.m.), if there exists a finite subset /" {Xl, x2,... xn} of X such that

.A(F) {AlXl + A2x2 + + Anxn, Ai E Jr} X. In this case we denote the algebra by
1(A, {xi} 1). If n 1, i.e., if there exists a vector x0 such that Ax0 {Ax0 A .4} X, then A is

said to be a strictly cyclic algebra. In this case vector xo is called a strictly cyclic vector for A.
Algebra A is said to be self-axtjoint, if A* A, whenever A is in A. For any subset 9 of B(X), the

commutant of 9, denoted by 9’, is the collection of all operators in B(X.) that commute with 9.

A closed linear subspace M of X reduces the subset 9 of B(X), if the projection of X onto M
is in 9. A collection {Mj} of closed linear subspaces of X is said to be an orthogonal
decomposition of X, if the Mj’s are pair-wise orthogonal and span X. Correspondingly, a

collection {Pj} of projections, is said to be a resolution of identity, if the collection {Pj(X)} of

ranges of P forms an orthogonal decomposition of X.
Strictly cyclic operator algebras have been studied by Lambert [1], [2], M. Embry [3], [4], [5],

Bolstein [6] and others. The study of strictly cyclic algebras was extended to that of algebras of

finite strict multiplicity by Herrero in [7], [8]. This paper aims at studying the structure of the

commutant of an a.f.s.m., particularly a self-adjoint a.f.s.m, in terms of its reducing subspaces. By
[5], the commutant of a self-adjoint strictly cyclic algebra cannot have any infinite collection of

pair-wise orthogonal projections. [9, Theorem 2] paves the way for the following:
2. MAIN RESULTS.

THEOREM 1. If (A, {xi}= 1) is an a.f.s.m, on X, then each collection of mutually-orthogonal
projections in .A’ is finite.
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PROOF. Let {Pj} be a collection of mutually-orthogonal projections in .A’. We may assume

{Pj} to be countable. Let Qn= IPj and Q= r, lPj. Qn converges strongly to Q. By [9,
j= j=

Theorem 2], Qn converges uniformly to Q. As Q- Qn is a projection, its norm is zero or one. Since

can be made arbitrarily small, there exists m such that

This implies that the collection {Pj} {pj}jm= is finite.

COROLLARY 2. Let (.A, {xi}= be an a.f.s.m, on X. Any operator in .A’ with residual

spectrum empty is of finite spectrum.

PROOF. Let E in A’ have residual spectrum empty. By [8], E has no continuous spectrum.

Therefore, spectrum of E consists entirely of point spectrum. By Theorem 1, E has only finite

number of distinct eigenspaces. So spectrum of E is finite.

Our next theorem generalizes [5, Theorem 3] to a self-adjoint a.f.s.m.

THEOREM 3. Let A be a self-adjoint a.f.s.m, on X. Then there exists a finite orthogonal
decomposition {Mk} of X such that each Mk reduces A, and .A Mk is strongly dense in B(M.).

PROOF. If X and {0} are the only reducing subspaces of .A, then by [8], .A is strongly dense

in B(X). As such the trivial decomposition {X} of X satisfies the requirements of the theorem.

Let {Mk}= be a collection of mutually orthogonal subspaces of X such that each M:
reluces .A, and .AIM

k
is strongly dense in B(Mk). If these Mk’s span X, the theorem follows.

Otherwise,

consider A A I[ Mi] Let P be orthogonal projection of X onto M [i Mi] P is in

.A’ and (.A, {Pzi}= ) is an a.f.s.m, on M. If A has only trivial reducing subspace, then again, by

[8], .A1 is strongly dense in B(M) and the construction is complete. Otherwise, .A has a non-trivial

reducing subspace. This implies A has a minimal reducing subspace, say Mp+ 1" By [8],
M’IlMp+ is strongly dense in B(MI + 1)" Thus, M1, M2,... Mp+ 1 are pair-wise orthogonal
subspaces for .A, and .AIM

k
is strongly dense in B(Mk) for k 1, 2,..., p + 1. By Theorem 1, the

collection terminates with a finite number of pair-wise orthogonal reducing subspaces.
Our next theorem depicts the structure of commutant of a self-adjoint a.f.s.m. The theorem

and its consequences can be proved by following the technique used by Embry in [5]. So we omit

the proofs.
THEOREM 4. Let (A, {zi}= 1) be a self-adjoint a.f.s.m., {M:} a decomposition of X as

required in Theorem 3 and P/ the orthogonal projection of X onto M/=. Then .A’ Pj.A’PI: and

Pj.A’PI is of dimension one or zero for each value of j and k. In particular, A’ is finite-

dimensional.

COROLLARY 5. If A is self-adjoint a.f.s.m, with an abelian commutant, then

A’= { ,I,jPj:j is complex}, wherein {Pj} are projections as required in Theorem 4. In
=1

particular, {Pj} consists of normal operators with finite spectra.
COROLLARY 6. Let N be a normal operator with {N}’ as an a.f.s.m. Then there exist

orthogonal projections P1, P2,’", P,, such that {N} { AiPi, Aj complex}.
=1

COROLLARY 7. The decomposition {M/} in ’tieorem 4 is unique, if and only if, .A’ is

abelian.

If .A is any a.f.s.m, on X, then
a.f.s.m, having no reducing subspaces on which it is self-adjoint.
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An operator T in B(X) is said to be of finite strict multiplicity, if the weakly closed algebra
A(T) generated by T and I is of finite strict multiplicity. Our next theorem extends [10, Theorem

6] proved by Barnes.
THEOREM 8. For an operator T in B(X), let {x1, x2,..., :n} be a subset of X such that

((T), {}_ 1) is an a.f.s.m, on X. Then there exists a finite mutually-orthogonal collection of

subspaces {X1, X2 Xn} of X satisfying the following

(i) Each X reduces T
(ii) X=XI@X25...$Xk and thus T=TIT2...Tk, whereTi=TIx.

(iii) Each Tj is an irreducible operator of finite strict multiplicity on Xj.

PROOF. Let 9 be a closed subalgebra of B(X) generated by T, T* and I. Define a positive
functional f on 9 by f:9 C as f(S) (Szo, Zo), where zo z + z2 +... + zn, S in 9. Let

Kf {S 6_. 9; f(S*S)= 0} {S 6 9:Szo 0}. There are two norms on the quotient space
viz.

A + KII[ ? f(A*A)1/2 Axo

(ii) A + K! inf { A K II" K fi K,}.

These norms are related by [[A+KflIf < I[Xol] IlA+Kfllfor all A in 9. 9/Kl is

complete w.r.t, both these norms. By closed graph theorem, the norms are equivalent on

By Halpern [11], the commutant 9’ of 9 in B(X) has the following properties:

(i) If F is a non-zero projection in 9’, then F majorizes a minimal projection E in 9’;
(ii) A maximal set of mutually orthogonal projections in 9 must be finite.

By (i), we can choose a non-empty maximal set of mutually orthogonal projections in 9’ and,
by (ii), this set is finite. Let {El, E2,... E:} be this set. Let Xj R(Ej), j 1, 2,..., k. Then
X X X2 @ q) X/. The collection {X1,X2,...,XI} reduces 9; and 9 acts irreducibly on each

Xj, j 1, 2,..., k. Now x X implies x Xil xi2 q xik 1, 2,..., n where xij Xj for
all j 1, 2,..., k. For y e X1C X, there exist operators R1, R2,... R, in A(T) such that

y RlXl + R2x2 + + Rnx.

Rl(x11 D x12 X.lk 4- R2(x21 ) z2k 4- 4- Rn(Znl zn2 D xnk

(RlXll + R2x21 + + RnXnl) (RlX12 + R2x22 4- 4- Rnxn2) D O

(RlXlk + R2x2k + + Rnxnk)

As T reduces Xj, A(T) also reduces Xj, j 1, 2,..., k. This implies that

Y RlX’lj + R2x2j + + RnxnJ R1 X .XlJ + R2 1X .x2J + + Rn X .XnJ

where Ri X
3

A(Tj) for all i= 1, 2,..., n. Thus (A(Tj), Xlj x2j,... xnj is an a.f.s.m, on Xj.

This completes the proof of the theorem.
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