

TWO-SIDED ESSENTIAL NILPOTENCE

ESFANDIAR ESLAMI

Department of Mathematics
University of Kerman
Kerman, Iran

and

PATRICK STEWART

Department of Mathematics
Dalhousie University
Halifax, Nova Scotia,
Canada B3H 3J5

(Received January 25, 1991)

ABSTRACT. An ideal I of a ring A is essentially nilpotent if I contains a nilpotent ideal N of A such that $J \cap N \neq 0$ whenever J is a nonzero ideal of A contained in I . We show that each ring A has a unique largest essentially nilpotent ideal $EN(A)$. We study the properties of $EN(A)$ and, in particular, we investigate how this ideal behaves with respect to related rings.

KEY WORDS AND PHRASES. Essential ideal, nilpotent ideal, free normalizing extension, crossed product, Morita equivalent, fixed ring.

1991 AMS SUBJECT CLASSIFICATION CODE. 16A22, 16A56.

1. INTRODUCTION.

Throughout this paper all rings are associative and all ideals are two-sided. The notation $I \triangleleft A$ means that I is an ideal of A .

Let A be a ring and suppose $I \triangleleft A$. If $K \triangleleft A$ and $K \subseteq I$ then K is A -essential in I if $0 \neq B \triangleleft A$ and $B \subseteq I$ imply that $B \cap K \neq 0$. The ideal I is an *essentially nilpotent ideal of A* if there is a nilpotent ideal N of A such that $N \subseteq I$ and N is A -essential in I . We shall denote the prime radical of A by $N(A)$. Recall that $N(A)$ is the intersection of the prime ideals of A and that if $I \triangleleft A$, then $N(I) = I \cap N(A)$.

Essential nilpotence was first studied by Fisher [2]. In this paper we show that each ring A contains a unique largest essentially nilpotent ideal which we denote by $EN(A)$. We establish various results concerning this ideal and, in particular, we investigate how this ideal behaves with respect to related rings. For example, we show that $EN(R[x]) = EN(R)[x]$ and that if G is a finite group of automorphisms of R and R has no $|G|$ -torsion, then $EN(R*G) = EN(R)*G$.

Proposition 1. *Let $I \triangleleft A$. The following are equivalent.*

1. *I is an essentially nilpotent ideal of A ;*
2. *A has an ideal Z such that $Z^2 = 0, Z \subseteq I$ and Z is A -essential in I ;*
3. *If $0 \neq K \triangleleft A$ and $K \subseteq I$, then K contains a nonzero nilpotent ideal of A ; and*
4. *$N(I)$ is A -essential in I .*

PROOF. 1 implies 2. This follows as in [2, Lemma 2.1], but we repeat the argument for the convenience of the reader. Let $\{Z_\lambda : \lambda \in \Lambda\}$ be the collection of all ideals J of A such that $J^2 = 0$ and $J \subseteq I$. Let $\Phi = \{\Gamma \subseteq \Lambda : \Sigma\{Z_\lambda : \lambda \in \Gamma\} \text{ is direct}\}$. Using Zorn's lemma we may choose M maximal in Φ . Let $Z = \Sigma\{Z_\lambda : \lambda \in M\}$. Then $Z \subseteq I$ and $Z^2 = 0$. Let $B \triangleleft A, B \subseteq I$. If $B \neq 0$ then

$B \cap K \neq 0$ where K is a nilpotent ideal of A , $K \subseteq I$. Thus $B \cap K$ and hence B contains a nonzero ideal J of A such that $J^2 = 0$. The maximality of M ensures that $Z \cap J \neq 0$ and so Z is A -essential in I .

2 implies 3. This is clear.

3 implies 4. If J is a nilpotent ideal of A and $J \subseteq I$, then $J \subseteq N(I)$ so this implication is also clear.

4 implies 1. Since every nonzero ideal of A contained in $N(I)$ contains an ideal J of A with $J^2 = 0$, the argument in the proof that 1 implies 2 shows that there is an ideal Z of A , $Z^2 = 0$, $Z \subseteq N(I)$ and Z is A -essential in $N(I)$. Since $N(I) \triangleleft A$ and $N(I)$ is A -essential in I it follows that Z is A -essential in I .

Let I and J be essentially nilpotent ideals of the ring A . If $0 \neq K \triangleleft A$ and $K \subseteq I + J$, then either $0 \neq KI \subseteq I$ or $0 \neq KJ \subseteq J$ or $K^2 = 0$. In any case, K contains a nonzero nilpotent ideal of A and so $I + J$ is essentially nilpotent by 3 of the above Proposition. A similar argument shows that the sum of all the essentially nilpotent ideals of A is essentially nilpotent. This unique largest essentially nilpotent ideal of A will be denoted by $EN(A)$.

Proposition 2.1. *If θ is an automorphism of A , then $\theta(EN(A)) = EN(A)$.*

2. *For any ring A , $A/EN(A)$ is semiprime. In particular, if $A \triangleleft B$, then $EN(A) \triangleleft B$.*
3. *If $I \triangleleft A$, $EN(I) = I \cap EN(A)$.*
4. *If $0 \neq e = e^2 \in A$, then $EN(eAe) \subseteq eEN(A)e$.*
5. *If A has an identity, $0 \neq e = e^2 \in A$ and $AeA = A$, then $EN(eAe) = eEN(A)e$.*

PROOF. 1. is clear. For the proof of 2. suppose $EN(A) \subseteq J \triangleleft A$ and $J^2 \subseteq EN(A)$. If $0 \neq K \triangleleft A$, $K \subseteq J$ then $K^2 = 0$ implies $K \subseteq N(A) \subseteq EN(A)$ and $K^2 \neq 0$ implies $K^2 = K^2 \cap EN(A) \neq 0$. Hence $EN(A)$ is A -essential in J and so J is essentially nilpotent. Hence $J = EN(A)$ and the proof of 2. is complete.

For the proof of 3. we begin by showing that $EN(A) \cap I$ is an essentially nilpotent ideal of I . Let $0 \neq J \triangleleft I$, $J \subseteq EN(A) \cap I$. In view of 3 of Proposition 1 it is enough to show that J contains a nonzero nilpotent ideal of I . If J is itself nilpotent this is certainly the case. If J is not nilpotent, $J^* \neq 0$ where J^* is the ideal of A which is generated by J . Since $(J^*)^3 \subseteq EN(A)$, $(J^*)^3$ contains a nonzero nilpotent ideal of A and since $(J^*)^3 \subseteq J$ by Andrunakievic's Lemma this completes the proof that $EN(A) \cap I \subseteq EN(I)$.

From 2. we know that $EN(I) \triangleleft A$ and it follows immediately from 4 in Proposition 1 that $EN(I)$ is an essentially nilpotent ideal of A .

To establish 4 we show that $EN(eAe)^*$ is an essentially nilpotent ideal of A where $EN(eAe)^*$ denotes the ideal of A which is generated by $EN(eAe)$. Let $0 \neq J \triangleleft A$, $J \subseteq EN(eAe)^*$. Then $eJe \subseteq eEN(eAe)^*e \subseteq EN(eAe)$. If $eJe \neq 0$, $eJe \cap N(eAe) \neq 0$ and so $J \cap N(EN(eAe)^*) \neq 0$ because $N(eAe) = eN(A)e \subseteq N(A)$. If $eJe = 0$, then $J^3 = 0$ and so $J \cap N(EN(eAe)^*) \neq 0$. Thus $N(EN(eAe)^*)$ is A -essential in $EN(eAe)^*$ and this establishes 4.

To prove 5 it suffices to show that $eEN(A)e \subseteq EN(eAe)$, and to do this it is enough to show that $eEN(A)e$ is an essentially nilpotent ideal of eAe . Now $N(eEN(A)e) = eN(EN(A))e = eN(A)e$ and we will show that $eN(A)e$ is eAe -essential in $eEN(A)e$. Let $0 \neq W \triangleleft eAe$, $W \subseteq eEN(A)e$. Let W^* denote the ideal of A which is generated by W . Since $W^* \subseteq EN(A)$, $K = W^* \cap N(A) \neq 0$. Also, $eKe \subseteq W \cap eN(A)e$ so the proof will be complete if we show that $eKe \neq 0$. If $eKe = 0$, then $AKA = AeAKAeA \subseteq AeKeA = 0$. But since A has an identity and $K \neq 0$, $AKA \neq 0$.

If R and S are rings with the same identity and $R \subseteq S$, then S is a *free normalizing extension* of R and S is a free right and left R -module with a basis X such that $xR = Rx$ for all $x \in X$. Note that in this case each $x \in X$ determines an automorphism θ_x of R defined by $x\theta_x(r) = rx$ for all

$r \in R$. A free normalizing extension S of R satisfies the *essential condition* if whenever $U \subseteq V$ are ideals of S with US -essential in V and $I \triangleleft R$ such that $IV \neq 0$, then $IV \cap U \neq 0$. If S is a free centralizing extension of R ; that is, θ_x is the identity automorphism for all $x \in X$, then certainly S satisfies the essential condition because in this case $IV \triangleleft S$. Also, if G is a finite group of automorphisms of R and R has no $|G|$ -torsion, then the crossed product $R \ast G$ satisfies the essential condition. This is because a minor modification of the proof of Lemma 1.2 (ii) in Passman [3] shows that if U and V are ideals of $R \ast G$ with $UR \ast G$ -essential in V , then U is essential as an $R - R \ast G$ subbimodule of V .

THEOREM 3. *If S is a free normalizing extension of R which satisfies the essential condition and is such that $N(S) = N(R)S$, then $EN(S) = EN(R)S$.*

PROOF. We first show that $EN(R)S \subseteq EN(S)$. Since $EN(R)$ is invariant under automorphisms of R , $EN(R)S$ is an ideal of S . We show that $N(S)$ is S -essential in $EN(R)S$. Let $0 \neq T \triangleleft S, T \subseteq EN(R)S$ and denote the normalizing basis of S over R by $X = \{x_\lambda : \lambda \in \Lambda\}$. Choose $0 \neq v = \sum \{a_\lambda x_\lambda : \lambda \in \Lambda\}$ in T where $a_\lambda \in EN(R)$ and so that v has a minimal number of coefficients not in $N(R)$. Suppose $\delta \in \Lambda$ and $a_\delta \notin N(R)$. Since $0 \neq Ra_\delta R \subseteq EN(R)$ there are $x_j, y_j \in R$ such that $0 \neq \sum_{j=1}^n x_j a_\delta y_j \in N(R)$. Then

$$w = \sum_{j=1}^n x_j v \theta_\delta(y_j) = \sum_{\lambda \neq \delta} a'_\lambda x_\lambda + \sum_{j=1}^n x_j a_\delta x_\delta \theta_\delta(y_j) = \sum_{\lambda \neq \delta} a'_\lambda x_\lambda + \sum_{j=1}^n x_j a_\delta y_j x_\delta$$

where the a'_λ are elements of R with the property that $a'_\lambda \in N(R)$ if $a_\lambda \in N(R)$.

Since $\sum_{j=1}^n x_j a_\delta y_j \neq 0$,

$w \neq 0$ and since w has fewer coefficients not in $N(R)$ than does v we have reached a contradiction. It follows that $v \in N(R)S = N(S)$ and hence $N(S)$ is S -essential in $EN(R)S$. Hence $EN(R)S \subseteq EN(S)$.

Suppose that $0 \neq v \in EN(S), v \notin EN(R)S$. Let $v = \sum \{a_\lambda x_\lambda : \lambda \in \Lambda\}$ and assume $\delta \in \Lambda$ is such that $a_\delta \notin EN(R)$. Then $N(R)$ is not R -essential in $(a_\delta) + N(R)$ where (a_δ) denotes the ideal of R which is generated by a_δ . Hence there is an ideal I of R , $0 \neq I \subseteq (a_\delta) + N(R)$ and $I \cap N(R) = 0$. It follows that $IEN(S) \cap N(R)S = 0$ because if $\sum \{r_\lambda x_\lambda : \lambda \in \Lambda, r_\lambda \in R\}$ is in $IEN(S)$ then $r_\lambda \in I$ for all λ . Since I is not nilpotent and $IN(R) \subseteq I \cap N(R) = 0$, $Ia_\delta \neq 0$. Hence $Iv \neq 0$ and so $IEN(S) \neq 0$. Since $N(S)$ is S -essential in $EN(S)$ and S satisfies the essential condition, $IEN(S) \cap N(S) \neq 0$. This contradicts our previous conclusion that $IEN(S) \cap N(R)S = 0$ because $N(S) = N(R)S$. Hence $EN(S) \subseteq EN(R)S$.

