Internat. J. Math. & Math. Sci. 261
VOL. 15 NO. 2 (1992) 261-266

ON POLYNOMIAL EP, MATRICES

AR. MEENAKSHI and N. ANANDAM

Department of Mathematics,
Annamalai University,
Annamalainagar - 608 002,
Tamil Nadu, INDIA.

(Received May 8, 1989)

ABSTRACT. This paper gives a characterization of EPP-A-matrices. Necessary and
sufficient conditions are determined for (i) the Moore-Penrose inverse of an EPr-x-
matrix to be an EPr- A-matrix and (ii) Moore-Penrose inverse of the product of
EPF-A-matrices to be an EPr-x-matrix. Further, a condition for the generalized
inverse of the product of A-matrices to be a A-matrix is determined.
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1. INTRODUCTION

Let F‘Pﬂ be the set of all mxn matrices whose elements are polynomials in
A over an arbitrary field F with an involutary automorphism a: a &> a for a eF.
Tl;le elements of FIX] are called A-matrices. For A(\) = (aij(x)) € F’Tx?
A()N) = (a i(“)' Let Fm be the set of all mxn matrices whose elements are
rational functions of the form f())/g(A) where f(A), 8(A) # O are polynomials in
A. For simplicity, let us denote A(A) by A itself.

The rank of AeFﬁT is defined to be the order of its largest minor that is
not equal to the zero polynomial ([2]p.259). AeFfﬂ is said to be an unimodular
A -matrix (or) invertible in F?ﬂ if the determinant of A(1), that is, det A(X) is
a nonzero constant. AeFfﬂ is said to be a regular A-matrix if and only if it is
of rank n ([2]p.259), that is, if and only if the kernel of A contains only the
zero element. AcFIA] 1s sald to be EP_ over the fleld -F()) if rk (A) = r and
R(A) = R(A ) where R(A)and rk (A) denote the range space of A and rank of A
respectively [4]. We have { unimodular )\-matrices }V{regular A-matrices}

< {EP-)-matrices}.

Throughout this paper, let AeF“ﬂ] Let 1 be identity element of F. The
Moore-Penrose inverse of A, denoted by A* is the unique solution of the following
set of equations:

AXA=A (1.1); XAX=X (1.2); (AX)'=AX (1.3); (XA)'=XA (1.4)

A" exists and A'eFTX} if and only if rk (AA®) = rk (A®A) = rk (A) [7]. When A
exists, A is EPr over F(1) & AA" = A*A. For AN, a generalized inverse
(or) {1} inverse is defined as a solution of the polynomial matrix equation (1.1)
and a reflexive generalized inverse (or) {1,2} inverse is defined as a solution of
the equations (1.1) and (1.2) and they belong to F?’ﬂ The purpose of this
paper is to give a characterization of an EPr' A -matrix. Some results on
EPr-l-marIces having the same range space are obtained. As an application
necessary and sufficient conditions are derived for (AB)* to be an EPr-A-matrix
whenever A and B are EPI_- A-matrices.
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2. CHARACTERIZATION OF AN EP A-MATRIX
THEOREM 1. Aanﬂ‘] is BP over the field F()\) if and only if there exist

an nxn unimodular A- matrix P and a r x r regular A-matrix E such that

E of
* |
PAP = I
I .
«._0 0J ‘—D 0
PROOF. By the Smith's canonical form, A =) ; Q where P and Q are
0 o!
[N 4
unimodular- \-matrices of order n gnd D is a rxr regular diagonal A-matrix. Any
-1 -1
1 -1 |D P
{1} inverse of A is given by A( ) . Q Ry gi where RZ' R3. and R4

are arbitrary conformable matrices over F(A). A is EPr over the field F())

= R(A) = R(A")
- - aa¥@) ,®
=3 A = AA A (By Theorem 17([3])

| &
= QP = QP . 1 Q Q
L0 0, 10 , IRZ R4| o o
o1 T, T,
Partitioning conformably, let, QP =
T, T
3 4
' ' D O T, T D"-1 *1 D
Do |T T ‘ l , 2\ ng 0
* *
i
00 Ty T, lo 0J !Ts T, R, R, 0o o
' DT, . DT, + DT.R.D 0
bTy DTy 1+ PhRy |
' =
0 0 | ] 0
=y T2 =0 (since D is regular).

o1 T, 0]

Therefore QP = :
T3 Ty,
Do T, 0 , DT, O E 0|
Hence A = P 1 p =P P =P P
0 0 'l‘3 T4 0 0 0 0

where E = DT1 is a r x r regular \-matrix.

