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ABSTRACT. The properties of the collection of complements of
@-closures of sets in a topological space are investigated in
%his paper. A strong continuity condition is defined in terms of
these sets. Some applications to H-closed spaces and Katetov
spaces are given.
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i. PRELIMINARIES.
All spaces are topological spaces with no separation axioms

assumed unless explicitly stated. Let A be a subset of a space

X. The closure of A and the interior of A are denoted by Cl A
and Int A, respectively. The set A is said to be regular open

(regular closed) if A Int Cl A (A Cl Int A). he @-closure
(S-closure) (Velicko [i]) of A is the set of all x in X such that
every closed neighborhood (the interior of every closed
neighborhood) of x intersects A nontrivially. The e-closure and
the g-closure of A are denoted by CI@ A and Clg A, respectively.

The set A is called @-closed (g-closed) if A CI@ A (A

CI A). A set A is said to be @-open (g-open) if its complement

is @-closed (-closed). For a given space X both the collection

of all @-open sets and the collection of all -open sets form
topologies. The collection of S-open sets is usually referred to
as the semi-regular topology.

DEFINITION I. Arya and Gupta [2]. A function f: X Y is

said to be completely continuous if for each open subset V of Y,
f-l(v) is regular open in X.

DEFINITION 2. Munshi and Basson [3]. A function f: X Y is

said to be super-continuous if for each x X and each open
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neighborhood V of f(x), there exists an open neighborhood U of
of x for which f(Int Cl U) V.

DEFINITION 3. Long and Herrington []. A function f: X Y
is said to be strongly e-continuous if for each x e X and each
open neighborhood V of f(x), there exists an open neighborhood U
of x for which f(Cl U) V.

DEFINITION . Porter and Tikoo [5]. A space X is said to
be H-closed if X is a closed subset in every space containing X as
a subspace.

DEFINITION 5. Porter and Tikoo [5]. A space is said to be
Kattov if it has a coarser minimal H-closed topology or
equivalently a coarser H-closed topology.

2. @-C-OPEN SETS
We define a subset U of a space X be @-C-open provided there

exists a subset A of X for which X U CI@ A. We call a set
@-C-closed if its complement is e-C-open or equivalently if there
is a subset A of X such that the set equals CI@ A.

THEOREM i. If U is e-open, then U is @-C-open.

PROOF. Since U is @-open, X U is @-closed. Hence X U

Cle(X U).

THEOREM 2. If U is open, then Int Cl U is e-C-open.

PROOF. Int Cl U X CI(X Cl U). Since X Cl U is open,

CI(X C1 U) CI@(X Cl U) (Velicko [I]). Hence X Int C1 U

CIe(X Cl U).

COROLLARY. If U is regular open, then U is e-C-open.

Since the real numbers with the usual topology contain

@-open sets that are not regular open, it follows that the real
numbers contain @-C-open sets that are not regular open.

THEOREM 3. Regular openness is equivalent to e-C openness

if and only if CI@ A is regular closed for every set A.
PROOF. Let X be a space. Assume regular openness is equi-

valent to @-C-openness and let A X. Then X C1 e A is regular

open. Thus X C1e A Int CI(X Cle A) Int(X Int Cle A)

X Cl Int C1e A. Therefore CI@ A C1 Int CI@ A which implies

that Cle A is regular closed.

Assume CI@ A is regular closed for every set A. Suppose U
is @-C-open and let A X such that U X C1e A. Then Int C1 U

Int CI(X Cle A) Int(X Int Cl@ A) X Cl Int Cle A
X CI@ A U. Therefore U is regular open and hence regular

openness is equivalent to e-C-openness.

THEOREM . If U is e-C-open, then U is a union of regular
open sets (that is Z-open).

PROOF. Let U be e-C-open. Let x e U. Since U is e-C-open,

there exists a set A X such that U X CI@ A. Because x e

Cle A, there exists an open set W for which x W and (Cl W) C A. Hence x Int Cl W G X Cl@ A U. Thus U is a union of
regular open sets.

It follows from Theorem and the corollary to Theorem 2
that the e-C-open sets form a basis for the semi-regular topology.
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THEOREM 5. The intersection of two -C-open sets is e-C-
open.

PROOF. Let U and V be @-C-open sets. There exist sets
and B such that U X CI A and V X CI@ B. Then U V
(X CI@ A) (X CI B) X (CI@(A)J CI@(B))
X Cl( U B).

The followinE example shows that the union of two e-C-open

sets need not be e-C-open. It follows that the -C-open sets do

not form a topoloEy and hence e-C-openness is not equivalent to

either -openness or e-openness.
EXAMPLE I. Let X {a, b, c} and

{X, , {a}, {c}, {a, c}}. The @-C-open sets of X are X, , {a},

and {c}.

3. -C-CONTINUITY.
We define a function f: X Y to be @-C-continuous if for

each open subset V of Y, f-l(v) is e-C-open in X. Since e-C-open

sets are open, obviously e-C-continuity implies continuity.

Since by Theorem 2 reEular openness implies 3-C-openness,

complete continuity implies @-C-continuity. The identity

appinE on the real numbers with the usual topoloEy is @-C-

continuous but not completely continuous.

THEOREM 6. (Munshi and Basson [3]) A function f: X Y is

super-continuous if and only if the inverse imaEe of each open

set in Y is -open in X.
By Theorem every @-C-open set is --open. Hence

continuity implies super-continuity. The identity mappinE on the

space in Example 1 is super-continuous but not @-C-continuous.

It also follows from Theorem that the correspondinE "local"

or "pointwise" version of @-C-continuity is equivalent to super-

continuity.

THEOREM 7. A function f: X Y is super-continuous if and

only if for each x X and each open neiEhborhood V of f(x),

there exists a @-C-open set U X for which x U and f(U) V.
THEOREM 8. (Lone and HerrinEton []). A function f: X Y

is stronEly e-continuous if and only if the invers6 imaEe of each

open set in Y is @-open in X.
From Theorem 1 e-openness implies e-C-openness. Hence

stronE @-continuity implies @-C-continuity.

EXAMPLE 2. Let X {a. b, c], UI= {X, , {a}, {c}, {a, c}}

and 2 {X, , {a}}. The identity mappinE (X, I + (X, 2
is e-C-continuous but not stronEly e-continuous.

Based upon the above theorems and remarks, we have the

followinE implications, none of which are reversible.

complete continuity "IstronE e-continuity W e-C-continuity e super-continuity

THEOREM 9. If f: X e Y is e-C-continuous and el@ A is

reEular closed for every subset A of X, then f is completely

continuous.
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PROOF. By Theorem 3 @-C-openness is equivalent to regular

openness.

THEOREM i0. If f: X + Y is @-C-continuous and for every

subset A of X, Cl e A is @-closed, then f is strongly @-continuous.
PROOF. Follows from Theorem 8.

The following theorems and examples illustrate some of the
basic properties of @-C-continuous functions.

THEOREM Ii. If f: X e Y is @-C-continuous and g: Y + Z is
continuous, then gel: X / Z is @-C-continuous.

The proof is routine.

COROLLARY. The composition of two e-C-continuous functions
is @-C-continuous.

THEOREM 12. Let fx: X + Yc.: be a function for each in A and

let f: X U Y be given by f(x) (f(x)). If f is @-C-con-

tinuous, then f,: is @-C-continuous for each in A.
PROOF. For each A denote the projection onto Y by p.

Then f pof is e-C-continuous by Theorem ii.

The proof of the next theorem follows from Theorem 12.

THEOREM 13. Let f: X e Y be a function and let g: X e X y

given by g(x) (x, f(x)) be its graph function. If g is

@-C-continuous, then f is @-C-continuous.

The following example shows that the converse of Theorem 13

does not hold.

EXAMPLE 3. Let X {a, b, c} and
{X, , {a}, {c}, {a, c}}. Define f: X + X by f(a) f(b) f(c)

a. Then f is @-C-continuous, but its graph function is not
e-C-continuous since E-l({(a, a), (c, a)}) {a, c} which is not
e-C-open.

The proof of the following theorem is straightforward and

is omitted.

THEOREM i. A function f: X e Y is e-C-continuous if and
only if for each closed subset F of Y, there exists a subset A of

X for which f-l(F) CI@ .
THEOREM 15. If the functions f, g: X + Y ,are e-C-continuous

and Y is Hausdorff, then the set A {x f(x) M g(x)} is a union

of @-C-open sets.
PROOF. Let x A. Since f(x) g(x) and Y is Hausdorff,

there exist disjoint open sets V and W containing f(x) and g(x),

respectively. Then f-l(v) and E-I(w) are @-C-open. By Theorem 5

f-l(v) K-I(w) is @-C-open. Obviously x f-l(V) n E-I(W) A.
COROLLARY. If the functions f, g: X Y are e-C-continuous,

then the set B {x f(x) g(x)} is -closed.

PROOF. By Theorem 15 X B is a union of e-C-open sets and

by Theorem each @-C-open set is a union of regular open sets.
For a function f: X 9 Y the graph of f, denoted by G(f), is

the subset {(x, f(x)) x X} of the product space X Y.
THEOREM 16. If f: X Y is e-C-continuous and Y is Haus-

dorff, then X Y G(f) is a union of sets of the form A B
where A is @-C-open and B is open.
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PROOF. Let (x, y) e X Y G(f). There exist disjoint open

sets V and W for which f(x) e V and y W. Then f-l(v) is @-C-

open and (x, y) e f-l(v) W X Y G(f).

The following theorem is easily proved.

THEOREM 17. If f: X Y is a -C-continuous injection and Y
is Hausdorff, then points in X can be separated by @-C-open sets.. APPLICATIONS TO H-CLOSED SPACES AND KATETOV SPACES

In this section all spaces are assted to be Hausdorff.
Since H-closed spaces and Katetov spaces are related to the

@-closures of sets, there are natural relationships between these
spaces and e-C-open sets and -C-continuity. The following

results are required.

THEOREM 18. (Porter and Tikoo [5]). If X is an H-closed
space and A X, then CI@ A is Katetov.

THEOREM 19. (Porter and Tikoo [5]). An H-closed space in

which every closed set is the -closure of some set is compact.
The next result follows immediately from Theorems i and 18.

Theorem 20. If X is H-closed and f: X Y is @-C-contin-

uous, then for each closed subset F of Y, f-l(F) is a Kattov
subspace of X.

As a consequence of Theorem 19 we have the following result.
Theorem 21. If X is H-closed and every open set is @-C-

open, then X is compact.

The author wishes to express appreciation to the referee for

his helpful comments and valuable suggestions and in particular

for pointing out the paper by Porter and Tikoo [5].
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