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ABSTRACT. The transient gravity waves generated by a harmonically oscillating wave maker
immersed in two incompressible fluids, the upper fluid having a free surface, is considered. The
resulting linearized initial value problem is solved using the method of generalized functions, and

asymptotic analysis for large time and distance are given for the elevation.
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1. INTRODUCTION.

The two-dimensional problem of gravity waves generated by moving oscillating surface
pressure distributions in a fluid which is unbounded in both horizontal directions has been studied
by Kaplan [1] and Debnath and Rosenblat [2] in infinite depth and in finite depth respectively.
Pramanik [3] considered the initial value problem of waves generated by a moving oscillating
surface pressure against a vertical cliff and a uniform asymptotic analysis was given for the
unsteady case. Debnath and Basu [4] treated the same problem taking into account the effect of
surface tension. Faltas [5] investigated the initial value problem of surface waves generated by a
harmonically oscillating vertical wave maker immersed in an infinite incompressible fluid of finite
constant depth. It is the purpose of this paper to discuss the transient development of two-
dimensional linearized waves at the free surface and at the interface between two fluids. The waves
are produced by a harmonically oscillating wave maker immersed vertically in both fluids. The
integral representations of free and interface elevations are obtained through an application of the
Laplace and the generalized cosine Fourier transforms of the equations of motion. Then the
application of the stationary phase method combined with the contour integration method leads to
the asymptotic waves valid for large time and distance.

2. FORMULATION AND SOLUTION OF THE PROBLEMS.

We are concerned with the transient development of two dimensional infinitesimal wave
motion of two superimposed immiscible non-viscous and incompressible fluids separated by a
common interface, where the upper fluid has a free surface. The waves are generated by a
harmonically oscillating wave maker immersed vertically in the two fluids.

Take the origin O at the mean level fo the interface and the axis Oy to be vertically
downwards along the wave maker. The upper fluid is of finite constant height with mean level at
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= — h, while the lower fluid has infinite depth. If the motion is generated originally from rest by
the oscillations of the wavemaker, it will be irrotational throughout all time and we may describe
the motion by velocity 0 <y <oo, and 0 <z<oo, —h<y<0 of the lower and upper fluids
respectively. The unsteady motion is produced in the two fluids by the continuous oscillations of

the wave maker. Let it oscillate horizontally with velocity U(y,t) given by
Uy.t) = uly)e™ H(2) (21)
where u(y) is an arbitrary function of y, w is the frequency, and H(t) is the unit step function. The
functions ¢; satisfy an initial boundary value problem in which
V2;=0. (22)
Neglecting surface tension, the linearized pressure and kinematical boundary conditions at the

interface of the two fluids are respectively

a. a.
%*3%=(1—8)ﬂ2

om _ 941 _ 99y
ot ~ oy ot

while the corresponding conditions at the free surface of the upper fluid are

9¢y _
FE= M

9ny _ 99y
ot ~ Oy

where s(0 < s < 1) is the ratio of the densities of the upper and lower fluids and n j=n j(.’l:, t) are the

y=—h (24)

wave elevations associated with the lower and upper fluids. Also,

%fll. -0 asy —00. (2.5)
At the wave maker
3¢]~ = U(y,t) onz=0 (26)
By )
and the initial conditions are
¢;j=n;=0 whent=0. 2.7

We suppose also that ¢, ; are treated as the generalized function in the sense of Lighthill [6].
We introduce the Fourier cosine transform with respect to z and the Laplace transform with

respect to t as

0 o0
Fo(k,y,r) =2 J coskxdx j e~ (z,y, 1) dt (28)
0 0
where the suffix ¢ and the bar in the transformed function refer to the cosine Fourier and Laplace

transform respectively. Application of (2.8) to the system (2.2) - (2.7) gives
2 - — —
dd—yi bjc— k2 bjc = \I%U(y, t), r>0 (2.9a,d)

$lc - sa?c = "g'(l - S)ﬁlc
ony=0,r>0 (2.10)

e
<la,

al(: = $2c =77}

)

Yy
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$ac = Fc
ony= —h,r>0 (2.11)
(;ly ¢2c =T
%fﬁu—'ﬂ as y — 00 (2.12)
The solutions of (2.9a) and (2.9b) satisfying condition (2.1) are respectively

o] o0
10 = A(k,r)e™*v —%\lgjk—le"(y = )0(z,r)dz +%Ik‘l sinhk (y — 2)0(z,r)dz (2.13)

0 0

Yy

o0 = Blk,r)e* + C(k, r)e™* + J?;Jk-l sinhk (y — 2)0(z,r)dz , (2.14)

where A(k,r) B(k,r) and C(k,r) are functions to ‘be determined. The transformed boundary
conditions (2.10) are satisfied if

A= —Q\I—_ JTU‘{Z—E”U’

_ 13Tt s, (1=9)(+gk)_
B = —%J; I Ud - 23k7‘ 'Ilc L] (2’15)
0

-k (1+s)rl4gk(l—s)_
C= —?—\[;l Udz - 2skr Me

We are interested in the waves after a large time and large distance. To investigate the principal
feature of the wave motion it suffices to work only with the elevation n;- From (2.11), (2.13) -
(2.15) we get

o0 -h
T = —rc 2 —kz 7 : i7
|—~ = —5———55—{r°[coshkh [ e™** Udz + s| sinh k (h + 2)Udz
2 Me (r +m1)(r2+m§){ [ I i[ ( U]

0
00 -h
+ gk[sinhk Je"”ffdz + sj cosh kh (h + z)(7dz]} (2.16)
0 0
oo —h
T = —Trc 2 —kz 77 . 77
52 =733 53" |[¢ " Udz— | coshkz + s sinhkz Udz
d;'nc (r2+ml)(r +m2){ [l i[ ]
—h
—gk(1~-s) I coshkz Udz} , (217)
0

. —s) gk . .
where 1/c = coshkh + s sinkh and m%(k) =gk, m%(k) = S(T?c%h’ic_h . Assuming the particular
form of U(y,t) as given by (2.1), the inverse of Laplace and cosine Fourier transforms with the

convolution theorem for Laplace transform give

2 L.
ny(z,t) Z Jﬂp(k) coskxdk Ie""t cos my(t—r7)dr, (2.18)
P =1p 0
2 %® L
no(z,t) = — Z va(k ) coskxdk Je""t cos mp(t—71)dT, (2.19)
where p =1 )
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9 —h 00
B, (k) = #1{'1—,,) s J' e K+ 2Dy g — Je_k(h + 2 y(2)dz |,
=m) | g

-h
Bo(k) = (—~—W_ [s I m% sinhk (h + 2) — m% coshk (h + 2))u(z)dz

=4

[o e}
+(m2 coshkh — ml sinhkh ) Je “k2y(2)dz]
0

[oo}
7(k) = —;—L (s J u(z)dz — Je *u(z)dz ,
(m3— 0
—h 0
Tolk) = —2_6—2 [s I (mg sinh kz + m% coshkz + (m% - m%) coshkz u(2)dz — m%]e_k’u(z)dz] .
Carrying out the integral in (2.18) or (2.19), we get,
2 2 /Bp( . . twi
ny(z,t) 72 I [uu cosmpyt —m sinmpt —iw e ] coskx dk , (2.20)
p= '"p - w?

and a similar expression for n4(z,t).
3. ASYMPTOTIC ANALYSIS OF SOLUTION.

To evaluate the integral (2.20) or the corresponding one for 7y for large values of z and t we
shall use formulae developed by Lighthill [6] and Jones [7]. Write n; = I+ I' +J + J’, where

wt [ _P1(k) w iwt| _Balk)
I= :,r-z-iw e“"tj 21 = coskx dk, I’ = :%M e“"t[ '712—22?“—)2- coskx dk (1)
0 0
(&)
J= %J bik) (tw cosm t —m sinm,t) coskx dk ,
0 m —u?
(32)

7= %T B,(k)

(1w cosmgyt — mqy sinmgyt) coskx dk
0 m2 —w

The first two integrals (3.1), represent the steady state solution while the second two (3.2)
represent the transient solution. It is convenient to rewrite (3.1), (3.2) as follows

' ) . 4 ;&
I=5 z :wtzlm I'= z zwtz I, J=2-’;nz=:l.]m J’=’ﬂ, > Jn

n=1 n=1 =
where o -
. . 6
I,Iy= J-—:F—( ) (e p ey da, 50y = Im__ﬂll(_ )il kke) gy
0 0
x [0
k
J3,Jq= J t(ut?kz)dk I,I5= Jmﬂ_;?_(zu (e’k" + -—zkz))dk
0 0

[
k) ; .
;I’J/2 — '[17’1822{—2‘; el(wtikl)dk, J&,Ja - _ ’52(k1} el(wl;kl)dk .
0

o—8
Y
+
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We follow the method of Debnath and Rosenblat [2] to evaluate these wave integrals. The main
contribution to the asymptotic value of the above integrals comes from the poles and stationary
points of the integrals. It is noted that each Iy,J, and J, contains one pole at k = k; where
ko= wz/ g, and each of I{,J%,J% contains one pole at k = kg, where kj is the only real positive root

of the equation
(1—s)gk _
\s+ cothkh ~ ¥~

In addition, the integrals Jo,J3 contain one stationary point at k = k;, which is the root of the

equations
dm +2
1_«z : g
=% ie., k=2,
dk ~ 1 1742

also, the integrals J%,J contain one stationary point at k = k| which is the root of the equation
dm
2_2

=t (33)

We note that
‘fT'g = ':,(c’;) (s sinh2kh + cosh2kh —1)~1[(4h2%?2 — sinh 22kh)
+ 4kh (sinh2kh — 2khcosh2kh — s? (cosh2kh — 1)2
+ o( — 8h%k? sinh2kh + 2(2kh — sinh? 2kh) (cosh2kh —1))] <0 .

Therefore dm/dk decreases monotonically from W—_.s) to 0 as k varies from 0 to co. Hence
equation (3.3) has only one real root kj. On the other hand, the integrals I,, J4, I5 and Ij
contains neither poles nor stationary points in the range of integration.

Now the contribution from the poles kj, kj can be evaluated using the formula (24) for the
asymptotic development as stated by Debnath and Rosenblat [2]. It then follows that as z — oo,

Bilky)  ut, ikgr  —koz Bolky) it ikhzr  ikjx
I~ 20 it 07 _ TR0y o 200 it TR0 _ R0 3.4ab
2m{(kg) ¢ ¢ ) 2m (k) ¢ ) (8.4ab)
where m(kg), my(kq) are the derivatives of m,(k) at k = ki and my(k) at k = kj, respectively.

The method of stationary phase (Jones [7]) can be used to evaluate the transient component of
J (that is the contribution from the stationary points)

i — expli{tm(k;) — k12 — Z—}] B exp| — i{tmy(k;) — kjz — .le}]]
Jir Q%ﬁl(kl \t1 m'1'7(rk1)| [ my(ky) +w my (k) + @ (3.5)

~—

i ey 21 exp[i{tmy(k)) — Kz —7/4}]  exp[i{tmy(k}) — kiz —n/4}]
tr ~ 2 PR Ty [ (R = w ma(k]) + w ]*0(1/ 2

(36)
where J,,., J}, denote the transient parts of J and J' respectively for large t.

Finally we calculate the contribution to J and J' from their polar singularity. This can be
easily estimated by formula (24), as stated in Debnath and Rosenblat [2].

Tpotar~ = et g oy Dalbo) i o Ry (gap)
1\*0

' “polar T Zmi(kY)

We write 97 = ng + 053 + 04y + 1y, Where ng, 7%, are the steady state components of 7, and ny,, 7},
are the transient components. The first term in 7, is the polar contribution to I and J and the
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second term is the polar contribution to I’ and J’ which are given by
P g

_ B1(kg) i(wl — kgz) 1 , Bolkg) i(wt — kgz) 1
M5t = "t (kg) © TRz) st = k) © A (3:8ab)

and the transient components 7,,, 7}, are given respectively by (3.5) and (3.6).

So far the entire analysis of the asymptotic behavior has been carried out for 5;(z,t). A similar
asymptotic analysis can be obtained for ne(x,t). It is clear that there are two modes of waves
spreading at each of the free surface of the upper fluid and in the interface of the two fluids and of
course one of them will dominate on the other. The above analysis reveals the fact that the
transient solution decays rapidly to zero as time t — co. The ultimate steady state is established in
the limit. Solutions (3.8ab) represent outgoing waves propagating with phase velocity w/ky and
w/kp respectively. These results justify the use by previous authors of the condition at infinity
known as the Sommerfield radiation condition when investigating steady-state harmonic surface
waves problem. The application of this condition instead of the boundedness condition at infinity

was necessary to render the solution unique.
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