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Abstract Several coin-tossing games are surveyed which, in a natural way, give rise to
"statistically” induced probability measures on the set of permutations of {1, 2, ..., n} and
on sets of multipermutations. The distributions of a general class of random variables
known as binary tree statistics are also given.
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1. Introduction The distributions of permutation statistics have long been considered
relative to the equiprobable measure 1/n! on the set of permutations of (1, 2, ..., n}. For
instance, among many such results to be found in David and Barton [DB, 150-183] or in
Bender [B], it has been established that the classic permutation statistic known as the
descent number is asymptotically normal. More recently, Diaconis [D1, 128] has verified
that the inversion number is likewise asymtotically normal relative to the equiprobable
measure. Additional results of this type may be found in [Cr, D, H].

Some work has also been done concerning distributions of permutation statistics
relative to probability measures which are not uniform ([D2]). It is this general vein of
research to which this paper belongs: Motivated by the results of Moritz and Williams
[MW], several coin-tossing games are presented which lead to natural non-uniform
probability measures that are induced by permutation statistics.

Specifically, in sections 3 through 6, three coin-tossing games are described which
give rise to measures respectively induced by the Mahonian statistics known as the
comajor index, the major index, and the inversion number. In sections 8 and 9, two

more coin-tossing games and their associated measures are given which are based on
permutation decompositions. Throughout, and particularly in section 7, the distribu-

tions of random variables known as binary tree statistics are also presented. In the final

section, some natural directions for further research are indicated.

2. Mahmmgﬂ;aammm For the most part, the measures and random

variables considered arise in connection with what are respectively known as Mahonian
and binary tree statistics. Before defining these two classes of statistics, a number of

preliminaries are needed.
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For a sequence ji, jy, ...,J, of non-negative integers, the symbol 1272 n'n will
be used to denote the multiset consisting of j; ones, j, twos, ..., and j, n's. A

sequentially ordered list ¢ of length j=(j; +Jj, + ... +Jj,) and of the form

2.1 o =0()o(2) ... ()

in which, for 1 <k <n, k appears exactly j, times will be referred to as a multiper-
mutation of 1/1 272 /n. The symbol £[1/1 272... r/n] will denote the set of such multi-
permutations. For simplicity, £[n] will signify the set of permutations rnlal.. nly.

In order to define a Mahonian statistic, it is convenient to introduce the notion of g-
analogs. The g-analog of a non-negative integer, the g-factorial, the g-binomial

coefficient, and the g-multinomial coefficient are respectively defined to be

22) @& (m)y=1+q+ g +..+q™1 (@ (m), 1 =1),2), ... (m),
(m),! (J)g!
m - q '
) (k )q_ (k) (m ~ k) ! w (1112 -J )q (g Uglgt - i (Jp)g!

where j = (jy +Jp + ... +Jj,) and (0)!=1. Astatistics: L[/ 2/2.. /] > R (reals) is

then said to be Maghonian if
s(o) _ .
@2.3) Z o) (,1 ig- Jn)q

where the sum is over all o in J.',[l’ 1272, n’ n] . In the permutation case, the right-hand
side of (2.3) reduces to (n)q!.

The two classic examples of Mahonian statistics are the inversion number and the
major index. Let |A| denote the cardinality of a set A and respectively define the

descent set and the descent number of a multipermutation ¢ € Z[1'1 272... /n] of length

Jby

(24) () Deso ={k:1<k<j-1,0(k)>ok+1) (i) deso =|Desol.
Then the inversion number and the major index of o are defined to be
@5 @ iwo =|(®&D:1<k<l<), o®)>oW)] @) myo= D, k

k € Desc
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As an example, foro = 2122131 ¢ I[132331], it is easy to see that Desc = (1, 4, 6}, deso
=3, magjoc =1+4+6=11,and invoc =3+0+2+2-_|~0+1 + 0 = 8. The fact that both maj
and inv are Mahonian on Ii[lj 1272, n] was first established by MacMahon [M1].

For simplicity, the discussion of binary tree statistics is restricted to the case of
permutations. For a set C containing (n + 1) integers, let £[C] denote the set of

permutations on C. For 6 € £[C], let & be such that o(k + 1) is the minimum of C and

define
26) () A = {o(1),0(2),..,ok) (ii)) B = {otk +2),0(k +3),..,0(n +1)}.

Then the rooted binary planar tree decomposition of ¢ is defined to be the factorization

2.7) oc=amp

where & = 6(1)c(2)...0(k) € £[A], m is the minimum element of C, and

B=olk + 2)ok +3) ... o(n +1) € £[B]l. The mapping
(2.8) c—(A B, o,p)
from L[C ] to the set of 4-tuples (A, B, o, B) satisfying the conditions

(2.9 i) AUB =C\{m} Gi) AnB=¢
Giil) ae€ L[A] Gv) PBe &L[B]

is a bijection.

If one views the factorization 6 = o m B geometrically as
“\@)/B
and iterates, then the result is a rooted binary planar tree with increasing labels. For

example, the binary tree associated with ¢ =3251476 € L[7] is
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(2.10)

As indicated in (2.10), o is easily recovered from its binary tree by simply projecting onto
a horizontal axis.

Finally, as essentially defined in [R5], a real valued map s on the set of
permutations of integers is said to be a binary tree statistic if for all o factorized as in

(2.7) there exist constants a, b, c € R and a function f: N x N - R such that

(211) s(0) = as(@) + bs@) + cIAB) + f (lAl, |B])

where N =1{0,1,2,...}, s(¢) =0, and I(A,B) denotes the number of inversions from set
A to B, thatis, I4,B) = |(kDecAxB:k>1].

Although seemingly remote, many classic permutation statistics actually satisfy
(2.11). For one, the descent number of a permutation ¢ € £[n] satisfies the following

recurrence relationship

(212) deso =deso + desP +x(|A] 21)

where yx("statement") is defined to be 1 if "statement” is true and O otherwise. As a
second example, it is easily verified that the inversion number of a permutation ¢
satisfies the identity

(213) inve =inva +invP +I1(A,B) + lAl.

Several examples of binary tree statistics are listed in Table 1 (which is partially

reproduced from [R5]).
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TABLE 1
Examples of Binary Tree Statistics
Name References| Identity relativetoc=am
1. length lenc =leno +lenf +1
2. descents CS,DB,FS|des 6 =desa +desf + x( lalz1)
3. rises C1 risc =risa+risf +x( |Al=0)
4. inversions M1,S |invo =inva+invB +IAB)+|Al
5. 312 patterns R4 312(c) =312(o) + 312(B) + I(A,B)
6. 213 patterns R4 |213(0) = 213(c0) + 213®) - IA,B) + | A| | B
7. left lower records C1,DB |f(o)=l(0) +1
8. right lower records C1,DB |mr(@)=mrB)+1
9. troughs FV  |tro) =tro) + tr(®) + x(|Al2 1) x(IBl2 1)
10. peaks (leaves) FV  |p()=p(@) +p@P) +x(|A|=0)x(|B|=0)

Essentially, the only permutation statistic considered in this paper which is not a

binary tree statistic is the major index. However, it does satisfy the identity
(214) majc =majo +majB + |A | +(|A| +1) desP

relative to the factorization in (2.7).

3. A Generalization of Moritz' and Williams' Game In solving a problem associated
with a simple coin-tossing game, Moritz and Williams [MW] discovered a "statistically"
induced measure on IL[n]. However, as their results readily extend to the setting of

multipermutations, the following generalized versions of their game and problem are

considered.

31

2, ..., n respectively begin with j,, jg, ..., j, lives. In turn, a coin is

passed from player to player which, when tossed, lands heads up with
probability p and tails up with probability ¢ =1 —p. Upon receiving the
coin, player k attempts to toss a string of consecutive tails equal in
length to his/her remaining number of lives. If successful, player k
passes the coin to player (¢ + 1). If not successful, player & loses a life
and tries again to toss a string of consecutive tails equal in length to
his/her remaining number of lives. Player k continues to toss until
succeeding. In the situation that player £ has no remaining lives, then
player k of course achieves success after zero tosses. The game ends

when all lives have been lost.
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Problem. Foro € I.[lj 1272 n n], determine the probability that the
players lose their lives in the order specified by o (that is, o(8) is the

player who loses the £t life of the game).

As an illustration of this game, suppose players 1, 2, 3 respectively have j; =1,

Jo =3, and j; = 2 lives. Then, a typical flipping sequence (FS) together with the resulting

multipermutation of "death" are as displayed below

(3.2) FS=T:TTHTHT:TT

I:-I:T:TI-:IT ¢:];-I:T| o: ¢: H

H
. e '
. . L]

c= & 2 34 3 5

where asterisks highlight descents in o, colons in FS indicate when the coin is being
passed to the next player, and bars demark sweeps through the tossing order (i.e., the

first sweep through the tossing order 1, 2,3isT: TTH T H T : T T with player 2 losing
two lives, the second sweep through the orderis H: T : T H T with players 1 and 3 each
losing one life, and so on).

To solve the problem stated in (3.1), it is a relatively easy matter to adapt Moritz' and
Williams' proof for the permutation case. The first step is to extend their norm on
permutations to the multipermutation setting: For o € I.[lj 1272, njn], let MFS(c)
denote the "minimal (i.e. shortest) flipping sequence” for which the game results in c.

Then the norm of ¢ is defined to be
3.3) ¢m o = "the number of tails occurring in MFS(c)."

For instance, the multipermutation ¢ of (3.2) together with its associated minimal

flipping sequence are given below in (3.4). Thus, ¢m (221323) = 6.

(3.4) MFS(O)=T:I:-II:-IT:TTII:I:T:I;IT'cp:I;I:I;I

o= 22 *1 3 * 23

The solution to the problem of (3.1) may now be stated and proven: For o € I,[lj 1
272, i/n] , the probability that the game of (3.1) ends in o is given by
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J -1
(3.5) Pcm(o) =g (11 Ja Jn) q

where j=j, +j, + ... +J, . The proof proceeds by induction. Clearly, the formula for P,

is true when j = 1. Then, to carry out the induction step, begin by observing that the first

heads in a flipping sequence that results in ¢ € r1 22, 1/ n] either occurs

(3.6) 1) after the initial sweep through the tossing order, or

(i1)  during the initial sweep.
In case (i), the game may be considered as simply being restarted after the initial
consecutive string of j tails has been tossed.

In case (ii), some player, say k, tosses the first heads on the 2th toss of the game
wherej1 +Jg + o "’jk 1< L sj1 +Jg + . "'jk . In this case, players 1, 2, ..., k, ..., n may
be viewed as starting a new game in which the distribution of lives is JprJgs oo jk -1, .,
Jn and in which the tossing orderis k,k +1, ..., n,1, 2, ..., k —1. Corresponding to this
new tossing order, sequentially rename the players ask =1,k+1=2,..,k-1=n.
Since the flipping sequence for the new game is obtained by lopping off the initial £ tosses
from the corresponding flipping sequence of o, the result of the new game is a

multipermutation y € rn’ x1 gjk+1 Lcik-ll which satisfies the property

3.7 MG = j; +jg+ ..+ +CmY.

To complete the proof of (3.5), first note that the two cases of (3.6) together imply that
3.8) P, (o) = q/P, (c) + ), ¢ 1pP @
e

where the index £ runs from (Jy g+ +ip +1) to (jp+Jg+ .. +Jp) Then,

inductively assuming that formula (3.5) holds for ¥, it follows from (3.7) and (3.8) that

1-q 2 2.1 Jj-1 -1
3.9 P = g +omy .. . .
3.9) ) 1-¢J 3 q (_]1 Jgdy L iy ) g

=W 1 Jg e dp=1 werJ q J1J2 - Jp q

cno (¢ 5 . . _ ; -
97" Uiy j-1 Lo gmo i )‘_
q J In

Thus, (3.5) is true for all integersj =1 .
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In closing this section, it is worth noting that the measure P, reduces to the

usual equiprobable measure on J;',[lj 1272 n/ n] when ¢ =1. Thus, P is ag-analog

of the equiprobable measure.

4. The Comaior Index Unknowingly, Moritz and Williams actually proved that their
norm is Mahonian on £[n] . Essentially their argument can be used to verify that the

norm is also Mahonian on £[1/1 272... n/n]: Since P cm 1S @ measure and because of

(3.5), one has that

where both sums are over all 6 € I’.[lj 1272, 1 n] . But this immediately implies that
ms _ (. T
z q - (.71.12 ~-~Jn) .
o q

However, it turns out that the norm is not a new Mahonian statistic. In fact, it is
nothing more than a slightly disguised variation of the major index. Known as the

comajor index [DF], this variation is defined for ¢ € £[1j 1 2j 2., n’ n] by

1) womaic = D, (j-k)
k€ Desc

where j=j, +j, + ... +J, . Thus, in contrast, the major index sums descent indices
"relative to the left-hand side of 6" and the comajor index sums descent indices "relative

to the right-hand side.”

In order to verify that the norm and the comajor index are indeed equal, one begins
by reconsidering the game of (3.1) and the example of (3.4). It is not difficult to see that
for any multipermutation ¢ € .’C[ljl 272, njn] and its associated MFS(c) that the
following facts hold:

(4.2) () There is a natural one-to-one correspondence between bars and asterisks.
(ii) The contribution to comajc made by the Eth descent in o is equal to
the number of tails between the (¢ — 1)* and &*! bars in MFS (o).
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It then immediately follows that comajo = cmo (which explains the usage of c¢m in
denoting the norm). Incidentally, the preceding argument was first given for the
permutation case in [RT].

Turning our attention to random variables, example (3.4) suggests a very natural
one: Let X: I,[lj 1 2j 2... njn] — R be the number of bars that occur in the MFS
associated to a multipermutation. Thus, by (4.2i), X (o) = deso.

Now, although the measure P, is relatively new, it turns out that the literature on

permutation and multipermutation statistics is full of methods and results which are of
significance to the study of the descent number relative to the g-measure P_ . However,

being neither immediately interested in nor aware of g-measures, researchers have not
presented results in g-probabilistic settings. Thus, there is usually some degree of work
involved in extracting desired results.

As an example on the level of permutations, consider the probability generating
function for descents relative to the measure P, on L([n), that is,

43) ca= D, t#°P (o).
o€ L[nl

From the methods of [R4], it is possible to derive a recurrence relationship for C_(¢,q) :
n\»47 -

Begin by observing that, even though not a binary tree statistic, the comajor index
satisfies the identity

@4 omo =cma+ B + (Bl +1) x(lAl 21) + (IB| +1) desa

for any permutation o factorized as in (2.7). In view of (2.8) and (2.12), it then follows
that C,,1q) is equal to

n

1
(n + l)q' ];0 z Z Z (tq|B|+1)X(|A|2 1) (tqlBli-l)tﬁJaqcmat de.sﬁqcm B
=0 |Al=k «e L[A] Be Z(B]

Taking into account the natural correspondence between L[A] and L[|A [1 and then by

regrouping terms, one is led to the recurrence relationship

n
(4.5) (n+1),C, . tq) = C,t,0) + ¢ kz qrH (Z)(ZE Cyltqt+1, g C, 6
=1 -

where C (t,¢) =1.
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Besides several more identities on the level of permutations, an explicit formula for
the distribution of des relative to P_, on L[171 272... n/n] could be given at this point.

However, it is more convenient to present these identities at the end of the next section.

5. The Major Index Game As comaj and maj are closely related, it is possible to alter
(3.1) in such a way so as to give rise to a measure induced by the major index. A "Ma; "

version of (3.1) is given in (5.1).

(51) The Maj Game. Players1, 2, .., n respectively begin with jn,jn_l, o Jq

lives. In turn, a coin is passed from player to player which, when tossed,
lands heads up with probability p and tails up with probability ¢ =1 - p.
Upon receiving the coin, player £ attempts to toss a string of consecutive
tails equal in length to the number of lives remaining to player (n +1 -k). If
successful, player k passes the coin to player (k + 1). If not, player (n -k +1)
loses a life and player k reattempts the task of tossing a string of
consecutive tails equal in length to the now diminished number of lives
remaining to player (n +1 — k). Player k continues tossing until
succeeding. In the event that player (n + 1 — k) has no remaining lives,
player k of course succeeds after zero tosses. The game ends when all lives
have been lost.

Problem. For 6 € I,[ljn 27n1_, n 1], determine the probability that the
players go out in the reverse order specified by 6 (thatis, for j=j; +Jj, + ...

+J,» 6(j+1-28)is the player who loses the 2th life of the game).

The probability P, (6) that 6 € L[1/n 2/n-1... /1] is the outcome of the game in

(5.1) is given by

. !
5.2) P,®=4"° (j j;.. jn)q
Formula (5.2) may of course be derived by appropriately modifying the proof of (3.5).
However, a bijective proof is given here which lays bare the explicit relationship between
the outcomes ¢ and 0 of the games of (3.1) and (5.1).
To begin with, note that if S is any sequence of tosses such that ¢ results when the
rules of (3.1) are applied and 9 results when the rules of (5.1) are applied, then 6 =cr6
where the reversal r and the complement ¢ of a multipermutation y € L[lj 1272, A n]

are respectively defined to be

(5.3) @ ry = y(NyG-1)...v(1)
(i) ey = (n+1-yWXn+1-7(2) ... (n +1 =y()).
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Since the probability of any such S occurring is independent of the game being played, it
follows that Pm(e) =P om (o) . Moreover,

j-1
cmo=cm(erd) = O, (j-k) xn+1-0(j+1—k)>n+1-6(j-k)
i
j-1
=Z L x(E@+1)<6®) = maje.
£=1

Thus, from (3.5), one has that

qm (cro) qmaje
Pm(ﬁ) = Pcm(O‘) = T =

T Ty
Gidgrrinly  Uudaeein)y

which establishes formula (5.2).

Since des © = des (cr6), the descent number is again a natural random variable to
consider. In fact, as maj is a classic Mahonian statistic, the literature on permutation
and multipermutation statistics contains a substantial amount of information relating
the descent number and the major index. From MacMahon's work [M2, Vol. 2, p. 211],
one can derive that the probability generating function for des on multipermutations is

n
j -1 k+_]g
(5.4) }e'_', th0p ®= (5, j; ...jn)q ¢:Dpy k2=0tk' ?,I;I1 (jg )q

where the sum is over all 8 € I,[ljn 2n1.. rti1] and (t:q),,; =1 -1 -tg)..(1 - tg™. In

the case of permutations, if one defines

G5 O Mea= X, 4P (©) ) M@= D, yks6=kP,0),
o€ Lln] o€ Lln]

then, from (2.8) and [C2], it may be verified that

n
66 O (+1), M, (b0 = Mtq,q) +t ), ¢ (£) (& ), Mate0) M, 400" )
k=1

@+ 1)y My 4@ = R+1) M, @) + ¢Fn+1-k) M, , (@)

where M (t,g) =1, MO,O(q) =1 and Mo,k(q) =0fork>1.
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It is now convenient to unveil the additional identities for the distribution of the descent
number relative to P which were alluded to at the end of section 4. By first using the
bijection

er: L 2/n1 115 21 272 1)

and then by noting that, if o =cr@, then deso = des(cr8) = des® and P, (c) =P (8), it

follows that

> 1459 p (8) = ), 155 P_ (o)
0 c

where the first sum is over all 6 € I.[ljn Pn1..n’ 1] and the second is over o € L[11 272,
” n]. Thus, the right-hand side of (5.4) gives the probability generating function for des
relative to P, on I’.[lj 1272 ) n] and the identities of (5.6) remain valid if P, is replaced by
P . in(5.5).

6. The Inversion Game Since the inversion number is a classic Mahonian statistic, it is

natural to question whether or not there exists a game that leads to a measure on L[lj 1
2j 2... /n] which is induced by the inversion number. The answer to this query is yes and

such a game is described in (6.1).

(6.1) The Inv Game, Players 1, 2, ..., n respectively begin with jl, Jgs wwns Jn
lives. Beginning with player 1, a coin is passed from player to player
which, when tossed, lands heads up with probability p and tails up with
probability ¢ =1 — p. Upon receiving the coin, player £ makes a single
attempt at tossing a string of consecutive tails equal in length to his/her
remaining number of lives. If player k is successful, then the coin is
passed to player (k + 1). If player k tosses a heads, then player k loses a
life, the coin is immediately passed back to player 1, and play resumes.
The game ends when all lives have been lost.

Problem. Foro € l’.[lj 1272, o n], determine the probability that the
players lose their lives in the order specified by ¢ .

To prove that the probability of ¢ € I’.[lj 127 2., n’ n] being the outcome of (6.1) is
given by the formula

. i\
€2 Pfo) = ¢™° (jlj2 "-fn)q ’
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it is insightful to consider a specific example: Using the symbol mfs(c) to denote the
minimal flipping sequence for which the Inv game results in o, the mfs(c) for the multi-

permutation 6=221323 € 1:[11 2 332] is displayed below

6.3) mfs(c):T:I:-IlT:I:-I|}:I|¢:T:I:I|¢:I:-I|¢:¢:I;I

o= 2 21 3 2 3
where the colons indicate instances at which the coin is being passed from player & to
player (k¢ + 1) and the bars indicate when the coin is being passed back to player 1. The
important insight to gain from (6.3) is that the contribution made to the inversion
number by o(k),1 <k < j-1,is equal to the number of tails between the (k& - 1)%t and kth

bars of the associated mfs(c). Thus,
(6.4) inv ¢ = "the number of tails in mfs(c)."

With minor modifications, the induction proof of (3.5) may now be recast so as to
establish (6.2): Clearly, (6.2) is true for j = 1. To carry out the induction step, note that

the first heads to occur in a flipping sequence which results in ¢ either takes place
(6.5) (1) after the jth toss, or (ii) on or before the j th toss .

In case (i), the game may be considered as being restarted after the first j consecutive
tails have been tossed.
In case (ii), some player, say k, tosses the first heads on the 2th toss of the game

where j; +Jj, + ...+, < < Jy +Jg * ... +Jj, . Player k loses a life, passes the coin back to

player 1, and a new game is started which results in a multipermutation y € l:[lj 1272,
k7 k'l... n’ n]. Moreover, y satisfies the property that

(6.6) UG =ji +Jjo + .+ +invY .

Together, the cases of (6.5) imply that

6.7 P(o) = ¢/ Pfo) + 2 ¢ 1 PP
4
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where the index £ runs from (j; +Jg + - #Jj 4 + 1) to (Jy +Jg + ... +Jj, ). Using a
calculation analogous to the one of (3.9), formula (6.2) then follows by induction.

As for natural random variables, the number of bars in mfs(c), which is (j - 1) for
all o€ L[lj 1292 n], is of no interest. However, although not as evident as in (3.4),
the descent number of ¢ can be characterized in terms of mfs(c): Letting T(k) denote the
number of tails between the (¢ — 1)t and kth bars of mfs(c), one has that o(k) > o(k + 1) if
and only if T(k) > T(k + 1).

Although the invis a classic Mahonian statistic, apparently no closed or reasonable
recurrence formulas are known which relate the descent and inversion numbers on the
level of multipermutations. In the case of permutations though there are a number of

readily available formulas: If one defines

(68) Lep= D, t4° P,
o€ Linl

then, from [R1,S], one has that

1 -¢) exql( - t)ul
n_
(6.9) ’é L 6™ = i@ - ol

n
where exq(z] = Z (%)7 is a g-analog of the exponential function.
n20 ¢

Except for a minor twist, a "binary tree" recurrence relationship for I (¢,q) can be

derived in essentially the same way as the one of (4.5). First, note from [GJ, p. 98] that,

for a set D of n integers,

(6.10) (g};) ¢AB = (k)q

where the sum is over all ordered pairs (A,B) such that lal = k,AU B =D and
A N B=¢. Then, (2.8), (2.12) and (2.13) imply that In a&g)is equal to

n
1 . .
m+D ! Z Z E 2 gx(lalzn q|A| q'A-B t«fzsaqmvutc{e.sﬂqmvﬂ'
T k=0 |Al=k o€ L[A] Be Z[B]

Then regrouping and using (6.10) gives the identity

(6.11) e

(n+1) I (tq)=
¢ n1bW=1tq) +¢ k
n+ n IZ'; 9" I(t,q) I (g

where Io tq)=1.
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7. Distributions of Binary Tree Statistics on L[nl In the case of permutations, the bi-
Jjection ¢ — (4, B, o, B) of (2.8) may be used to obtain the distributions of any binary tree

statistic. The recurrence relationships for two such distributions relative to P, and P,

are now presented. For a binary tree statistic s as defined in (2.11), let

a1 O Lep= D, 29 P @ Metp= D, &9t Pp ()
o€ &[n] ce Ln]

where, for technical reasons, an extra parameter involving the descent number has
been included in the maj setting. Then, from (2.8), (2.11) through (2.14), and (6.10), it is
not too difficult to verify that

n
nyl
12 @ (+1), IMl(z,q):l;) S gh (1) () 1m0 e
n
1
@ (DM, (8 q)=2 Sfkn-k) tx(|A|21)qk (Z)zc (z)-q Mk(za’t,q)Mn_k(zb’tqkﬁ,q)
k=0

q n+

with the initial conditions I (z,¢) =1 and Mo(z,q) =1.

8. A Binary Tree Measure on L[n]l In many instances, the derivation of an identity
involving permutation statistics is based on some permutation decomposition. For
instance, the binary tree decomposition ¢ — (A, B, o, B) is the underlying basis for the
identities of (7.2). With this in mind, it becomes natural to consider whether or not there
is a measure which is "compatible" with a given decomposition. In this vein, a game is
presented in this section which is "compatible" with the binary tree decomposition. A
second example of a decomposition based game is given in section 9.

The playing board for the "binary tree" game, as sketched in (8.1), is an infinite

binary tree with each node being empty and having two ascendant nodes.

(8.1 ) .~ ’ \, ’ N 4 N\, -

The rules of the binary tree game and its associated problem are as follows:

(8.2) The Binary Tree Game, In turn, players 1, 2, ..., n approach the root of

(8.1) and seek out an empty node to occupy. Player k£ does not begin
searching until after player (¢ — 1) has located and occupied a node.

Each player's search is governed by a coin which, when tossed, comes up
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heads with probability p and tails with probability ¢ = (1 — p). Whenever
an occupied node is encountered, the coin is to be tossed: If the coin
lands heads (tails) up, then the search must proceed to the right (left)
ascendant of the occupied node. Upon encountering an empty node, a
player must occupy it. After all players have occupied nodes, the players
are then ranked according to the order that results when the players are
projected onto a horizontal axis.

Problem. For ¢ € £[n], determine the probability that the players are

ranked according to ¢ .

As an example of this game, the result of the sequence of tosses

(8.3) S=¢:T:TT:H:TH:HH:HHT

'is the permutation o of (2.10). Note that the subsequence of S lying between the (k& — 1)t

and k" colons corresponds to player k's search.
To determine the probability Py (0) that the game of (8.1) ends in 6 € £[n], begin by

observing that the flipping sequence S associated to ¢ is unique. Then, if one defines

(8.4) (@) 7T(o)="the number of tails in S" (ii) H(o)="the number of heads in S,"
it trivially follows that
(8.5) Pbt(o) = qT(c) pH(c) .

As is easily verified, neither T nor H is Mahonian. Moreover, for no choice of the value
of g will Py, reduce to the usual equiprobable measure 1/n! on L[n].

Although (8.5) is straightforward enough, there are a couple of alternate ways of
calculating P (o). Relative to (2.8), we have

8.6 P, () =q4! p'Bl P, (0) P, (B)

where Py, (¢) = 1. The second way, which is independent of both S and the binary tree

decomposition, relies on the fact that T and H can both be expressed as linear
combinations of known permutation statistics; namely, the inversion number and the
number of 312 patterns (see Table 1).

In order to observe these linear combinations, one needs to first return to a previous
characterization of a 312 pattern as given in [R4]: An ordered triple (i, j, I) is said to be a
312 pattern in a permutation 6 € L[n ]if
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8.7 1) 1<i<j<l<n () o(j)<o)<o @)

(iii)) o0 (J) = mininimum of theset { 6 (i), 6 +1),...,0D).

Then, 312(c) is defined to be the number of 312 patterns in .

Now, if player k, upon reaching the node occupied by m as diagrammed below,

3 Y

hod

tosses tails, then player £ must proceed to § and thereby create a total of (1 + length of y)
inversions and a total of (length of y) 312 patterns. Thus,

T (o) = invo - 312(6).

Analogous reasoning may be used to verify that H (o) = inv (ro) - 312(rc) where r is as
defined in (5.3i).

As a primary advantage of considering the binary tree measure, the probability
generating function for a binary tree statistic relative to Py, satisfies a recurrence

relationship which, although similar to, is much simpler than those of (7.2). Let

8.8) Teg = 2,  FOP,©
o€ Lnl

where s is a binary tree statistic as defined in (2.11). Then, once again using (2.8)

together with (6.10) and (8.6), one is led to the identity

n

8.9) T, g) = 2, kgt - gt (Z),e T, )T, 4 (@)
k=0

where Ty(2,¢) = 1.
9. THE r-MAJOR INDEX GAME A second example of a game which is compatible
with a decomposition arises in connection with the statistic known as the r-major index.

For simplicity, this game will only be presented in the context of permutations.

As in [R2], for an integer r 2 1, the r-descent set and r-descent number of a

permutation ¢ € L[n] are respectively defined to be

91) () rDesc={k:ok)20k+1)+r,1sk<n-1} Gi) rdesc=|rDescl .

The r-major index is then defined to be

92 rmgjo= |k, ©):1 <k <€sn, o) >o® >0l -ril + Dk
k€rDec
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For instance, if r=2 and o =47836215 € L[8], then rDesoc = {3, 5}, rdesc =2, and
rmajo=5+(3+5)=13.

In view of (2.5), the r-major index is seen to be a weighted mixture between the
major index and the inversion number. In fact, rmaj reduces to maj when r =1 and to
inv whenr =« . Moreover, as established in [R2], the r-major index is Mahonian on

&£(n], that is,

©9.3) D, ™% (!
o€ Ln]

The decomposition employed in [R2] to establish (9.3) is based on observing the effect
that "inserting” n into a permutation y € £[n — 1] has on the r-major index. To tabulate
this effect, the n possible insertion positions in y = y(1)¥(2) ... Y(n — 1) are labeled as
follows: Using labels 0, 1, ..., (n — 1) in order, first scan y from right to left and label the
positions that, upon insertion of n, will not result in the creation of a new r-descent.
Then, scanning back from left to right, label the remaining positions. As an example,

for v=4736215 € L[7] and r =2, the top and bottom rows of the display

©4) ° 3 2 ° 1 ° . 0
' Lr L
y= 4 7 3 6 2 1 5
T T T 7
4 . . 5 L] 6 7

indicate the labels as distributed by the two scans.
As given in [R2], the key facts concerning this insertion procedure may be summed
up as follows: If I'(y, £) denotes the permutation that results when n is inserted into

position £ of ¥, then

(9.5) 1) r:2n-11x{0,1,..., n -1} = Ln] is a bijection and
Gi) rmaj T, ®) = & + rmajy.

For instance, if yis the permutation of (9.4), then I'(y,2) = 47836215 and rmaj I'(1,2) =13 =2

+rmajy.
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A game which is compatible with the "insertion" decomposition I' may now be

stated:

9.6) The rMaj Game. Players 1, 2,..., n are to be ranked in a linear order. For
1 < k < n, assume that players 1, 2, ..., (k-1) have been ranked according to
a permutation y€ L[k - 1]. Player k& then determines his/her ranking
relative to players 1, 2,..., (k — 1) by flipping a coin until heads occurs: If
the heads occurs on the (mk + £ + 1)th toss where 0 < € <k -1, then player
k is inserted into position £ of y. The coin is then passed to player (& +1).

Problem. If the probability of heads is p and of tails is ¢ =1 - p, then what
is the probability that the players will be ranked according to a given
permutationc € L[n]?

To establish that the solution to the problem of (9.6) is given by the formula

qrmaj c
9.7 P(o) = -(n—)qr

for o-€ L[n], first note that it is clearly true for n =1. Then, for n 2 2, assume that (9.7)
holds for all y € £[n -1]. By (9.5i), any 6 € L£[n] is of the form ¢ = I'(y, £) for some y €
Lin-1] and 0<f<n-1. Itthen follows that

q?’(l—q) . qrmq'y B qnmy'cr
A-gm (1)) ()

P() = (¢ + ¢ +¢"P+ ) p P =

Thus, (9.7) holds foralln>1.

As for random variables, there is one that is very natural: For o€ L[n] and
1<k<n-1,suppose that v, € L[k] and O SBk <k are such that

9.8) 6= T80 Yy = Mg G e Yo = T, )
where y; = 1. Then define

9.9) X, (0) = x (&, is a "bottom" row label)

where top and bottom row labels are as exemplified in (9.4). It then follows that

910 rdessc = X0 + X0 + ..+ X (0.

Unfortunately though, the random variables { X, } & »1 are not independent.
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Using the properties of T as listed in (9.5), the distribution of rdes relative to P,
defined by

(©11) R, @= D, xrdsc=kPo)
o€ Ln]

may be easily verified to satisfy the recurrence relationship
9.12) +1) R, J@=C+k), R, @ + ¢** " ln+2-k-r) R, 4@

where Rr’ 0@ = (r)q!. Of course, (9.12) reduces to (5.6ii) whenr =1.

In closing this section, it is noted that the game of (9.6) and the measure of (9.7)
readily extend to the set of multipermutations .I’.[lj 1 2’2 rrin] . The relevant insertion

procedure and identities may be found in [R3] .

10. CONCLUDING REMARKS The asymptotic results mentioned in the introduction
suggest a host of tantalizing problems. In view of the fact that the descent number, the
inversion number, and the number of records (see Table 1) are all known to be
asymptotically normal relative to the equiprobable measure on L£[n], it is only natural to

consider the following questions:

(101) @) What class of binary tree statistics are asymptotically normal relative
to the equiprobable measure on £[n]? What about relative to the

measures P,_, P, ,P;, and Py, ?

cm’

(i) Is rdes asymptotically normal relative to the measure P, on L[n]?

What about on multipermutations?

(iii) Which statistics on multipermutations are asymptotically normal
relative to P em® P, , orP; ?
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