E O
*
Conversely, let PAP = where E is a r x r regular A-matrix.
0 0
Since E is regular, E is EPr over F(\A).
*
= R(E) = R(E )
* * %
= R(PAP ) = R(PA P )
*
=3 R(A) = R(A )

= Als EPr over F(A). Hence the theorem.
If Aanfﬁl and is EP over the field F(A) then we can find nxn regular
rational A- matrices H and K such that A = HA = AK [4]. In general the above H
and K need not be unimodular \-matrices. For example, consider A = ; )‘Z .A is
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* -1

®
EP, being a regular A-matrix. If A = HA 'then H=AA"; If A = AK then
1% i1 -1/} ‘0 -\
K =A A. Here H= ! and K = are not A-matrices.
A0 i a1

The following theorem gives a necessary condition for H and K to be
unimodular A-matrices.
THEOREM 2. If A is an nxn EPr-A-matrix and A has a A-matrix
{1} inverse then there exist nxn unimodular A-matrices H and K such that
A* = HA = AK.
PROOF. Let A be an nxn EPr-)\-matrix. By Theorem 1, there exists an nxn
E

0
unimodular A-matrix P such that PAP = 0 o) where E is a rxr regular
]
-1
a-matrix. Since A has a A-matrix {1} inverse, E is also a A-matrix.
e o *
= | -1
Now A = P 1 : P
10 . 0
. 4 E o _4*
Therefore A = P 1?
0 0
| &gl o A E 0| _*
oot PP P
0 1 0 0
e 1
1 EE 0

P is an nxn unimodular

HA where H = P

*
A -matrix. Similarly we can write A = AK where

0 *
K = P* “ 1 P"1 is an nxn unimodular A-matrix.
0 1
%*
Therefore A = HA = AK.
REMARK 1. The_converse of Theorem 2 need not be true. For example,
By 0 -
consider A =| . Since A = A, H = K = IL,. A is an BPI-A-matrix.
|0 0

However A has no A-matrix { 1} inverse.
3. MOORE-PENROSE INVERSE OF AN EPr-A-MATRIX

The following theorem gives a set of necesssry and sufficient conditions for
the existence of the A-matrix Moore-Penrose inverse of a given A-matrix.

THEOREM 3. For A em] . the following statements are equivalent.
i) A is EPr' rk(A) = rk(A ) and A A has a \-matrix {1_} inverse.
D 0 -

ii) There exists an unimodular A-matrix U with A = U i

0
*
where D is a rxr unimodular A-matrix and U U is a diagonal block matrix.

* *
iii) A = GLG where L and G G are rxr unimodular A-matrices and G is a A-matrix.
iv) A" is a A-matrix and EP .

®
v) There exists a symmetric idempotent )-matrix E, (EZ = E = E ) such that

AE = EA and R(A) = R(E).
PROOF. (i) =» (ii) Since A is an EP—)\—matrix over the field F()\) and
rk(A) = rk(A ), A exists, by Theorem 2.3 of [5]. By Theorem 4 in [6]. A A has

a )-matrix {1} inverse implies that there exists an unimodular A- matrix P with
P. 0
* 1
PP = where P1 is a symmetric rxr unimodular )-matrix such that

0 P4
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-

W
PA = I | where w is a rxn, A-matrix of rank r. Hence by Theorem 2 in (6],
L0 * . P
+ o, : + 1 + +
AA is a )-matrix and PAA P = . Since A is EP, AA° = A A and
Lo 0 | W e 0 -1
+ + -1 -1 1 *
A = AA'A = A(AA). Therefore A= I. i P P
0 I 0 01
_ W +~1
- p? lH ol P where
0
« .
H consists of the first r columns of P , thus H is a nxr, A-matrix of rank r.
4 | 0‘ 4 D o] , »
Now A =P I P = U U where U = P~ and D = WH is a
0 0} . 0 0
rxr regular  A-matrix. Since A A jhas;a A-matrix {1} inverse and P is an
- D" P'D
unimodular \-matrix, PAA P = = [ has a A-matrix
0 0
®
{1} inverse. Therefore by Theorem 1 in [6], D Pllo is an unimodular A-matrix
D O *

which implies D is an unimodular A-matrix. Hence A = U U where D

0 O
*
is a rxr unimodular A-matrix and U U is a diagonal block X-matrix.

Thus (ii) holds.

(i) =» (i) v U
Let us partition U as U = 1 2 where U1 is a rxr A-matrix. Then
U 1)
73 4
u, u | |bp o R u | D [U* U*]
*
A<l ! 2 [ 13 1 1 31 g6
U3 U4 0 0 U2 U4 ] U3
Y
where L = D and G = are A-matrices.
u
3

Since U*U is a diagonal block A-matrix, G‘G = U:U1 + U;U3 and L are rxr
unimodular )-matrices. Thus (iii) holds.
(iii) = (iv)

Since A = GLG*. L and G*G are unimodular A-matrices. One can verify that
At = 66 o)t (6*ert6”. ,
Now AA* - cuc'c (6To) ! 6y le” - 666 Ic* = a*a implies that
A' is EP_. Since L and GG are unimodular, L™! and (6”6)"! are A-matrices, and
G is a A-matrix. Therefore A" is a A-matrix. Thus (iv) holds.
(iv) =» (v)

Proof is analogous to that of (ii) => (iii) of Theorem 2.3 [5].

(v) = (1)

Since E is a symmetric idempotent \-matrix with R(A) = R(E) and AE = EA, by
Theorem 2.3 in [5] we have A is EPr and rk(A) = rk(Az) = At exists. Since
E' = E and R(A) = R(E) => AA' = EE' = E. Now AE = EA = (AA")A = A.
Let ej and aj denote the jth columns of E and A respectively. Then
AE = A =3 Ae, = a,, since ej is a A-matrix, the equation Ax = a, where aj is a
A-matrix, has a A-matrix solution. Hence by Theorem 1 in [6] it follows that

1

j ]

A haS a )-matrix {1} inverse. Further AA+ = E is also a A-matrix. Hence by
*

Theorem 4 in [6] we see that A A has a A-matrix {1} inverse. Thus (i) holds.

Hence the theorem.
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REMARK 2. The condition (i) in Theorem 3 cannot be weakened which can be

seen by the following examples. ’)‘ A
EXAMPLE 1. Consider theznhatri); sz = N N A is EP1 and
A
*
rk(A) = rk(Az) = 1. AA = 2 2] has no A-matrix { 1} inverse (since
2) 2X\
the invariant polynomial of A*A is )\2 which is not the identity of F). For this
A, A" - - 1 1 is not a A-matrix. Thus the theorem fails.
4 1 1 Y 2
EXAMPLE 2. Consider the matrix A = over GF(5). A is EPI. Since
2 0 0 2 «12x 4o o
A = , tk(A) # rk(A"), AA = has a A-matrix
0 0 0 0

{1} inverse (since any conformable A-matrix is a A-matrix {1} inverse). For
this A, A" does not exist. Thus the theorem fails.

REMARKS 3. From Theorem 3, it is clear that if E is a symmetric idempotent
A-matrix, and A is a A-matrix such that R(E) = R(A) then A is EP
& AE = EA & A’ is a A-matrix and EP.

We can show that the set of all EPr- A-matrices with common range space as
that of given symmetric idempotent )-matrix forms a group, analogous to that of
the Theorem 2.1 in [5].

COROLLARY 1. Let E = E = E2¢ F'X]. Then
H(E)={A ¢ FIX}: A is EP_ over F(A) and R(A) = R(E)} is s maximal subgroup of
Fff? containing E as identity.

PROQF. This can be proved similar to that of Theorem 2.1 of [5] by
applying Theorem 3.
4. APPLICATION

In general, if A and B are A-matrices, having A-matrix {1} inverses, it is not

necesssary that AB has a )‘-matfix)t{ 1} inverse. 1 0 1 0
EXAMPLE 3. Consider A = 2 and B = Here [ is one of
A A 12X 0. 2 0 O
the A-matrix {1} inverse for both A and B. But AB = 142 )‘3 0] . Since the
A+2X 0

invariant polynomial of AB is 1+2 Az # 1, AB has no \-matrix {1} inverse.
The following theorem leads to the existence of )\-matrix {1} inverse of the
product AB.

THEOREM 4. Let A, Be FIX]. 1f A% = A and B has A-matrix {1} inverse
and R(A) & R(B) then AB has a \-matrix { 1 } inverse.

PROOF. Suppose ABx = b, where b is a A-matrix, is a consistent system.
Then b e R(AB) & R(A) < R(B) and therefore Bz = b. Since B has a
A-matrix {1} inverse, by Theorem 1 in [6] we get z, is a Mmatrix. Since A is
idempotent, so in particular A is a{llinverse of A and b € R(A), we have Ab=b.
Now ABz0 = Ab = b, Thus ABx = b has a A-matrix solution. Hence by Theorem1
in [6], AB has a )-matrix {1} inverse. Hence the theorem.

The converse of Theorem 4 need not be true which can be seen by the

following example. 1 0 ‘1 1 1 1
EXAMPLE 4. Let A = ; B = : AB = . Here
0 0 XA 0 o
2 1 0
A° = A and is a A-matrix {1} inverse for both AB and B. However

0 0
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R(A) f’\: R(B). Hence the converse is not true.

Next we shall discuss the necessary and sufficient condition for the
Moore-Penrose inverse of the product of EP -A-matrices to be an EP A-matrix.

THEOREM 5. Let A and B be EP >‘ matrices. Then A A has a A-matrix
{1} inverse, rk(A) = rk(A) and R(A) = R(B) if and only if AB is EP_ and
(AB)" = B'A" is a A-matrix. i

PROOF. Since . A and B are EPP with R(A) = R(B) and
rk(A) = rk(A%), by a Theorem of Katz (1], AB is EP,. Since A is a
EPI_- A-matrix, rk(A) = rk(A ) and A A has a A-matrix {1} inverse, by Theorem 3,
A" is a A-matrix and there exists a symmetric idempotent A-matrix E such that
R(A) = R(E). Hence AA" = AA" = E. Since A and B are EP_ and R(A) = R(B),
we have AA" = BB' = E = A"A = B'B. Therefore BE - EB and R(B) = R(E).
Again from Theorem 3, for the EPP-X-—matrix B, we see that B' is a A-matrix.
Since A and B are EP with R(A) = R(B), we can verify that (AB)+ = B+A+.
Since B" and A' are \- matrices, it follows that (AB) is a A-matrix.

Conversely, if (AB) is a A-matrix and AB is EPI_ then (AB)+ is an
EPr-)\-matrix. Therefore by Theorem 3, there exists a symmetric idempotent
A-matrix E such that R(AB) = R(E) and (AB) (AB)' = E = (aB)* (aB).
Since rk(AB) = rk(A) = r and R(AB)<C R(A), we get R(A) = R(E). Since A 1s EP o
by Remark 3, it follows that A is a EP A-matrix. Now by Theorem 3, A A has
a A-matrix {1} inverse an;i rk(A) = rk(A ) Since AB and B are EPr.

R(E) = R(AB) = R((AB) ) <C R(B) = R(B) and rk(AB) = rk(B) implies
R(B) = R(E). Therefore R(A) = R(B). Hence the theorem.

REMARK 4. The condition that both A and B are EPF-X-matr:lces, is essential

in Theorem 5, is illustrated as follows:

1 A 1 2)
Let A = and B = . A and B are not EPl.
0 0 0 0
* 1 A
AA = 2 has a \-matrix {1} inverse and R(A) = R(B). But AB is
PUEDN . 1 1 0
not EP1. (AB) = ) is not a A-matrix. Hence the claim.
1+4 X 2 0
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