It is well-known that if S is a finite normalizing extension of R , then $N(S) \supseteq N(R)$ and so it follows from the proof of the theorem that if S is a finite free normalizing extension of R , then $EN(S) \supseteq EN(R)$.

COROLLARY 4. *If $M_n(A)$ denotes the ring of $n \times n$ matrices with entries from A , then $EN(M_n(A)) = M_n(EN(A))$.*

PROOF. First assume that A has an identity. Since $M_n(A)$ is a free centralizing extension of A and $N(M_n(A)) = M_n(N(A))$ it follows from the theorem that $EN(M_n(A)) = EN(A)M_n(A) = M_n(EN(A))$.

If A does not have an identity, let A' be the usual (Dorroh) unital extension of A . Then from 3 of Proposition 2,

$$\begin{aligned} EN(M_n(A)) &= M_n(A) \cap EN(M_n(A')) \\ &= M_n(A) \cap M_n(EN(A')) \\ &= M_n(A \cap EN(A')) \\ &= M_n(EN(A)). \end{aligned}$$

COROLLARY 5. *If G is a finite group of automorphisms of A and A has no $|G|$ -torsion, then $EN(A*G) = EN(A)*G$ where $A*G$ is the crossed product.*

PROOF. As in Corollary 4 we may assume that A has an identity, and it follows from [3, Theorem 2.2] that $N(A*G) = N(A)*G$ so the theorem applies.

COROLLARY 6. $EN(A[x]) = EN(A)[x]$.

PROOF. As above we may assume that A has an identity and [1, Lemma 2L] shows that $N(A[x]) = N(A)[x]$. So, since $A[x]$ is a free centralizing extension of A , the theorem applies.

COROLLARY 7. *If R and S are rings with identity which are Morita equivalent, then R is essentially nilpotent if and only if S is essentially nilpotent.*

PROOF. This follows immediately from 5 of Proposition 2 and Corollary 4.

COROLLARY 8. *Let R be a ring with identity and let G be a finite group of automorphisms of R such that $|G|$ is invertible in R . Then $EN(R^G) \subseteq EN(R)$.*

PROOF. Let $e = |G|^{-1} \sum_{g \in G} g$. Then e is idempotent in the skew group ring $R*G$ and $e(R*G)e = R^G e \cong R^G$. From 4 of Proposition 2, $EN(R^G e) \subseteq EN(R*G)$ and $EN(R*G) = EN(R)*G$ by Corollary 5. Since $EN(R^G e) = EN(R^G)e$ it follows that $EN(R^G) \subseteq EN(R)$.

We note that $EN(R) = R$ does not in general imply that $EN(R^G) \neq 0$. For example, let

$$R = \begin{bmatrix} \mathbb{Q} & \mathbb{Q} \\ 0 & \mathbb{Q} \end{bmatrix}$$

where \mathbb{Q} is the rational field. The cyclic group $G = \{e, \alpha\}$ of order 2 acts as automorphisms of R via

$$\alpha \left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \right) = \begin{bmatrix} a & -b \\ 0 & c \end{bmatrix}$$

and

$$R^G = \begin{bmatrix} \mathbb{Q} & 0 \\ 0 & \mathbb{Q} \end{bmatrix}.$$

ACKNOWLEDGEMENT. The first named author is grateful for the hospitality shown by Dalhousie University where he was on sabbatical leave when this paper was written. The research of the second named author was partially supported by NSERC grant #8789.

REFERENCES

1. AMITSUR, S.A., Radicals of polynomial rings, *Canad. J. Math.*, **8** (1956), 355-361.
2. FISHER, J.W., On the nilpotency of nil subrings, *Canad. J. Math.*, **22** (1970), 1211-1216.
3. PASSMAN, D.S., It's essentially Maschke's theorem, *Rocky Mountain J. Math.*, **13** (1983), 37-54.

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk