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1. INTRODUCTION.

Throughout this paper X is a complex Hilbert space. For any subset M of X, B(M) denotes
the algebra of all bounded linear operators on M. An algebra A means a strongly closed subalgebra
of B(X) containing the identity element I. A is said to be an algebra of finite strict multiplicity
(afss.m.), if there exists a finite subset I ={z;, z5,.., z,} of X such that
Al)={A1z; + Agzg + ..+ Ayzy, A;€ A} =X. In this case we denote the algebra by
(A, {z;}7= 1) Hn=1,1ie, if there exists a vector x4 such that Azy = {Azy: A € A} = X, then A is
said to be a strictly cyclic algebra. In this case vector z, is called a strictly cyclic vector for A.
Algebra A is said to be self-adjoint, if A* € A, whenever A is in A. For any subset B of B(X), the
commutant of B, denoted by B’, is the collection of all operators in B(X) that commute with B.

A closed linear subspace M of X reduces the subset B of B(X), if the projection of X onto M
is in B'. A collection {M;} of closed linear subspaces of X is said to be an orthogonal
decomposition of X, if the Mj ’s are pair-wise orthogonal and span X. Correspondingly, a
collection {P;} of projections, is said to be a resolution of identity, if the collection {P (X)) of
ranges of P forms an orthogonal decomposition of X.

Strictly cyclic operator algebras have been studied by Lambert [1], [2], M. Embry [3], [4], [3],
Bolstein [6] and others. The study of strictly cyclic algebras was extended to that of algebras of
finite strict multiplicity by Herrero in [7], [8]. This paper aims at studying the structure of the
commutant of an a.f.s.m., particularly a self-adjoint a.f.s.m. in terms of its reducing subspaces. By
[5], the commutant of a self-adjoint strictly cyclic algebra cannot have any infinite collection of
pair-wise orthogonal projections. [9, Theorem 2] paves the way for the following:

2. MAIN RESULTS.
THEOREM 1. If (A, {z;}7_ ) is an a.f.s.m. on X, then each collection of mutually-orthogonal

projections in A’ is finite.
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PROOF. Let {P .} be a collectlon of mutually- orthogona,l projections in A’. We may assume
{PJ} to be countable. Let Q,,— 2 P; and Q= E P;. Qn converges strongly to Q. By [9,

Theorem 2|, Q,, converges umformly to Q. As Q- Q,, is a projection, its norm is zero or one. Since
|| @n — Q|| can be made arbitrarily small, there exists m such that || @, — Q| =0foralln>m+1.
This implies that the collection {P;} = {P;}}_ | is finite.

COROLLARY 2. Let (A,{z;}?_, be an afsm. on X. Any operator in A’ with residual
spectrum empty is of finite spectrum.

PROOF. Let E in A’ have residual spectrum empty. By [8], E has no continuous spectrum.
Therefore, spectrum of E consists entirely of point spectrum. By Theorem 1, E has only finite
number of distinct eigenspaces. So spectrum of E is finite.

Our next theorem generalizes {5, Theorem 3] to a self-adjoint a.f.s.m.

THEOREM 3. Let A be a self-adjoint a.f.s.m. on X. Then there exists a finite orthogonal
decomposition {M;} of X such that each M reduces A, and A | M, is strongly dense in B(M ).

PROOF. If X and {0} are the only reducing subspaces of A, then by [8], A is strongly dense
in B(X). As such the trivial decomposition {X} of X satisfies the requirements of the theorem.

Let {M.}f_, be a collection of mutually orthogonal subspaces of X such that each M,
reduces A, and A | M, is strongly dense in B(M}). If these M}’s span X, the theorem follows.

Otherwise,

consider 4; = A|[. VIM ] . Let P be orthogonal projection of X onto M —[ V M ] . Pisin

A’ and (A, {Pz;}?_ 1) is an afs.m. on M. If A; has only trivial reducing subspace, then again, by
[8], A, is strongly dense in B(M) and the construction is complete. Otherwise, A; has a non-trivial
reducing subspace. This implies A; has a minimal reducing subspace, say M P41 By (8],
A | Mp+1 is strongly dense in B(Mp+l)‘ Thus, My, M,,.., Mp+1 are pair-wise orthogonal
subspaces for A, and A | Mk is strongly dense in B(M}) for k=1, 2,.., p+1. By Theorem 1, the

collection terminates with a finite number of pair-wise orthogonal reducing subspaces.

Our next theorem depicts the structure of commutant of a self-adjoint a.f.s.m. The theorem
and its consequences can be proved by following the technique used by Embry in [5]. So we omit
the proofs. )

THEOREM 4. Let (A, {z;}7_ ) be a self-adjoint afs.m., {M,} a decomposition of X as
required in Theorem 3 and P} the orthogonal projection of X onto M;. Then A’'= ¥ P;A’P, and
PjA’Pk is of dimension one or zero for each value of j and k. In particular, A’ is finite-
dimensional.

COROLLARY 5. If A is self-adjoint afs.m. with an abelian commutant, then

= {ilA P is complex}, wherein {Pj} are projections as required in Theorem 4. In

particular, {P j} consists of normal operators with finite spectra.

COROLLARY 6. Let N be a normal operator with {N}' as an a.f.s.m. Then there exist
orthogonal projections Py, Py,.., Py, such that {N}" = {E AiPj A complex}.

COROLLARY 7. The decomposition {M.} in Theorem 4 is unique, if and only if, A’ is
abelian.

If Ais any afs.m. on X, then A = A; ® Ay, where A, is a self-adjoint a.f.s.m., and A, is an

a.f.s.m. having no reducing subspaces on which it is self-adjoint.
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An operator T in B(X) is said to be of finite strict multiplicity, if the weakly closed algebra
A(T) generated by T and I is of finite strict multiplicity. Our next theorem extends [10, Theorem
6] proved by Barnes.

THEOREM 8. For an operator T in B(X), let {z}, z,.., £,} be a subset of X such that
(A(T), {z;}?= 1) is an a.f.s.m. on X. Then there exists a finite mutually-orthogonal collection of
subspaces {X |, X,,.., X} of X satisfying the following

(i) Each X; reduces T

() X=X,®Xy®..®X, andthus T=T,&Ty..®T, whereT;=T| x.

1

(iii)) Each T ;j is an irreducible operator of finite strict multiplicity on X i

PROOF. Let B be a closed subalgebra of B(X) generated by T, T* and I. Define a positive
functional f on B by f:B — C as f(S)=(Sz, z,), where 2o =z;+ 29+ ..+ Zp, S in B. Let
K;={S€%P; f(5*S)=0}={S € B:Sz,=0}. There are two norms on the quotient space B/K,

V1Z.
(i) NA+E ], = fa a2 = | 4z
(i) [|A+K; | =inf{|A-K|:KeK).

These norms are related by ||A+ K|l < ||zl |A+Kp|for all A in B. B/K, is
complete w.r.t. both these norms. By closed graph theorem, the norms are equivalent on B/K F
By Halpern [11], the commutant B’ of B in B(X) has the following properties:

(i) If F is a non-zero projection in %', then F majorizes a minimal projection E in B';
(ii) A maximal set of mutually orthogonal projections in B must be finite.

By (i), we can choose a non-empty maximal set of mutually orthogonal projections in %’ and,
by (ii), this set is finite. Let {E,, E,,.., E,} be this set. Let Xj= R(Ej), j=1,2,., k. Then
X=X,0Xy®..0X;. The collection {X, X,,..., X} reduces B; and B acts irreducibly on each
XJ-, Jj=1,2,., k. Now z;€ X implies z; = T DT Dy, t=1,2,.,n where % € Xj for
allj=1,2,.,k ForyeX ;j C X, there exist operators Ry, Ry,... R, in A(T) such that

y = Ryz; + Ryzy + ...+ Ryzp
=R(z) ) © 713D .. ®zy) + Ry(T9) D .. @ Zgp) +..+ Ry(2,1 D 2,90D .. D z,;)
= (Ryzq; + Ryzgy + . + Rpz,1) ® (RyT19 + RyTog + ... + RpZ,0) B .. ©
® (Ryz . + Ryzop + .. + Rpz,yy)
As T reduces X 7 A(T) also reduces X j» =1, 2,.., k. This implies that
y=Ryz;+ Ryzg;+ ..+ Ruzyj = Ry | ijli + Ry | ij2j+ w+ Ry ijnj,

where R; | x € A(Tj) foralli=1, 2,.., n. Thus (A(TJ-), Ty jy Tyjemn znj) is an afs.m. on X .
J

This completes the proof of the theorem.
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