

APPROXIMATION BY DOUBLE WALSH POLYNOMIALS

FERENC MÓRICZ

University of Szeged

Bolyai Institute

Aradi v  rtan  k tere 1

6720 Szeged, Hungary

(Received June 20, 1991)

ABSTRACT. We study the rate of approximation by rectangular partial sums, Ces  ro means, and de la Vall  e Poussin means of double Walsh-Fourier series of a function in a homogeneous Banach space X . In particular, X may be $L^p(I^2)$, where $1 \leq p < \infty$ and $I^2 = [0,1] \times [0,1]$, or $C_W(I^2)$, the latter being the collection of uniformly W -continuous functions on I^2 . We extend the results by Watari, Fine, Yano, Jastrebova, Bljumin, Esfahanizadeh and Siddiqi from univariate to multivariate cases. As by-products, we deduce sufficient conditions for convergence in $L^p(I^2)$ -norm and uniform convergence on I^2 as well as characterizations of Lipschitz classes of functions. At the end, we raise three problems.

KEY WORDS AND PHRASES. Walsh-Paley system, homogeneous Banach space, best approximation, W -continuity, modulus of continuity, Lipschitz class, rectangular partial sum, Ces  ro mean, de la Vall  e Poussin mean, Dirichlet kernel, Fej  r kernel, convergence in L^p -norm, uniform convergence, saturation problem.

1980 AMS SUBJECT CLASSIFICATION CODE.

Primary 41A50, Secondary 42C10, 40G05.

1. INTRODUCTION.

We consider the Walsh orthonormal system $\{w_j(x) : j \geq 0\}$ defined on the unit interval $I := [0,1]$ in the Paley enumeration (see [7]). To be more specific, let

$$r_0(x) := \begin{cases} 1 & \text{if } x \in [0, 2^{-1}], \\ -1 & \text{if } x \in [2^{-1}, 1], \end{cases}$$

$$r_0(x+1) := r_0(x),$$

$$r_j(x) := r_0(2^j x), \quad j \geq 1 \quad \text{and} \quad x \in I,$$

be the well-known Rademacher functions. For $k = 0$ set $w_0(x) := 1$, and if

$$k := \sum_{j=0}^{\infty} k_j 2^j, \quad k_j = 0 \quad \text{or} \quad 1,$$

is the dyadic representation of an integer $k \leq 1$, then set

$$w_k(x) := \prod_{j=0}^{\infty} [r_j(x)]^{k_j}.$$

We will study approximation by means of double Walsh polynomials in the norm of a homogeneous Banach space X of functions defined on the unit square $I^2 := [0,1] \times [0,1]$.

2. DOUBLE WALSH POLYNOMIALS AND MODULUS OF CONTINUITY.

We remind the reader that a double Walsh polynomial of order less than m in x and of order less than n in y is a two variable function of the form

$$P(x,y) := \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} a_{jk} w_j(x) w_k(y)$$

where m, n are positive integers and $\{a_{jk}\}$ is a double sequence of real (or complex) numbers. Denote by P_{mn} the collection of such Walsh polynomials and let

$$P := \bigcup_{m=1}^{\infty} \bigcup_{n=1}^{\infty} P_{mn}.$$

The members of P are called double Walsh polynomials.

Denote by Σ_{mn} the finite σ -algebra generated by the collection of dyadic intervals of the form

$I_{mn}(j,k) := [j2^{-m}, (j+1)2^{-m}] \times [k2^{-n}, (k+1)2^{-n}]$ where $0 \leq j < 2^m$, $0 \leq k < 2^n$, and $m, n \geq 0$. It is plain that the collection of Σ_{mn} -measurable functions defined on I^2 coincides with $P_{2^m, 2^n}$. The so-called dyadic topology of I^2 is generated by the union of the Σ_{mn} for $m, n = 0, 1, \dots$

The definition of a homogeneous Banach space on the circle group $T = [-\pi, \pi]$ is well-known (see Katznelson [6]). It is formulated on the dyadic group $I = [0,1]$, while using Walsh polynomials (see Butzer and Nessel [2] and also [8, pp. 154-155]). Following them, we say that a Banach space X of functions defined on I^2 with the norm $\|\cdot\|_X$ is homogeneous if $P \subseteq X \subseteq L^1(I^2)$ and if the following three properties hold:

(i) The norm of X dominates the $L^1(I^2)$ -norm: for any $f \in X$

$$\|f\|_1 \leq \|f\|_X;$$

(ii) The norm of X is translation invariant: for any $(u, v) \in I^2$ and $f \in X$

$$\tau_{uv} f \in X \quad \text{and} \quad \|\tau_{uv} f\|_X = \|f\|_X$$

where τ_{uv} means the dyadic translation by u in the first variable and by v in the second one:

$$\tau_{uv} f(x, y) := f(x+u, y+v), \quad (x, y) \in I^2.$$

Here and in the sequel, $+$ denotes dyadic addition.

(iii) P is dense in X with respect to the norm $\|\cdot\|_X$, i.e., for any $f \in X$ and $\epsilon > 0$ there exists a double Walsh polynomial $P \in P$ such that

$$\|P-f\|_X \leq \epsilon.$$

We recall that the norm in $L^p(I^2)$, $1 \leq p < \infty$, is defined by

$$\|f\|_p := \left\{ \int_0^1 \int_0^1 |f(x,y)|^p dx dy \right\}^{1/p},$$

while $C_W(I^2)$ is the collection of functions $f(x,y)$ that are uniformly continuous from the dyadic topology of I^2 to the usual topology of \mathbb{R} , and endowed with the "sup" norm:

$$\|f\|_\infty := \sup\{|f(x,y)| : (x,y) \in I^2\}.$$

Such a function f is called uniformly W -continuous.

Similarly to the univariate case (cf. [8, pp. 9-11]) if the periodic extension of a function $f(x,y)$ from I^2 to \mathbb{R}^2 with period 1 in both x and y is classically continuous, then f is also uniformly W -continuous on I^2 .

It follows (cf. [8, p. 142] in the univariate case) that $L^p(I^2)$ is the closure of the collection P of double Walsh polynomials when using the norm $\|\cdot\|_p$, $1 \leq p < \infty$. Likewise (cf. [8, pp. 156-158]), $C_W(I^2)$ is the uniform closure of P , i.e., when using the norm $\|\cdot\|_\infty$.

The extension of [8, Lemma 1, p. 155] from I to I^2 is of basic importance in this paper.

LEMMA 1. For any $f, h \in X$ and $g \in L^1(I^2)$

$$\begin{aligned} & \|f * g - h\|_X = \left\| \int_0^1 \int_0^1 f(u,v) g(u,v) du dv - h \right\|_X \\ & \leq \int_0^1 \int_0^1 \|\tau_{uv} f - h\|_X |g(u,v)| du dv \end{aligned} \tag{2.1}$$

where

$$(f * g)(x,y) := \int_0^1 \int_0^1 f(x+u, y+v) g(u,v) du dv, \quad (x,y) \in I^2,$$

is the dyadic convolution of the functions f and g .

The proof of Lemma 1 is almost identical to that of the univariate lemma in [8, pp. 155-156]. We omit it.

Finally, we remind the reader that the (total) modulus of continuity of a function $f \in X$ is defined by

$$\omega_X(f; \delta_1, \delta_2) := \sup\{\|\tau_{uv} f - f\|_X : 0 \leq u < \delta_1, 0 \leq v < \delta_2\}$$

where $\delta_1, \delta_2 > 0$. By the Banach-Steinhaus theorem, for any $f \in X$

$$\lim_{u,v \rightarrow 0} \|\tau_{uv} f - f\|_X = 0,$$

and consequently,

$$\lim_{\delta_1, \delta_2 \rightarrow 0} \omega_X(f; \delta_1, \delta_2) = 0.$$

For $\alpha, \beta > 0$, the Lipschitz class is defined by

$$\text{Lip}(\alpha, \beta; X) := \{f \in X : \omega_X(f; \delta_1, \delta_2) = O(\delta_1^\alpha + \delta_2^\beta) \text{ as } \delta_1, \delta_2 \rightarrow 0\}.$$

Unlike the classical case, $\text{Lip}(\alpha, \beta; X)$ is not trivial when $\alpha > 1$ and/or $\beta > 1$ (cf. [8, p. 188]).

3. APPROXIMATION BY RECTANGULAR PARTIAL SUMS.

As is well-known, the measurement of the rate of approximation to a function $f \in X$ by polynomials in P_{mn} is defined by

$$E_{mn}(f; X) := \inf\{\|f - P\|_X : P \in P_{mn}\}.$$

Since P_{mn} is a finite dimensional subspace of X , for every $f \in X$ the infimum above is attained by some $P_{mn} \in P_{mn}$. Such a polynomial P_{mn} is called a best approximation of f in P_{mn} .

Given a function $f \in L^1(I^2)$, we form its double Walsh-Fourier series as follows

$$\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{jk} \omega_j(x) \omega_k(y) \quad (3.1)$$

where the

$$a_{jk} := \int_0^1 \int_0^1 f(u, v) \omega_j(u) \omega_k(v) du dv, \quad j, k \geq 0,$$

are called double Walsh-Fourier coefficients of f . The rectangular partial sums of series (3.1) are defined by

$$S_{mn}(f; x, y) := \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} a_{jk} \omega_j(x) \omega_k(y), \quad m, n \geq 1.$$

Now, the modulus of continuity gives sharp estimates to the rate of approximation by double Walsh polynomials $P \in P_{2^m, 2^n}$ and by the rectangular partial sums $S_{2^m, 2^n}(f)$.

THEOREM 1. For any $f \in X$ and $m, n \geq 0$,

$$\begin{aligned} 2^{-1} \omega_X(f; 2^{-m}, 2^{-n}) &\leq E_{2^m, 2^n}(f; X) \\ &\leq \|S_{2^m, 2^n}(f) - f\|_X \leq \omega_X(f; 2^{-m}, 2^{-n}). \end{aligned} \quad (3.2)$$

We note that the right inequality is the Walsh analogue of the classical Jackson inequality. The left-most inequality has no trigonometric analogue.

PROOF. As is well-known,

$$S_{mn}(f; x, y) = \int_0^1 \int_0^1 f(x+u, y+v) D_m(u) D_n(v) du dv \quad (3.3)$$

where

$$D_m(u) := \sum_{j=0}^{m-1} \omega_j(u), \quad m \geq 1,$$

is the Walsh-Dirichlet kernel. We recall that the Paley lemma (see, e.g., [8, p 7]) says that

$$D_{2^m}(u) = \begin{cases} 2^m & \text{if } u \in [0, 2^{-m}), \\ 0 & \text{if } u \in [2^{-m}, 1]. \end{cases} \quad (3.4)$$

Now, by (2.1),

$$\begin{aligned}
\|S_{2^m, 2^n}(f) - f\|_X &\leq \int_0^1 \int_0^1 \|\tau_{uv} f - f\|_X \frac{1}{2^m} \frac{1}{2^n} (u)_D (v)_D du dv \\
&= 2^{m+n} \int_0^{2^{-m}} \int_0^{2^{-n}} \|\tau_{uv} f - f\|_X du dv \\
&\leq \omega_X(f, 2^{-m}, 2^{-n}),
\end{aligned} \tag{3.5}$$

which is the third inequality in (3.2).

The second inequality in (3.2) is trivial.

We observe that for any polynomial $P \in \mathcal{P}_{2^m, 2^n}$ and $(u, v) \in I_{mn}(0, 0)$ we have

$$P(x+u, y+v) = P(u, v).$$

Consequently, for such u, v

$$\tau_{uv} f - f = \tau_{uv} (f - P) - (f - P).$$

Now, let P be a best approximation to f in $\mathcal{P}_{2^m, 2^n}$. Then

$$\omega_X(f; 2^{-m}, 2^{-n}) \leq 2\|f - P\|_X = 2E_{2^m, 2^n}(f; X).$$

This is equivalent to the first inequality in (3.2).

The following corollary of Theorem 1 shows that the Lipschitz classes can be used to characterize functions by their rate of approximation by double Walsh polynomials.

COROLLARY 1. Let $f \in X$ and $\alpha, \beta > 0$. Then the following five statements are equivalent:

- (a) $f \in \text{Lip}(\alpha, \beta; X)$,
- (b) $\|S_{2^m, 2^n}(f) - f\|_X = O(2^{-m\alpha} + 2^{-n\beta})$ as $m, n \rightarrow \infty$,
- (c) $E_{2^m, 2^n}(f; X) = O(2^{-m\alpha} + 2^{-n\beta})$ as $m, n \rightarrow \infty$,
- (d) $E_{jk}(f; X) = O(j^{-\alpha} + k^{-\beta})$ as $j, k \rightarrow \infty$,
- (e) $\omega_X(f; 2^{-m}, 2^{-n}) = O(2^{-m\alpha} + 2^{-n\beta})$ as $m, n \rightarrow \infty$.

PROOF. According to Theorem 1, (a) implies (b) and (c).

By definition,

$$E_{jk}(f; X) \leq E_{il}(f; X) \text{ whenever } j \geq i \text{ and } k \geq l.$$

Consequently, if

$$2^m \leq j < 2^{m+1}, 2^n \leq k < 2^{n+1}, \text{ and } m, n \geq 0, \tag{3.6}$$

then

$$E_{2^{m+1}, 2^{n+1}}(f; X) \leq E_{jk}(f; X) \leq E_{2^m, 2^n}(f; X). \tag{3.7}$$

Hence it follows that (c) and (d) are equivalent.

By Theorem 1 and (3.7), (d) implies (e).

Finally, the fact that $\omega_X(f; \delta_1, \delta_2)$ decreases as either δ_1 or δ_2 decreases shows that (e) and (a) are equivalent.

On closing, we note that Theorem 1 and Corollary 1 are the multivariate extensions of the corresponding results by Watari [9], proved for the cases $X = C_W(I)$ and $L^p(I)$, $1 \leq p < \infty$.

4. APPROXIMATION BY CESÀRO MEANS.

As is well-known, the first arithmetic means or Cesàro means of series (3.1) are defined by

$$\sigma_{mn}(f; x, y) := \frac{1}{mn} \sum_{j=1}^m \sum_{k=1}^n S_{jk}(f; x, y), \quad m, n \geq 1.$$

It follows from (3.3) that

$$\sigma_{mn}(f; x, y) = \int_0^1 \int_0^1 f(x+u, y+v) K_m(u) K_n(v) du dv \quad (4.1)$$

where

$$K_m(u) := \frac{1}{m} \sum_{j=1}^m D_j(u)$$

is the Walsh-Fejér kernel. This kernel has the remarkable property of quasi-positiveness:

$$\|K_m\|_1 := \int_0^1 |K_m(u)| du \leq 2, \quad m \geq 1,$$

first proved by Yano [10]. By (2.1), we conclude that for any $f \in X$

$$\|\sigma_{mn}(f)\|_X \leq \|K_m\|_1 \|K_n\|_1 \|f\|_X \leq 4 \|f\|_X. \quad (4.2)$$

We estimate the rate of convergence when a function is approximated by the Cesàro means of its double Walsh-Fourier series.

THEOREM 2. For any $f \in X$ and $j, k \geq 1$,

$$\|\sigma_{jk}(f) - f\|_X \leq 6 \sum_{i=0}^m \sum_{l=0}^n 2^{i+l-m-n} \omega_X(f; 2^{-i}, 2^{-l}) \quad (4.3)$$

where m and n are defined in (3.6).

The next two corollaries are immediate consequences of Theorem 2.

COROLLARY 2. (i) If $f \in L^p(I^2)$ for some $1 \leq p < \infty$, then the Cesàro means $\sigma_{jk}(f)$ of its double Walsh-Fourier series converge to f in L^p -norm.

(ii) If $f \in C_W(I^2)$, then the $\sigma_{jk}(f)$ converge to f uniformly on I^2 .

In statement (i), the case $p = 1$ is really interesting. In Section 6, we will prove that, in the cases when $1 < p < \infty$, even the rectangular partial sums $S_{jk}(f)$ converge to f in L^p -norm (see Theorem 5 below). Statement (ii) is the multivariate extension of the corresponding result by Fine [4].

COROLLARY 3. If $f \in \text{Lip}(\alpha, \beta; X)$ for some $\alpha, \beta > 0$, then

$$\|\sigma_{jk}(f) - f\|_X = \begin{cases} O(j^{-\alpha} + k^{-\beta}) & \text{if } 0 < \alpha, \beta < 1, \\ O(j^{-1} \log j + k^{-\beta}) & \text{if } 0 < \beta < 1 = \alpha, \\ O(j^{-1} + k^{-\beta}) & \text{if } 0 < \beta < 1 < \alpha, \\ O(j^{-1} \log j + k^{-1} \log k) & \text{if } \alpha = \beta = 1, \\ O(j^{-1} + k^{-1} \log k) & \text{if } 1 = \beta < \alpha, \\ O(j^{-1} + k^{-1}) & \text{if } 1 < \alpha, \beta. \end{cases} \quad (4.4)$$

We note that Corollary 3 is also the multivariate extension of the corresponding results by Yano [11] (proved for $0 < \alpha < 1$ and $1 \leq p \leq \infty$) and by Jastrebova [5] (proved for $\alpha = 1$ and $p = \infty$).

PROOF OF THEOREM 2. Keeping (3.6) in mind, we may write

$$\begin{aligned}
 \sigma_{jk}(f) - f &= \frac{2^{m+n}}{jk} \left(\frac{1}{2^{m+n}} \sum_{i=1}^{2^m} \sum_{l=1}^{2^n} s_{il}(f) - f \right) \\
 &+ \frac{1}{jk} \left\{ \sum_{\substack{j \\ i=2^m+1}}^j \sum_{\substack{2^n \\ l=1}}^{2^n} \sum_{\substack{2^m \\ i=1}}^{2^m} \sum_{\substack{k \\ l=2^n+1}}^k + \sum_{\substack{j \\ i=2^m+1}}^j \sum_{\substack{k \\ l=2^n+1}}^k \right\} (s_{il}(f) - s_{2^m, 2^n}(f)) \\
 &+ \left(1 - \frac{2^{m+n}}{jk} \right) (s_{2^m, 2^n}(f) - f) \\
 &= \frac{2^{m+n}}{jk} (\sigma_{2^m, 2^n}(f) - f) + \sigma_{mn}(f - s_{2^m, 2^n}(f)) + \left(1 - \frac{2^{m+n}}{jk} \right) (s_{2^m, 2^n}(f) - f).
 \end{aligned}$$

Hence, by the triangle inequality and (4.1),

$$\|\sigma_{jk}(f) - f\|_X \leq \|\sigma_{2^m, 2^n}(f) - f\|_X + 5\|s_{2^m, 2^n}(f) - f\|_X.$$

Consequently, by Theorem 1,

$$\|\sigma_{jk}(f) - f\|_X \leq \|\sigma_{2^m, 2^n}(f) - f\|_X + 5\omega_X(f; 2^{-m}, 2^{-n}). \quad (4.5)$$

Now, we estimate the first quantity on the right-hand side of (4.5). To this end, we recall the representation

$$K_{2^m}(u) = 2^{-1} \left\{ 2^{-m} D_{2^m}(u) + \sum_{i=0}^m 2^{i-m} D_{2^m}(u + 2^{-i-1}) \right\}, \quad u \in I$$

(see, e.g., [8, p. 46, relation (iii)]). By (3.4), for $0 \leq i < m$

$$D_{2^m}(u + 2^{-i-1}) = \begin{cases} 2^m & \text{if } u \in [2^{-i-1}, 2^{-i-1} + 2^{-m}), \\ 0 & \text{otherwise;} \end{cases}$$

and for $i = m$

$$D_{2^m}(u + 2^{-m-1}) = D_{2^m}(u) = \begin{cases} 2^m & \text{if } u \in [0, 2^{-m}), \\ 0 & \text{otherwise.} \end{cases}$$

In particular, it follows that $K_{2^m}(u) \geq 0$ for all $u \in I$.

Similarly to (3.5), we apply again (2.1) and then by an elementary reasoning we obtain that

$$\begin{aligned}
 \|\sigma_{2^m, 2^n}(f) - f\|_X &\leq \int_0^1 \int_0^1 \|\tau_{uv} f - f\|_X K_{2^m}(u) K_{2^n}(v) du dv \\
 &= \left\{ \int_0^{2^{-m}} \int_0^{2^{-n}} \sum_{i=0}^{m-1} \sum_{l=0}^{2^{-i}-1} \int_0^{2^{-i}} \int_0^{2^{-n}} \sum_{l=0}^{2^{-n}-1} \sum_{j=0}^{2^{-l}-1} \int_0^{2^{-l}} \right. \\
 &\quad \left. + \sum_{i=0}^{m-1} \sum_{l=0}^{n-1} \int_0^{2^{-i}-1} \int_0^{2^{-l}-1} \right\} \|\tau_{uv} f - f\|_X K_{2^m}(u) K_{2^n}(v) du dv \\
 &\leq \omega_X(f; 2^{-m}, 2^{-n}) + \sum_{i=0}^{m-1} 2^{i-m-1} \omega_X(f; 2^{-i}, 2^{-n})
 \end{aligned}$$

$$\begin{aligned}
& + \sum_{l=0}^{n-1} 2^{l-n-1} \omega_X(f; 2^{-m}, 2^{-l}) \\
& \cdot \sum_{i=0}^{m-1} \sum_{l=0}^{n-1} 2^{i-m-1} 2^{l-n-1} \omega_X(f; 2^{-i}, 2^{-l}) \\
& \leq \sum_{i=0}^m \sum_{l=0}^n 2^{i+l-m-n} \omega_X(f; 2^{-i}, 2^{-l}). \tag{4.6}
\end{aligned}$$

Combining (4.5) and (4.6) yields (4.3).

5. APPROXIMATION BY DE LA VALLÉE POUSSIN MEANS.

By Corollaries 1 and 3, the rate of approximation by $\sigma_{jk}(f)$ is as good as by $S_{2^m, 2^n}(f)$ if $f \in \text{Lip}(\alpha, \beta; X)$ for some $0 < \alpha, \beta < 1$, where m and n are defined by (3.6). However, the σ'_{jk} s are not projections from X onto P_{jk} . These two important properties are satisfied by the de la Vallée Poussin means of series (3.1) defined by

$$V_{mn}(f; x, y) := \frac{1}{mn} \sum_{j=m+1}^{2m} \sum_{k=n+1}^{2n} S_{jk}(f; x, y), \quad m, n \geq 1.$$

THEOREM 3. For any $f \in X$ and $m, n \geq 1$,

$$\|V_{mn}(f) - f\|_X \leq 37E_{mn}(f; X). \tag{5.1}$$

We note that in the univariate case, Bljumin [1], Esfahanizadeh and Siddiqi [3] studied de la Vallée Poussin means and obtained an inequality whose multivariate extension is (5.1).

PROOF. A routine computation shows that

$$\begin{aligned}
V_{mn}(f; x, y) &= S_{mn}(f; x, y) \\
&+ 2 \sum_{j=m}^{2m-1} \sum_{k=0}^{n-1} \left(1 - \frac{j}{2m}\right) \sigma_{jk} w_j(x) w_k(y) \\
&+ 2 \sum_{j=0}^{m-1} \sum_{k=n}^{2n-1} \left(1 - \frac{k}{2n}\right) \sigma_{jk} w_j(x) w_k(y) \\
&+ 4 \sum_{j=m}^{2m-1} \sum_{k=n}^{2n-1} \left(1 - \frac{j}{2m}\right) \left(1 - \frac{k}{2n}\right) \sigma_{jk} w_j(x) w_k(y).
\end{aligned}$$

Hence it follows immediately that for any $P \in P_{mn}$

$$V_{mn}(P; x, y) = P(x, y). \tag{5.2}$$

On the other hand, it is easy to check that

$$V_{mn}(f) = 4\sigma_{2m, 2n}(f) - 2\sigma_{2m, n}(f) - 2\sigma_{m, 2n}(f) + \sigma_{mn}(f).$$

Consequently, by (4.2), for any $f \in X$ and $m, n \geq 1$ we have

$$\|V_{mn}(f)\|_X \leq 36\|f\|_X. \tag{5.3}$$

Now, let P be a best approximation to f in P_{mn} . Then, combining (5.2) and (5.3) yields

$$\begin{aligned}\|V_{mn}(f) - f\|_X &\leq \|V_{mn}(f-P)\|_X + \|P-f\|_X \\ &\leq 37\|P-f\|_X = 37E_{mn}(f;X).\end{aligned}$$

6. ESTIMATION AND SATURATION PROBLEMS.

(A) Theorem 1 says that the rate of approximation by the rectangular partial sums $S_{2^m, 2^n}(f)$ of the Walsh-Fourier series (3.1) is no worse than that by double Walsh polynomials from $P_{2^m, 2^n}$ at all. As to approximation by $S_{mn}(f)$, we can ensure only a weaker rate in general.

THEOREM 4. For any $f \in X$ and $m, n \geq 1$,

$$\|S_{mn}(f) - f\|_X \leq (1 + \|D_m\|_1 \|D_n\|_1) E_{mn}(f;X). \quad (6.1)$$

This can be proved in a routine way. For the reader's convenience, we sketch it.

PROOF. Let P be a best approximation to f in P_{mn} . Since $S_{mn}(P) = P$, we may write that

$$\|S_{mn}(f) - f\|_X \leq \|S_{mn}(f-P)\|_X + \|P-f\|_X. \quad (6.2)$$

Taking into account (3.3), (2.1), and the fact that $\|\cdot\|_X$ is translation invariant gives that

$$\begin{aligned}\|S_{mn}(f-P)\|_X &\leq \int_0^1 \int_0^1 \|\tau_{uv}(f-P)\|_X |D_m(u) D_n(v)| du dv \\ &= \|f-P\|_X \|D_m\|_1 \|D_n\|_1.\end{aligned} \quad (6.3)$$

Now, (6.1) follows from (6.2) and (6.3).

We note that

$$\|D_m\|_1 = O(\log m)$$

and this estimate is sharp (see, e.g. [8, p. 35]). In spite of this fact, estimate (6.1) can be essentially improved in the particular case when $X = L^p(I^2)$, $1 < p < \infty$. We will write $\|\cdot\|_p$ instead of $\|\cdot\|_{L^p(I^2)}$.

THEOREM 5. For any $1 < p < \infty$, there exists a constant \tilde{K}_p such that for any $f \in L^p(I^2)$ and $m, n \geq 1$ we have

$$\|S_{mn}(f) - f\|_p \leq \tilde{K}_p E_{mn}(f; L^p(I^2)). \quad (6.4)$$

Theorem 5 is ultimately a consequence of the following result by Paley [7]: For any $1 < p < \infty$, there exists a constant K_p such that for any $g \in L^p(I)$ and $m \geq 1$ we have

$$\|S_m(g)\|_p \leq K_p \|g\|_p \quad (6.5)$$

where this time

$$S_m(g; x) := \sum_{j=0}^{m-1} \left(\int_0^1 g(u) w_j(u) du \right) w_j(x) \quad \text{and} \quad \|g\|_p := \left\{ \int_0^1 |g(x)|^p dx \right\}^{1/p}.$$

On the basis of (6.5) we will prove the following

LEMMA 2. For any $f \in L^p(I^2)$, $1 < p < \infty$, and $m, n \geq 1$,

$$\|S_{mn}(f)\|_p \leq K_p^2 \|f\|_p. \quad (6.6)$$

PROOF. We may consider $f(x, y)$ as a function of x for each fixed y denoted by $g_y(x) := f(x, y)$. Observe that if $f \in L^p(I^2)$, then $g_y \in L^p(I)$ for almost all $y \in I$ and

$$S_{mn}(f; x, y) = S_n(S_m(g_y; x); y), \quad m, n \geq 1.$$

Furthermore, if $f \in L^p(I^2)$, then

$$G_{m,x}(y) := S_m(g_y; x) = \sum_{j=0}^{m-1} \left(\int_0^1 g_y(u) w_j(u) du \right) w_j(x) \in L^p(I)$$

for all $m \geq 1$ and for almost all $x \in I$.

Now, applying Fubini's theorem three times and the univariate inequality (6.5) twice provides (6.6) as follows

$$\begin{aligned} & \int_0^1 \int_0^1 |S_{mn}(f; x, y)|^p dx dy \\ &= \int_0^1 \left\{ \int_0^1 \left| \sum_{k=0}^{n-1} \left(\int_0^1 G_{m,x}(v) w_k(v) dv \right) w_k(y) \right|^p dy \right\} dx \\ &\leq \int_0^1 K_p \left\{ \int_0^1 |G_{m,x}(y)|^p dy \right\} dx \\ &= K_p \int_0^1 \left\{ \int_0^1 \left| \sum_{j=0}^{m-1} \left(\int_0^1 g_y(u) w_j(u) du \right) w_j(x) \right|^p dx \right\} dy \\ &\leq K_p \int_0^1 K_p \left\{ \int_0^1 |g_y(x)|^p dx \right\} dy \\ &= K_p^2 \int_0^1 \int_0^1 |f(x, y)|^p dx dy. \end{aligned}$$

After these preliminaries, the proof of Theorem 5 is identical with that of Theorem 4, except that we use (6.6) instead of (6.3). In this way, we arrive at (6.4) with $\tilde{K}_p := 1 + K_p^2$.

Obviously, Theorem 5 implies the following

COROLLARY 4. If $f \in L^p(I^2)$ for some $1 < p < \infty$, then the rectangular partial sums $S_{mn}(f)$ of its double Walsh-Fourier series converge to f in L^p -norm.

Nevertheless, it seems to be very likely that estimate (6.1) is the best possible in general.

PROBLEM 1. Show that, in the cases when $X = L^1(I^2)$ or $C_W(I^2)$, there exists a function $f \in X$ such

$$\limsup_{m, n \rightarrow \infty} \frac{\|S_{mn}(f) - f\|_X}{\log m \log n} > 0.$$

(B) We guess that Corollary 3 is also the best possible in the above sense. For example, we formulate this in connection with the fourth estimate in (4.4).

PROBLEM 2. Show that, in the cases when $X = L^1(I^2)$ or $C_W(I^2)$, there exists a function $f \in \text{Lip}(1, 1; X)$ such that

$$\limsup_{m, n \rightarrow \infty} \frac{\|\sigma_{mn}(f) - f\|_X}{m^{-1} \log m + n^{-1} \log n} > 0.$$

In the univariate case, the corresponding result was proved by Jastrebova [5] with "lim" instead of "lim sup".

(C) Finally, we discuss the so-called saturation problem. We begin with the observation that the rate of approximation by the Cesàro means $\sigma_{mn}(f)$ to functions $f \in \text{Lip}(\alpha, \beta)$ is not improved as α and β increase beyond 1. Indeed, the following is true.

THEOREM 6. If for some $f \in X$

$$\|\sigma_{2^n, 2^n}(f) - f\|_X = o(2^{-n}) \quad \text{as } n \rightarrow \infty, \quad (6.7)$$

then f is constant.

PROOF. Since

$$\|S_{2^n, 2^n}(f; X) - \sigma_{2^n, 2^n}(f; X)\|_X \leq \|\sigma_{2^n, 2^n}(f) - f\|_X,$$

by hypothesis and Theorem 1, we have

$$\|S_{2^n, 2^n}(f) - f\|_X = o(2^{-n}) \quad \text{as } n \rightarrow \infty. \quad (6.8)$$

Taking into account that

$$2^n(S_{2^n, 2^n}(f; x, y) - \sigma_{2^n, 2^n}(f; x, y)) = \sum_{j=0}^{2^n-1} \sum_{k=0}^{2^n-1} (j+k-2^{-n}jk) a_{jk} w_j(x) w_k(y),$$

by (6.7) and (6.8), we conclude that

$$\lim_{n \rightarrow \infty} \left\| \sum_{j=0}^{2^n-1} \sum_{k=0}^{2^n-1} (j+k-2^{-n}jk) a_{jk} w_j(x) w_k(y) \right\|_X = 0.$$

Since $\|\cdot\|_1 \leq \|\cdot\|_X$, it follows that

$$\begin{aligned} & |(j_0+k_0) a_{j_0, k_0}| \\ &= \lim_{n \rightarrow \infty} \left| \iint_{\substack{1 \\ 0 \\ 0}}^1 w_{j_0}(x) w_{k_0}(y) \sum_{j=0}^{2^n-1} \sum_{k=0}^{2^n-1} (j+k-2^{-n}jk) a_{jk} w_j(x) w_k(y) dx dy \right| \\ &\leq \lim_{n \rightarrow \infty} \left\| \sum_{j=0}^{2^n-1} \sum_{k=0}^{2^n-1} (j+k-2^{-n}jk) a_{jk} w_j(x) w_k(y) \right\|_1 = 0 \end{aligned}$$

for all $j_0, k_0 \geq 0$ such that $\max(j_0, k_0) \geq 1$. This implies that $a_{j_0, k_0} = 0$ for all such pairs j_0, k_0 , and therefore, $f = a_{00}$ is constant.

PROBLEM 3. How can one characterize those functions $f \in X$ such that

$$\|\sigma_{jk}(f) - f\|_X = o(j^{-1} + k^{-1}) ? \quad (6.9)$$

This is not known even in the univariate case. We conjecture that, in the special case when $j = k = 2^n$, $X = C_W(I^2)$ or $L^p(I^2)$ for some $1 \leq p < \infty$, we have

$$\|\sigma_{2^n, 2^n}(f) - f\|_X = O(2^{-n})$$

if and only if

$$\sum_{i=0}^n \sum_{l=0}^n 2^{i+l} \omega(f; 2^{-i}, 2^{-l}) = O(2^n).$$

The "if" part follows from (4.6). The proof (or disproof) of the "only if" part is a problem.

ACKNOWLEDGEMENT: This work was partially supported by Grant No. 234 from the Hungarian National Foundation for Scientific Research.

REFERENCES

1. BLJUMIN, S.L. Certain properties of a class of multiplicative systems and problems of approximation of functions by polynomials with respect to those systems, Izv. Vuzov Mat. No. 4 (1967), 13-22 (Russian).
2. BUTZER, P.L. and NESSEL, R.J. Fourier analysis and approximations, Vol. 1, Birkhäuser, Basel and Academic Press, New York-London, 1971.
3. ESFAHANIZADEH, J. and SIDDIQI, A.H. On the approximation of functions by de la Vallée-Poussin mean of their Walsh-Fourier series, Aligarh Bull. Math. 8 (1978), 59-64.
4. FINE, N.J. On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414.
5. JASTREBOVA, M.A. On approximation of functions satisfying the Lipschitz condition by arithmetic means of their Walsh-Fourier series, Mat. Sbornik 71 (113) (1966), 214-226 (Russian).
6. KATZNELSON, Y. Harmonic analysis, John Wiley and Sons, New York, 1968.
7. PALEY, R.E.A.C. A remarkable system of orthogonal functions, Proc. London Math. Soc. 34 (1932), 241-279.
8. SCHIPP, F., WADE, W.R. and SIMON, P. Walsh series. An introduction to dyadic harmonic analysis, Akadémiai Kiadó, Budapest, 1990.
9. WATARI, C. Best approximation by Walsh polynomials, Tôhoku Math. J. 15 (1963), 1-5.
10. YANO, SH. On Walsh series, Tôhoku Math. J. 3 (1951), 223-242.
11. YANO, SH. On approximation by Walsh functions, Proc. Amer. Math. Soc. 2 (1951), 962-967.

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from "Qualitative Theory of Differential Equations," allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk