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ABSTRACT. An ideal I of a ring A is essentially nilpotent if I contains a nilpotent ideal N of A
such that JN N # 0 whenever J is a nonzero ideal of A contained in I. We show that each ring
A has a unique largest essentially nilpotent ideal EN(A). We study the properties of EN(A) and,

in particular, we investigate how this ideal behaves with respect to related rings.
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1. INTRODUCTION.

Throughout this paper all rings are associative and all ideals are two-sided. The notation I 1« A
means that [ is an ideal of A.

Let A be a ring and suppose I < A. If K <A and K C I then K is A-essentialin I if 0 # Bq4 A
and B C I imply that BN K #0. The ideal I is an essentially m'lpoltent ideal of A if there is a
nilpotent ideal N of A such that N CI and N is A-essential in J. We shall denote the prime
radical of A by N(A). Recall that N(A) is the intersection of the prime ideals of A and that if
I« A, then N(I) = In N(A).

Essential nilpotence was first studied by Fisher [2]. In this paper we show that each ring A
contains a unique largest essentially nilpotent ideal which we denote by EN(A). We establish
various results concerning this ideal and, in particular, we investigate how this ideal behaves with
respect to related rings. For example, we show that EN(R[z]) = EN(R)[z] and that if G is a finite
group of automorphisms of R and R has no | G |-torsion, then EN(R*G) = EN(R)*G.

Proposition 1. Let I 4 A. The following are equivalent.

I is an essentially nilpotent ideal of A;

A has an ideal Z such that 2% = 0,Z C I and Z i3 A-essential in I;

If0# K < A and K C I, then K contains a nonzero nilpotent ideal of A; and

N(I) is A-essential in I.

PROOF. 1 implies 2. This follows as in [2, Lemma 2.1], but we repeat the argument for the
convenience of the reader. Let {Z):) € A} be the collection of all ideals J of A such that J2=0
and JCI. Let #={I'CA:Z{Z): €T} is direct}. Using Zorn’s lemma we may choose M
maximal in ®. Let Z=1%{Z,: A€ M}. Then ZCI and 22=0. Let B4aA,BCI If B #0 then
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BN K # 0 where K is a nilpotent ideal of A, K CI. Thus BN K and hence B contains a nonzero
ideal J of A such that J2 =0. The maximality of M ensures that ZNJ # 0 and so Z is A-essential
in I.

2 tmplies 3. This is clear.

3 implies 4. If J is a nilpotent ideal of A and J C I, then J C N(I) so this implication is also
clear.

4 implies 1. Since every nonzero ideal of A contained in N(I) contains an ideal J of A with
J2= 0, the argument in the proof that 1 implies 2 shows that there is an ideal Z of A, 22=0,
Z C N(I) and Z is A-essential in N(I). Since N(I)<a A and N(I) is A-essential in I it follows that
Z is A-essential in I.

Let I and J be essentially nilpotent ideals of the ring A. If 0 # K <A and K CI+J, then
either 0 #KICIor 0#KJCJ or K2=0. In any case, K contains a nonzero nilpotent ideal of
A and so I+ J is essentially nilpotent by 3 of the above Proposition. A similar argument shows
that the sum of all the essentially nilpotent ideals of A is essentially nilpotent. This unique largest
essentially nilpotent ideal of A will be denoted by EN(A).

Proposition 2.1. If 8 is an automorphism of A, then §(EN(A)) = EN(A).

For any ring A,A/EN(A) is semiprime. In particular, if A< B, then EN(A) < B.
IfI<AEN(I)=INEN(A).

If0#e=e2€ A, then EN(eAe) C eEN(Ae.

If A has an identity, 0 # e = 2 € A and AeA = A, then EN(eAe) = eEN(A)e.

PROOF. 1. is clear. For the proof of 2. suppose EN(A)C J<4A and J2c EN(A). If
0#K<A,KCJ then K2=0 implies K C N(A)CEN(A) and K2 #0  implies
K2 =K2nEN(A) #0. Hence EN(A) is A-essential in J and so J is essentially nilpotent. Hence
J = EN(A) and the proof of 2. is complete.

For the proof of 3. we begin by showing that EN(A)N I is an essentially nilpotent ideal of I.
Let 0#£J<1,J CEN(A)NI. In view of 3 of Proposition 1 it is enough to show that J contains a
nonzero nilpotent ideal of I. If J is itself nilpotent this is certainly the case. If J is not nilpotent,
J*3 # 0 where J* is the ideal of A which is generated by J. Since (J *)3 C EN(A), (J *)3 contains
a nonzero nilpotent ideal of A and since (J"‘)3 C J by Andrunakievic’s Lemma this completes the
proof that EN(A)NI C EN(I).

From 2. we know that EN(I)< A and it follows immediately from 4 in Proposition 1 that
EN(I) is an essentially nilpotent ideal of A.

To establish 4 we show that EN(eAe)* is an essentially nilpotent ideal of A where EN(eAe)*
denotes the ideal of A which is generated by EN(eAe). Let 0#J<aA,J C EN(ede)*. Then
eJe C eEN(eAe)*e C EN(eAe). If eJe #0,eJen N(eAe) # 0 and so J N N(EN(eAe)*) # 0 because
N(eAe) =eN(A)e C N(A). If eJe=0, then J3=0 and so JN N(EN(eAE)*)#0. Thus
N(EN(eAe)*) is A-essential in EN(eAe)* and this establishes 4.

To prove 5 it suffices to show that eEN(A)e C EN(eAe), and to do this it is enough to show
that eEN(A)e is an essentially nilpotent ideal of eAe. Now N(eEN(A)e) = eN(EN(A))e =eN(A)e
and we will show that eN(A)e is eAe-essential in eEN(A)e. Let 0# W aede,W CeEN(A)e. Let
W* denote the ideal of A which is generated by W. Since W* C EN(A), K = W*N N(A) #0.
Also, eKe C W NeN(A)e so the proof will be complete if we show that eKe #0. If eKe =0, then
AKA = AeAKAeA C AeKeA = 0. But since A has an identity and K #0, AKA #0.

oLk W

If R and S are rings with the same identity and R C S, then S is a free normalizing extension
of R and S is a free right and left R-module with a basis X such that zR = Rz for all z € X. Note
that in this case each z € X determines an automorphism 8; of R defined by x8;(r) = rz for all
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r € R. A free normalizing extension S of R satisfies the essential condition if whenever U C V are
ideals of S with U S-essential in V and I <R such that IV #0, then IVNU #0. If S is a free
centralizing extension of R; that is, 8, is the identity automorphism for all z € X, then certainly S
satisfies the essential condition because in this case IV aS. Also, if G is a finite group of
automorphisms of R and R has no | G | -torsion, then the crossed product R*G satisfies the essential
condition. This is because a minor modification of the proof of Lemma 1.2 (ii) in Passman (3]
shows that if U and V are ideals of R+G with U R+G-essential in V, then U is essential as an
R — R*G subbimodule of V.

THEOREM 3. If S is a free normalizing eztension of R which satisfies the essential condition
and is such that N(S) = N(R)S, then EN(S)= EN(R)S.

PROOF. We first show that EN(R)S C EN(S). Since EN(R) is invariant under
automorphisms of R, EN(R)S is an ideal of S. We show that N(S) is S-essential in EN(R)S. Let
0#T<S,TC EN(R)S and denote the normalizing basis of S over R by X = {z,: A € A}. Choose
0#v==E{ayz): A€ A} in T where ay € EN(R) and so that v has a minimal number of coefficients
not in N(#) Suppose & € A and ag ¢ N(R). Since 0# RagR C EN(R) there are z € R such
that 0 #.lejaéyj € N(R). Then

] =

7Yi

n n n
w=Y zalbs(y)=3 d\z\+ Y zazbsy) =3 d\zy+ ) z.agy.zs
=17 Y aEs N = PNZs M=

where the a'/\ are elements of R with the property that a:\ €N(R) if ay€N(R)
Sincgglmjaéyj #0,

w #6 and since w has fewer coefficients not in N(R) than does v we have reached a contradiction.
It follows that ve€ N(R)S =N(S) and hence N(S) is S-essential in EN(R)S. Hence
EN(R)S C EN(S).

Suppose that 0 # v € EN(S), v¢ EN(R)S. Let v= ) {a,z,:) € A} and assume § € A is such
that ag ¢ EN(R). Then N(R) is not R-essential in (ag) + N(R) where (as) denotes the ideal of R
which is generated by a;. Hence there is an ideal I of R, 0 # I C (a5) + N(R) and INN(R)=0. It
follows that TEN(S)N N(R)S = 0 because if Z{r/\:c,\: A€A,ry € R} is in IEN(S) then r) €I for
all A. Since I is not nilpotent and IN(R)CINN(R)=0, Ia;#0. Hence Iv#0 and so
IEN(S)#0. Since N(S) is S-essential in EN(S) and S satisfies the essential condition,
IEN(S)NN(S)#0. This contradicts our previous conclusion that TEN(S)N N(R)S =0 because
N(S) = N(R)S. Hence EN(S)C EN(R)S.

It is well-known that if S is a finite normalizing extension of R, then N(S)2 N(R) and so it
follows from the proof of the theorem that if S is a finite free normalizing extension of R, then
EN(S)2 EN(R).

COROLLARY 4. If My(A) denotes the ring of nxn matrices with entries from A, then
EN(Mn(4)) = Ma(EN(4).

PROOF. First assume that A has an identity. Since My (A) is a free centralizing extension of
A and N(Mp(A)) = Mp(N(A)) it follows from the theorem that
EN(My(A)) = EN(A)Mn(4) = Mo(EN(A)).
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If A does not have an identity, let A’ be the usual (Dorroh) unital extension of A. Then from
3 of Proposition 2,

EN(Mp(A)) = My(A)N EN(Mp(A"))
= Mp(A)N Mp(EN(A"))
= M,(AN EN(A"))

= Mp(EN(4)).

COROLLARY 5. If G is a finite group of automorphisms of A and A has no |G |-torsion,
then EN(A*G) = EN(A)*G where AxG is the crossed product.

PROOF. As in Corollary 4 we may assume that A has an identity, and it follows from [3,
Theorem 2.2] that N(A*G) = N(A)*G so the theorem applies.

COROLLARY 6. EN(A[z]) = EN(A)[z].
PROOF. As above we may assume that A has an identity and [1, Lemma 2L] shows that
N(A[z]) = N(A)[z]. So, since Az] is a free centralizing extension of A, the theorem applies.

COROLLARY 7. If R and S are rings with identity which are Morita equivalent, then R is
essentially nilpotent if and only if S is essentially nilpotent.
PROOF. This follows immediately from 5 of Proposition 2 and Corollary 4.

COROLLARY 8. Let R be a ring with identity and let G be a finite group of automorphisms of
R such that | G | is invertible in R. Then EN(RG)C EN(R).

PROOF. Let e= |G |—lz g- Then e is idempotent in the skew group ring R+*G and

€G
e(R+G)e = RGe=RG. rom 4 of Proposition 2, EN (RGe) C EN(R+G) and

EN(R+G)= EN(R)*G by Corollary 5. Since EN (RGe) =EN (RG)e it follows that
EN(R®)C EN(R).

We note that EN(R) = R does not in general imply that EN (RG) #0. For example, let

-1QeQ
0Q
where Q is the rational field. The cyclic group G = {e,a} of order 2 acts as automorphisms of R via

JER RS

G_|Q 0
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