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ABSTRACT. Interval-Lipschitz mappings between topological vector spaces are defined
and compared with other Lipschitz-type operators. A theory of generalized gradients
is presented when both spaces are locally convex and the range spaceé is an order
complete vector lattice. Sample applications to the theory of nonsmooth optimization
are given.
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1. INTRODUCTION.

The purpose of this paper is to introduce a broad class of Lipschitz-type
operators and to present new results concerning first-order optimality conditions for
nonsmooth nonconvex programs in infinite dimensions.

Significant progress in deriving more general optimality conditions for
mathematical programming models has been made in recent years as a result of advances
in nonsmooth analysis and optimization. The study of nonsmooth problems is motivated
in part by the desire to optimize increasingly sophisticated models of complex man-
made and naturally occurring systems that arise in areas ranging from economics,
operations research, and engineering design to variational principles that correspond
to partial differential equations. Results in nonsmooth optimization have expedited
understanding of the salient aspects of the classic smooth theory and identified
concepts fundamental to optimality that are not intertwined with differentiability
assumptions. We mention as examples in this regard the works of Hiriart-Urruty [1],
where the convexity of a tangent cone is required for optimality in the nonsmooth
case but not when differentiability is assumed, and Clarke [2] where standard
assumptions in optimal control are weakened.

First-order optimality conditions have received the most scrutiny and in general
are well-understood. In terms of first principles they require, for example, that
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two problem-specific sets be nonintersecting or that a certain map not be locally
surjective. Smoothness is not a fundamental prerequisite for these properties to
hold. Analysis serves as the link between the above mentioned conditions and their
equivalent expression in useable and verifiable algebraic forms. Research in
nonsmooth analysis is motivated in part by the attitude that the essentials of
optimality are sufficiently amenable and extensive to allow their application to
nondifferentiable (and nonconvex) problems, provided an appropriate analysis is
developed.

This paper makes a contribution to nonsmooth analysis and optimlzation based on
these ideas. Our approach and subsequent results, while new in many respects,
continue the work of others in extending the applicability of differential calculus.
For example, generalized derivatives are defined in the well-known theory of
distributions; however, these derivatives are of little use in optimization since
their values are often not well-defined at local extrema.

The systematic development of nonsmooth analysis began in the late 1960’s and
early 1970’s. Initial results by Rockafellar [3-7] , Moreau [8] and McLinden [9]
dealt with convex, concave, and convex-concave functions. Valadier [10], Ioffe-Levin
{11], Zowe [12, 13], Kutateladze [14], Rubinov [15], Borwein [16] and Papageorgiou
[17] made important generalizations to convex mappings into ordered vector spaces.
However, there is no general agreement on exactly what to do except in the convex
case. The "quasidifferentials” of Pshenichnyi [18], "2 -gradients” of Bazaara, Goode
and Nashed [19], "subdifferentials” of Penot [20] and the *derivative containers” of
Warga [21] marked the initial thrusts into the nonconvex, nonsmooth setting. Clarke
[2, 22-25] introduced a generalized gradient for nonconvex functions whose analytical
virtues were recognized from the outset. His approach, like our approach in this
paper, is essentially a "convexifying" process utilizing properties inherent in the
function rather than that of assuming the existence of convex and/or linear
approximations.

Since the initial contribution of Clarke, the theory and applications of
generalized gradients has grown to such an extent that a survey is beyond the scope
of this introduction. For excellent summaries of the theory, motivation and
applications of generalized gradients and extensive references we refer the reader to
Clarke [2], Hiriart-Urruty [1] and Rockafellar [26]; in addition, Borwein and
Strojwas [27] provide an insightful comparison of several recent directional
derivatives and generalized gradients of the same genre as Clarke’s gradient. The
excellent papers by Papageorgiou [17, 28] and Ioffe [29, 30] provide many fundamental
results in nonsmooth analysis for vector-valued mappings.

We conclude this section with a brief summary of the main results. In Section 2
we introduce interval-Lipschitz mappings and show that several other classes of
mappings introduced in the context of nonsmooth analysis and/or optimization, such as
strictly differentiable mappings, the Lipschitz operators of Kusraev [31] and
Papageorgiou [28], the order-Lipschitz mappings of Reiland [32, 33], convex mappings,
and sublinear mappings are special cases of interval-Lipschitz mappings. In Section
3 we define and exhibit properties of a generalized directional derivative and
subdifferential and make comparisons with several other directional derivatives and
subdifferentials in the literature. We establish optimality conditions in Section 4
and relate these to other optimality conditions involving Lipschitz operators and
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quasidifferentiable functions. A distinguishing feature of our optimality conditions
is that they allow for an infinite-dimensional equality constraint. Ioffe [30]
obtains results for problems in Banach spaces with an infinite-dimensional Lipschitz
equality constraint operator or finitely many directionally Lipschitzian equality
constraint functions.

2. INTERVAL-LIPSCHITZ MAPPINGS.

Unless specified otherwise, in this section X and V denote, respectively, a
linear topological space and an ordered topological vector space. We will denote the
zero elements of X and V by 8. We will occasionally make the assumption that the
positive cone V,: = (v € V: v » 8) is normal, that is, there is a neighborhood base ¥
of the origin 8 € V such that, for W e ¥, W = (W+V,) n (W-V,). Such neighborhoods
are said to be ful] or saturated. Several consequences of normality utilized in the
sequel can be found in Peressini [34]. We will always make explicit mention of this
assumption when it is being used.

DEFINITION 1. The mapping f: X - V is interval-Lipschitz at X € X if there
exists neighborhoods N of X and W of § € X, € > 0, two mappings m and M from W into
V satisfying m(y) < M(y), and a mapping r from (0,e] x X x X into V satisfying

113 r(t,x;y) = 6 for all y € W, such that

XX
t [ f(xety) - F(x)] € [n(y), MY)T + r(t,x5y)

for all x e N, ye Wand t € (0,¢}. If U is an open subset of X, f is locally
interval-Lipschitz on U if f is interval-Lipschitz at X for every X € U.

If X is a normed space, V=R, and f is Lipschitz at X € X in the usual sense,
that is, there exist a neighborhood Ny of X and k € R* such that |f(x) - f(y)] <
kllx-yll for all x, y € Ny, then f is interval-Lipschitz at X. Indeed, select a
neighborhood N of X and a circled neighborhood W of 8 € X such that N + W ¢ Ng;
then for x e N, y e W and t € (0,1], [f(x+ty)-f(x)| < tk[lyl and the choices m(y) =
-k|lyll, M(y) = kjlyll, r=0 show that f is interval-Lipschitz at Xx. Below we provide
additional sample classes of operators that are interval-Lipschitz.

EXAMPLE 1. For X a Banach space and V an order complete Banach lattice,
Papageorgiou [28] defines a mapping f: X - V to be locally o-lipschitz if for every
open bounded subset U of X there is a k € V :=(v € V: v20), the positive cone of V,
such that |f(x) - f(z)| < k||x-z]] for all x, z € U. If f is locally o-Lipschitz and U
is an open bounded subset of X, then f is locally interval-Lipschitz on U. Indeed,
if X € U, choose a neighborhood N of X and a circled neighborhood W of 8 € X such
that N+W ¢ U. Then for x e N, y € W, and t €(0,1], we have |f(x+ty) - f(x)| < kt|yl;
the same choices for m(.), M(:), and r as in the preceding pa}agraph show that f is
interval-Lipschitz at X. Since X € U was arbitrary, f is locally interval-
Lipschitz on U.

EXAMPLE 2. If X is a normed vector space, f: X - V is strictly differentiable at
X € X if there exists a continuous linear mapping Vf(x):X = V such that

Tim [f(x) - f(z) - VF(x)(x-2))/|x-2|| = O .
XX

Z-X
X#Z

If we choose m(y) = M(y) = VFf(X)y and r(t,x;y) = t'l[f(x+ty)-f(x) - tVF(X)y]l,
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then 113 r(t,x;y) = 0 and f is interval-Lipschitz at x.

XX

EXAMPLE 3. If f:X - V is sublinear (i.e., subadditive and positively
homogeneous), then f is interval-Lipschitz on X. In fact, if u and z are in X, then
by the sublinearity of f, f(u) - f(z) < f(u - z) and -f(z-u) < f(u) - f(z). Thus,
for x and y in X and t > 0, -f(-ty) < f(x+ty) - f(x) < f(ty) and the choices r=0,
m(y) = -f(-y), M(y) = f(y) show that f is interval-Lipschitz.

EXAMPLE 4A. If V is a vector lattice, Kusraev [31] defines a mapping f: X = V to
be Lipschitz at X in X if there exists a neighborhood Ny of X and a continuous
monotone sublinear operator P: X -+ V such that |f(u) - f(v)| < P(u-v) for all u,v in
Ng- Let N be a neighborhood of X and W a circled neighborhood of 8 in X such that
N + W g Ng. Then the sublinearity of P and the choices m(y) = -P(y), M(y) = P(y) and
r=0 show that f is interval-Lipschitz at x.

EXAMPLE 4B. If X is a Banach space, then the inequality in Kusraev’s definition
of a Lipschitz mapping f at X in Example 4a can be stated as |f(u) - f(v)| < klju-v|
for all u,v € Ny and for some k € V,. These Lipschitz mappings are equivalent to the
subclass of interval-Lipschitz mappings, called order-Lipschitz mappings, on the
Banach space X where m(y) = vy, M(y) = vp, and r(.,-5y) = 0 for all y € W. Indeed,
if f is Lipschitz at X according to Kusraev, then choosing neighborhoods N of X
and W of @ in X such that N + W ¢ Ny and selecting m(y) = -k, M(y) = k, and r=0 shows
that f is order-Lipschitz at Xx. Conversely, suppose f is order-Lipschitz at X
with m(y) = vy, M(y) = vp, and r(.,-;y) = 0 for all y € W. Let the real number_p >0
be such that B(X,2p) :={xeX:||%-x|[<2p) ¢ N, B(8,2p) ¢ W and choose o > 0 such that
p'la < €. Then for all x,y € B(kx,0) we have f(y) - f(x) = f(x+p'l"¥‘xuop((y-x)/ny-
xlI) - f(x) € o7 Jy-xl[v},val, if x # y; since 2 Ny-xll < € and p(y-x)/lly-x|l € W,
1f(y) - f(x)| < klly-x}| for all x,y € B(X,0), where kxp'l(lvll + |va]) €V, and
thus f is Lipschitz at X according to Kusraev.

REMARK. If X is a Banach space, V is an order complete Banach lattice and f: X -
V is locally o-Lipschitz according to Papageorgiou [28] (see Example 1), then if int
V, # P, fis Lipschitz at X according to Kusraev for any X € X. Indeed, let vy
be in the interior of V ; then [-vg, vg]l + X is a (convex) neighborhood of X and
is (topologically) bounded since the normality of V, implies that order bounded sets
are topologically bounded (Peressini [34, p. 62].

The next example shows that an interval-Lipschitz mapping is not necessarily

ntin . .

EXAMPLE 5. Let (c) be the space of all convergent sequences of real numbers with
norm |[x|l, = sup {|x,|)} and let W be an open bounded neighborhood of & € (c) relative
to the topology o((c), 21), i.e., the weak topology on (c). Since 2 is the dual of
(c), 2 s norm-determining for (c) (Taylor [35, p. 202]), hence by Taylor [35, p.
208] W is bounded relative to the norm topology. In particular, W is absorbed by B =
{x: |ix]} < 1}, thus there exists Ay > 0 3 X W ¢ B for all |A] s Ag. Let Wy = XgW;
then Wy is order bounded since B = {x: [x| < 1) coincides with [-e,e] in (c), where
e = (e;), e, = 1 for all n. Therefore, since f: (c) » (c) given by f(x) = |x| is
sublinear, for any x € (c) and y € Wy we have

A If(xny) - F(x)] < F(y) = Iyl € [-eel ,
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which shows that f(x) = |x| is interval Lipschitz on (c). However, f(x) is not
continuous since the dual of (c) is not the sequence space p = (x-(xn):xn = 0 for all
but a finite number of choices of n} (Peressini [34, p. 135]).

The following example shows that convex mappings are interval-Lipschitz.

EXAMPLE 6. Let X and V be as in Example 1. The mapping f: X - V is convex if
f(Ax + (1-2)y) < Mf(x) + (1-X)f(y) for all X € [0,1] and x,y € X. If f is convex and
majorized in a neighborhood of xq € X, then by Theorem 3.2 in Papageorgiou [17] and
Example 1, f is interval-Lipschitz on X.

We conclude this section with a brief comparison of interval-Lipschitz mappings
and two similar Lipschitz-type operators proposed by Thibault [36]. Unless specified
otherwise, X and V are linear topological vector spaces. Thibault [36] defines a
compactly Lipschitzian mapping at a point as follows: f:X+V is compactly
Lipschitzian at X € X if there is mapping K:X + Comp(V):= {nonempty compact subsets
of V} and a mapping r:(0,1] x X x X into V such that

(i) lim r(t,x;y) = 0 for each y € X;
t10
X~X

(ii) for each y € X there is a neighborhood 8 of x and n € (0,1] such
that

t'l[f(x+ty)-f(x)] € K(y) + r(t,x;y) for all xefl and t € (0,n] .

This definition does not require the range space to be ordered as in Definition 1 and
hence in this respect can be considered more general than our definition. However,
the approach taken in this paper and in Thibault [36] (and in many other works as
well) to derive a theory of generalized gradients requires that the range space be
ordered. In this case, Definition 1 takes explicit account of the order structure.
In addition, the order interval [m(y), M(y)] is in general not compact. If V is
normal, then the order interval [m(y), M(y)] is bounded and hence by Alaoglu’s
Theorem is w*-compact if V is a dual space; however, it is in general not compact for
any other stronger topology. From this viewpoint, Definition 1 can be considered
somewhat more general than Thibault’s definition.

For a mapping f: X -+ V, V an ordered topological vector space, Thibault [36]
defines f to be order-lipschitz at a point X € X as follows: there exist mappings h
and R of X into V and a mapping r:(0,1] x X x X = V such that’

(i) h(x) < h(x) for all x € X and lim h(x) = 8;
x-8

(ii) Tim r(t,x;y) = 8 for all y € X;
ti0
X-+X

(iii) for each y € X there is a neighborhood @ of x and n €(0,1] such that
1 F(xety)-F(x)] € [h(y),hiy)] + r(t,x;y) for all t e (0,n], xe .

There are no implications between the above definition and Definition 1 without
additional technical assumptions. For instance, if f is order-Lipschitz at X € X
according to Thibault and in addition there is a neighborhood W of 6 € X with a
corresponding neighborhood @ of X and n € (0,1] such that '
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t [ F(xrty)-F(x)] € [h(y),h(y)] + r(t,xsy) for all x € 0, t €(0,n), y € W,

then f is interval-Lipschitz at X according to Definition 1 with m = h and M = h.
Conversely, suppose f is interval-Lipschitz at X according to Definition 1 with the
additional assumptions that }i? M(y) = 6 and %13 r(t,x;y) = 8 for all

X=X
y € X (not just for all y € W). There exists an element Wo of a neighborhood basis

of 8 € X such that Wo € W with Wg radial (Peressini [34, p. 162]). Thus, for each y
€ X there exists Ay > 0 such that Ay € Wy for all X with |X] < Ay. Then f is order-
Lipschitz at X according to Thibault with 5 = min(e,xy,l).

3. GENERALIZED DIRECTIONAL DERIVATIVES AND SUBDIFFERENTIALS.

Unless specified otherwise, in this section X denotes a locally convex Hausdorff
topological vector space and V denotes a locally convex ordered topological vector
space, that is, V is a Hausdorff locally convex topological vector space and an
ordered vector space with a convex positive cone V, =(v e V: v > 0} that is closed.
We also assume V is an order complete vector lattice for its order structure, that
is, sup(u,v) exists for all u,v in V and sup B exists for each nonempty subset B of V
that is order bounded above.

The subdifferential of an interval-Lipschitz mapping will be defined in terms of
a directional derivative which we now introduce.

DEFINITION 2. If f: X - V is interval-Lipschitz at X, the generalized
directional derivative of f at X in the direction y € X, denoted f°(%X;y), is
given by

f(xsy) = inf  sup tTl[F(xsty)-F(x)]
Nen(x) xeN
€>0 O<t<e

where n(x) is a neighborhood base of x in X.

If X is a Banach space, V=R, and f is Lipschitz at X (which implies f is
interval-Lipschitz at %), then fO(x;.) coincides with Clarke’s generalized
directional derivative at X; see Clarke [2, 22-25]. If V is an order complete
Banach lattice and f is locally o-Lipschitz (see Example 1) then fO(%;.) also
coincides with the generalized o-directional derivative_of f at X in the direction
y defined by Papageorgiou [28]. The Clarke derivative of f at X defined by Kusraev
[31] coincides with fO(X;.) if the range space and the filter in Kusraev [31] are,
respectively, order complete and limited to the neighborhood filter of X.

The next two results exhibit properties of fO(X;y) as a mapping of y € X.

PROPOSITION 1. The mapping y - f°(%X;y) is a sublinear mapping from X to V that
satisfies fO(X;y) < M(y) for all y € W and fO(x;-y)=(-f)%(X;y) for every y € X.

PROOF. The proof of the sublinearity of fO(%;.) follows that for real-valued
Lipschitz functions, while fO(%;y) < M(y) for all y € W follows directly from
Definitions 1 and 2. For any given y € X, there exists a, > 0 such that ay € W for
|a| < ay; hence fo(i;ayy) = ayf°(i;y) < M(ayy), so fO(x3y) < a;lM(ayy) and
thus fO(x;y) € V. Finally

(-f)°(sy) = inf sup  tT[-F(xety)+F(x)]
Nen(x) xeN
€>0 O<t<e
= inf sup  tTI[F(xetyst(-y) - F(x+ty)]
Nen(x) xeN

€>0 O<tge
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= f2>x5-y) .1

REMARK. Note that since f°(X;-) is sublinear, by Example 3 it is interval-
Lipschitz on X.

The next result exhibits several sufficient conditions for fO(x;) to be a
continuous mapping. For f: X » V we define the epigraph of f, denoted epi f, by epi
f:=((x,v) € X x V|v > f(x)}. Recall that the positive cone V, in V is normal if
there exists a neighborhood basis W of 8 € V such that W = (W+V,)n(W-V,) for all W e
¥ (Peressini [34, p. 61]).

PROPOSITION 2. If the positive cone V, of V is normal, then each of the
following conditions implies that fO(%;-) is continuous:

(i) int epi f°(x;-) is nonempty;

(ii) 1im M(y) = 6 , where the convergence is an order convergence;
y-+0

(iii) M(+) 7s continuous at 6 € X.

PROOF. (i) Since the order intervals in V are bounded in the topology of V and
fO(x;.) is convex, fO(x;) is continuous on X if it is bounded above in a
neighborhood of one point (Valadier [10, p. 71]). But int epi fO(X;-) is included
in the set of (y,v) € X x V such that fO(%;.) is bounded above by v in a
neighborhood of y.

(ii) If y is a point in W, then by Proposition 1, 0 = fO(%;0) = fO(%X;y-y) <
fO(%;y) + fO(X;-y) < FO(%sy) + M(-y), and thus -M(-y) < fO(%:;y) < M(y).

Since V, is normal and lig M(y) = 6, we conclude }13 fO(x;y) = 6 (Peressini [34, p.
62]) which shows that f(X;.) is continuous at the origin. Since fO(%;.) is
continuous at the origin and sublinear, it is continuous on X (Thibault [36, Lemma
2.4]) or Borwein [16, Cor. 2.4]).

(iii) Since fO(x;y) < M(y) for each y € W and fO(x;+) is convex, the
continuity of fO(X;-) at 6 € X follows directly from Borwein [16, Prop. 2.3] since
M(+) is assumed continuous at 8 € X. The continuity of f%(X;.) on X follows as in
part (ii). 1

The continuity of fO(X;.) leads to several results concerning the
subdifferential. Hence we make the following definition.

DEFINITION 3. The mapping f: X = V is reqular at X € X if f is interval-
Lipschitz at X and if fO(X;.) is a continuous mapping from X to V.

Denote by L(X,V) the vector space of linear mappings from X to V. Z(X,V) denotes
the space of continuous linear mappings from X to V; £g(X,V) denotes the latter space
endowed with the topology of pointwise convergence.

DEFINITION 4. Let f: X+V be interval-Lipschitz at X € X. The subdifferential
of f at X, denoted af(x), is defined as follows:

aF(X):=(T € L(X,V)|T(y) < f2(X;y) V y € X).

If f is Lipschitz at X and V=R, the above definition coincides with Clarke’s
subdifferential [2, 22-25]. If f is locally o-Lipschitz (see Example 1), then
Definition 4 is the generalized gradient of f at X defined by Papageorqiou [28,
Def. 3.2]; finally, if f is Lipschitz at X according to Kusraev (see Example 2),
then the above definition coincides with Kusraev’s subdifferential (Kusraev [31,
Def.3]).
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If we ignore the topological structure on X and V and deal only with the
algebraic structures, then we can define the algebraic subdifferential of f at X,
denoted 3,f(x); thus

3, F(X):=(T € LI,V |T(Y) < f(%,y) ¥V y € X).

REMARK. The subdifferential 8f(X) can be empty; indeed, if f is linear and
discontinuous, then af(X) = @ since fO(x;y) = f(y) for all y € X.

PROPOSITION 3. The subdifferential 8f(x) of f at X is convex and satisfies
-9f(x) = a(-f)(x).

PROOF. The convexity of af(x) follows directly from the definition; -3f(X) =
3(-f)(X) is a consequence of the relation fO(x;-y) = (-f)°(x;y), for all y € X,
proved in Proposition 1. |

PROPOSITION 4. If f is regular at X and V, is normal, then 9f(X) = 3,f(x),
that is, af(X) is the set of all linear mappings T:X + V such that T(y) < fO(x3y)
for all y € X.

PROOF. Suppose T: X = V is a linear mapping satisfying T(y) < fO(x;y) for all
y € X. By the linearity of T, -T(y) = T(-y) < fO(X;-y), thus -fO(x;-y) < T(y) <
fO(x;y). Since V, is normal and fO(x;+) is continuous, ;i? T(y) = 6 and hence T
is continuous on X.

THEOREM 1. Under the assumption of Proposition 4, the subdifferential af(X) is
a nonempty, closed, convex, equicontinuous subset of Lg(X,V) with

2(x;y) = max(T(y)|T € af(x)) .

If, in addition, the order intervals in V are compact, then 3f(X) is compact in
Lg(X,V).

PROOF. The subdifferential 3f(X) is the convex subdifferential of fO(x;.) at
zero. Then since f is assumed regular at %, the results follow from Theoreme 6 and
Corollaire 7 in Valadier [10].

REMARK. Theorem 1 provides a connection between the subdifferential of
Definition 4 and the quasidifferential of Pschenichnyi [18]. A real-valued function
defined on a topological vector space E is quasidifferentiable at X € E in the
sense of Pschenichnyi if

£/ (x3d) :=lim @ L[f(R+ad) - £(X)]
al0
exists for all d € E and if 3 a nonempty weak*-closed subset Mf(i) of E* 3
- %* * -
f'(x;d) = Max{x (d)|x € Mf(x)).

Thus, by Theorem 1, if the real-valued function f defined on X (a locally convex
Hausdorff spaced with normal cone) is interval-Lipschitz and regular at X with
f/(x;d) = fO(x;d), then f is quasidifferentiable at x.

REMARK. It is natural to consider a comparison of af(X) and a.f(x), the
convex subdifferential of f at X, and to compare 3f(Xx) with the Frechet or
Gateaux derivative of f at X. By Theorem 3.2 in Papageorgiou [28] the subclass of
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interval-Lipschitz mappings known as locally o-Lipschitz mappings (see Example 1) has
a subdifferential af(x) such that af(x) = d.f(X) when f is convex. Similarly,

a locally o-Lipschitz mapping f: X+Y that is continuously Gateaux differentiable for
fl-; on Y, where |ly[ly:= inf(k| |y| < ke} (e is the strong unit on the Banach lattice
Y), satisfies af(x) = {f’(x)) by Papageorgiou [28, Th. 3.3].

4. OPTIMALITY CONDITIONS

In this section we show that our approach to the local analysis of nonsmooth
operators introduced in Sections 2 and 3 has relevance to mathematical programming.
In particular, we give necessary and sufficient optimality conditions for
nondifferentiable programming problems with real-valued objective functions and
constraints consisting of either an arbitrary set or an arbitrary set and a vector-
valued operator. While the results are related to those obtained in Kusraev [31] and
Thibault [36], where the objective functions are vector-valued, our assumptions and
proof techniques are somewhat different. Specifically, Kusraev’s vector-valued
mappings are Lipschitz with the absolute value operator while Thibault’s mappings are
“compactly Lipschitzian" [36, Def. 1.1]. In addition, our proof of the Kuhn-Tucker
necessary conditions (Theorem 2), which recalls a paper of Guignard [37], does not
explicitly use the assumptions that the range space of the constraint operator is an
ordered space. This raises the possibility of substituting for the generalized
gradient of the constraint operator g at X any closed convex subset rg(i), say,
of Lg(X,V) that satisfies the conditions we require of the generalized gradient.
This approach could generate various closed convex-valued multifunctions as in Ioffe
[29] (where such multifunctions are called fans) and lead to necessary conditions
which have as special cases the necessary conditions of Clarke [24], Hiriart-Urruty
[1, 38, 39] and Ioffe [40]. Ioffe [30] has in fact used the concept of fan to
develop more general necessary conditions.

Let X be a Banach space, V as described at the beginning of Section 3, S a
nonempty subset of X, and f an extended real-valued function on X which, unless
stated otherwise, is assumed to be finite and interval-Lipschitz at X € S.

Consider the problem:

minimize f(x), subject to x € S;

X is a local minimum of f on S if f is finite at X and if there exists a
neighborhood N of X such that f(x) > f(X) for every x € S n N; X is a minimum
of fonS$S if f is finite at X and f(x) > f(X) for every x € S. The contingent
cone of S at x, € cIS (closure of S), denoted K(S;x,), is defined as follows:
K(S;xo):-(d € X|3tn > 0,(xn) cSs, X, * X, with d = liz tn(xn-xo))
= (d € X|3tn1 o, dn -+ d with X, + tndn € S for all n) . (4.1)

The (Clarke) tangent cone of S at X, € c1S, denoted H(S;xo), is the following set:

5(S;xo):= {d € X| for every {xn) cclS>s Xn + X, and for every (tn) E)

tn {0, 3(dn) E] dn -+ d with X, + tndn € S for all n} .

K(S:x,) is a closed cone and J(S;x,) is a closed convex cone with 9(S;x,) < K(S;x,).
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The closure of the convex hull of K(S;x,) is denoted P(S;x,). The polar cone of a
nonempty set A ¢ X is given by A°:=(x* € X*|x*(x) < 0 ¥ x € A}, where X" is the
topological dual of X; if A =g, A%:ox* . If A" ¢ X* s nonempty, the prepolar of
A* is O(A%):=(x € X|x*(x) < 0¥ x* € A¥). If A" =g, O(A"):=X. A°(°(A")) is a
weak*-closed (weakly closed) convex cone in X*(X).

We begin our study of optimality with three results that give necessary
conditions for a vector X to be a local minimum.

PROPOSITION 5. If X is a local minimum of f on S=X, then 0 € 3f(X).

PROOF. Consider a sequence (t,} ¢ (0,1] converging to 0 and select neighborhoods
N of X and W of 8 € X, a constant ¢ > 0, and m, M and r satisfying Definition 1.
We may assume f(x) < f(x) for all x € N. For each y € W there exists ny such that
tal[f(i+tny) - f(X)] - r(t,, X5y) € [m(y), M(y)] and X + t,y € N for all n
2 ny. In addition, there exists a convergent subsequence (t&zn)[f(i + ty(n)Y)
- f(x)1) since [m(y), M(y)] is compact. Therefore,

f(x;y) = lim sup tT[f(x + ty) - £(x)]
€l0_ xeN
Nen(x) O<t<e

. -1 - -
2 llz ta(n)[f(x + ta(n)y) - f(x)120.

Since W is radial, we conclude fO(X;y) > 0 for y € X and hence that 0 e af(x). 1

REMARK. Proposition 5 is related to a necessary condition for an unconstrained
optimum of a guasidifferentiable function on E". A real-valued function f on E" is
quasidifferentiable at x if f is directionally differentiable at x and if there
exists convex compact sets 3f(x) and 3f(x) in E" such that

f’'(x;d) = max <v,d> + min <w,d>
vedf(x) weadf(x)
(Demyanov and Rubinov [41]). Polyakova [42] has shown that -3f(X) ¢ af(X) is a
necessary condition for X to be a minimum of a quasidifferentiable function f on
E". By Theorem 1, if the real-valued function f on E" is order-Lipschitz and regular
at X, then f is quasidifferentiable at X with af(x) = {0) and 3f(x) = af(x),
thus the optimality condition immediately above reduces to the condition in
Proposition 5: 0 € af(X). However, Proposition 5 is applicable in the broader
context of infinite - dimensional spaces. In addition Proposition 5 generalizes
several results in the literature obtained for Lipschitz functions on a Banach space,
e.g., Clarke [2], Ioffe [30, 40] and Thibault [36].
PROPOSITION 6. If X is a local minimum of f on' S, m and M in Definition 1 are
continuous, and X is such that

f(x;y) = lim sup tTF(x + tv) - F(x)]
€l0_ xeN,
Nlen(x) veN
Nzen(y) 0<t§e

for all y e K(S;%), then fO(%;y) > 0 for all y € K(S;x).

PROOF. Suppose y € K(S;X) and let {t,) and {¥p) be the sequences corresponding
to (4.1). 1In addition, choose N, W, €, m, M and r satisfying Definition 1 with m and
M continuous. There exists n; such that x + toyp € N for all n > n;, hence
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X + tnyn € SnN for all n > n (4.2)

by (4.1). We may assume f(x) < f(x) for all x € S n N. Since W is radial,
corresponding to y and each y, there exists ay > 0 and e, > 0, respectively, such
that ay € W for |a| < ay and ay, € W for |a| < a,. Hence there exists np such that

i - - -
ty [FOt ey ) - F()] - r(tx5ey) € [m(ayy ), May,)] (4.3)
for all n >, ,

and thus (4.2) and (4.3) hold for all n 2 n,:=max{n;,n,}. Since {yp) converges to y,
there exists a sequence of an's that converges to ay. In addition, since each
[m(a,y,)» M(apy,)} is compact and m and M are continuous, there exists a convergent
subsequence t&{n)[f(i + ta(n)“a(n)yo(n) - f(x)]. Therefore, since y € K(S;x),

ayy € K(S;x) and

a fO(x;y) = fo(i;ayy) = lim sup t'l[f(x + tv) - f(x)]
4 €40_ O<tge
Nlen(x) xeN

Nzen(ayy) veN%
> 1m0 (R b0y Gy Yoqmy) - FRT 20,

which implies fO(x;y) > 0. |

REMARK. The assumption in Proposition 6 concerning fO(X;y) plays a role
similar to "condition (§)" imposed by Hiriart-Urruty [38, p. 89] to obtain the same
necessary optimality condition.

It is customary to express optimality conditions in terms of the polar cones of
the cones of displacement. A result of this type is presented below. Recall first
that if C is a nonempty subset of X, the distance function dc: X + R, defined by
dc(x) = inf[|x-c|l | ¢ € C}, is a globally Lipschitz function on X with Lipschitz
constant 1.

PROPOSITION 7. Let X be a local minimum of f on S. If f is regular at X,
then 0 € af(x) + (9(S;%))°.

PROOF. Since f is interval-Lipschitz at X, choose neighborhoods N and W,
mappings m, M and r, and € > 0 that satisfy Definition 1. We will first show that
there exists a neighborhood Ny of X over which X minimizes f(x) + p'1(|M(y) +
r(t,x;¥)| + |m(y) + r(t,x;¥)|)dg(x) for some y € W and some £ €(0,¢],
where p > 0 is such that B(8,2p) < W. By way of contradiction, suppose this result
is false. Then there exists a sequence {xp) converging to X such that f(x,) +
p'l(lM(y) + r(t,xpsy)| + Im(y) + r(t,x,;¥)|) dg(x,) < f(X) for y € W and t € (0,€].
There exists ng such that dg(x,) > 0 for n > ng, since otherwise x, belongs to S and
the above inequality contradicts the local optimality of X. Since dg(x,) converges
to 0 as n + o, we can choose n sufficiently large so that f is order-Lipschitz at x,
in a neighborhood of radius 2dg(x,) and with the same neighborhood W, mappings M, m
and r, and € > 0 mentioned at the beginning of the proof. There exists s, € S such
that [[s, - xpll < min{pe, (1+4n)d5(x,)}, where n € (0,1) satisfies f(x,) + p'l(lM(y) +
r(t,xp:y) [+Im(y) + r(t,x,:y)])(14n)dg(x,) < f(x) for y € W and t € (0,€]. Since s,
= Xy + toy, where t; := p'lusn-xnﬂ < € and yg:= pﬂsn-xnﬂ'l(sn-xn) € W with [[s,-x,l
< 2dg(xp), we have
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fsp) < F(x,) + to(IM(yg) + r(tg,x syo) [+Imlyg) + r(tg.x ;¥g)1)
s flx)) + p'l(IM(yo) + r(ty,x 3y0) [+Imlyg) + r(tg,x 5¥) 1) (1+n)dg(x,)
< f(x) ,

which contradicts the local optimality of X. Thus X is a local minimum of f(x) +
P LMY + r(E,x;9) [+Im(F) + r(E,x;)|)dg(x,) for some § € W and & €
(0,€e]. Since 118 r(t,x;y) = 0, we have

k:-p’l(lM(i)I+Tr?f,i;9)I+Im(9)l+lr(f,i;i)|) RLIO

r(€,x;y) |+Im(y) + r(f,x;¥)|); therefore X is also a local minimum of f(x)

+ kdg(x). Finally, since a(fy+fy)(X) ¢ afy(x) + afy(x) where f} and f, are
interval-Lipschitz at X and f; is regular at X, by Proposition 5 and Clarke [2,
Prop. 2.4, p. 51] we conclude that

0 € 3(f(x) + kds(i)) c af(x) + kads(i) c Af(X) + (9(5,x))° . 1

If f is Lipschitz, then a stronger necessary condition than the one in
Proposition 7 can be obtained.

PROPOSITION 8. Let x be a local minimum of f on S, where f is Lipschitz at X,
and M a convex cone contained in K(S;X); then

0 € af(x) + M° . (4.4)

PROOF. Since f is assumed Lipschitz at X, the result follows directly from
Theorems 7 and 8 in Hiriart-Urruty [38]. |

REMARKS. 1) Condition (4.4) is sharpest when K(S;X) is convex, in which case
(4.4) becomes

0 € af(x) + [K(S;x )1° . (4.5)

If, in addition, f is continuously differentiable at X, then af(x) = (Vf(X)) by
Rockafellar [4, Proposition 4] and (4.5) reduces to 0 € Vf(X) + [K(S;%)]°, i.e.,
VF(X) € -[K(S;%X)]° which, since [K(S;%)]° = [P(S;%)]°, is the well-known
optimality condition in differentiable programming given by Guignard [37].

2) To establish the optimality condition in differentiable programming noted in
remark 1, it is not necessary to assume that K(S;X) is convex. The convexity
requirement is needed in the nondifferentiable case since

fO(x;d) 2> 0V d € K(S;%)

cannot be extended to c£{co K(S;x))} = P(S;X). Thus, for nondifferentiable
objective functions, relation (4.5) does not hold without the convexity of K(S;R).
To illustrate this fact we include an example due to Hiriart-Urruty [1, p. 80]. Let
X = €2, f: E2 » R is given by f(x], Xp) = 1 - exp(xp - |x1]), S = ((x],%,) € E%:

X2 - |x1] s 0}; X = (0,0) is a minimum of f on S, [K(S;%)1° = {(0,0)), and af(X)

= co{(1,-1), (-1,-1)).
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A statement of sufficient conditions requires the following preliminaries. A
function f: X - R that is interval-Lipschitz at X is pseudoconvex over S at X
if for all x € S, fO(%;x-X) > 0 implies f(x) > f(X). A subset A ¢ X is
pseudoconvex at xq € cl A if x - x5 € P(A;xp) for all x € A, and strictly
pseudoconvex at x5 if x - xg € K(A;xg) for all x € A.

PROPOSITION 9. Suppose f is pseudoconvex over S at X € S and S is pseudoconvex
at X; then 0 € af(X) + [P(S;%)]° is a sufficient condition for % to be a
minimum of f on S.

PROOF. The condition 0 € af(x) + [P(S;X)]° implies 0 = T + 7, where T €
af(x) and v € [P(S;%)]1°. Therefore, for all x € S, 0 = T(x-X) + 7(x-%).

Since S is pseudoconvex at X, x - X € P(S;X) for all x € S, which implies
7(x - X) < 0. Thus T(x - X) > 0 and, for all x € S, fO(X;x-%X) > T(x-X) 2 O,
which by the pseudoconvexity of f implies f(x) > f(X). I

REMARKS. 1) A "local minimum" analogue of the above result follows directly if
f is pseudoconvex over S n N; at X, for some neighborhood N; of %, and if S is
locally pseudoconvex at X, where the latter means that there exists a neighborhood
Ny of X such that x - X € P(S;%X) for all x € S n Np. Hiriart-Urruty [39, Th.

5] states (for f Lipschitz at X) that 0 € af(x) + [K(S;%X)]° (note that [K(S;%)]°
= [P(S;%)]°) is a sufficient condition for X to be a local minimum of f on S
under the assumptions that f be locally pseudoconvex at X and that S be locally
strictly pseudoconvex at X; this latter condition is termed “Condition L" by
Hiriart-Urruty.

2) A more desirable sufficient condition is possible in Proposition 9, but it is
acquired at the expense of strengthening the assumption on S by using the (Clarke)
tangent cone J(S;X). If f is pseudoconvex over S at X (as in Proposition 9) and
if x - x € 9(S;x) for all x € S, then 0 € af(x) + [9(S5;%)1° is a sufficient
condition for X to be a minimum of f on S. If S is locally convex at X, that is,
there is a neighborhood N of X such that S n N is convex, then J(S;X) = K(S;X)
= P(S;X) Hiriart-Urruty [38, p. 83] and the sufficient condition immediately above
is equivalent to the sufficient condition in Proposition 9.

To state the problem with an explicit operator constraint, let V be a locally
convex ordered topological vector space that is an order complete vector lattice. A
and B are nonempty subsets in X and V, respectively, and g: X » V is interval-
Lipschitz at X € S where S = {x € Ajg(x) € B}. Let J = {x € X|T(x) € P(B;g(i))'
for each T € 3g(%X)) and H* = (h € X*|h € pdg(X), p € (P(B;g(X)))°), where
pdg(x) = {p « T|T € 3g(x)}. Note that J is a closed convex cone and H* is a
cone.

THEOREM 2 (KUHN-TUCKER CONDITIONS). Suppose H* is closed and G is a closed
convex cone in X such that G n J = 9(S;X) and G° + J° is closed. If X is a local
minimum of f over S, where f is regular at X, then there exists y € [P(B;g(x))]1°
such that 0 € af(X) + pag(x) + G° .

PROOF. Since X is a local minimum of f on S, we have by Proposition 7 that
0 € 3f(X) + (9(S;%))°. Since J° + GO is closed, then (9(S;%))° = J° + 6°
(property G3, Guignard [37]) and 0 € af(X) + JO + G0, Lletye o(H*); then u(T(7y))
< 0 for any p € [P(B;g(X))]° and T € 3g(Xx). Now suppose that T(y) £ P(B;g(X));
then since P(B;g(X)) is a closed convex cone, by the strong separation theorem
(Dunford and Schwartz [43, p. 417]) there exists v¥ e V¥ such that v*(T(y)) >0
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2> v¥(w) for any w e P(B;g(X)), which implies that v* e [P(B;g(x))]°. Then v*(T(v))
< 0 and this contradicts v*(T(y)) > 0. Therefore, T(y) € P(B;g(x)), that is, for
each v € °(H*) we have shown v € J. Hence °(H*) c J and since H* is a closed convex
cone, H* = (°(H*))® 5 J°, which shows that there exists g € [P(B;g(X ))]° such that
0 € 3f(x) + pdg(x) + G°. |

REMARK. Theorem 2 provides a multiplier rule for an infinite dimensional
equality constraint. If X is a Banach space, V is a locally convex ordered
topological vector space that is an ocvl, and B = (0), then P(B;g(%x)) = {0) and
Theorem 2 says that there exists u € V* such that 0 € af(x) + pdg(x) + GO.
Multiplier rules for infinite dimensional equality constraints have appeared only
recently; loffe [30, 40], for example, provides such a rule for V a (not necessarily
ordered) Banach space.

The optimality condition in Theorem 2 compares favorably with other results in
the literature. For example, if G = J(S;X), then 0 € af(X) + pag(x) + [T(S;%)]1°
and we have a result consistent with the necessary condition 0 € af(x) + [9(S5;%)]°
established by Clarke [24, Lemma 2] in a slightly different form. Theorem 2 also
generalizes results of Hiriart-Urruty [1, Th. 6] and Demyanov [44, Th. 7] (see
REMARK after Prop. 9), for Lipschitz functions on R", and is related to a result of
Ioffe [40, Prop. 1] for Lipschitz functions on a Banach space.

EXAMPLE 7. The role of the various sets in Theorem 2 is perhaps better
understood by considering the finite-dimensional case. Let X and V be the Euclidean
spaces E" and EM, respectively. If B = E™ = (y € E™|y < 0}, the problem becomes
min{f(x)|x € A, g(x) < 0). Let I and J be such that g;(x) = 0 for all i €I and
gJ(x) <0 for all j e J, where X € S = {x € Alg(x) < 0}. Then [P(B;g(X))]° =
[P(EM;g(%))1° = (A € EMX 20, Ag(X) =0) = A € EM|A; 20, i eI, 2§ =0,

J €J]. If X minimizes f over S, the necessary conditions of Theorem 1 imply that
there exist scalars A; 2 0 such that 2;94(x) =0, i =1,..., mand 0 € 3f(X) +
2?_1Aiagi(i) + GO If A=E"and 6% = [P(EM;%)]° = (0), we have 0 € of(x) +
ET,lxiagi(i); moreover, if f and g are continuously differentiable at X, the
latter condition reduces to 0 = Vf(X) + szlxngi(i). Note that both J =

{x € E“lsix < 0 for each &; € dg;(x), i € I} and H* = (h € E"h = Zierribis A5 20,
8; € 3g;(X)) are closed convex cones.

If f is Lipschitz at X € S, then we can obtain necessary conditions that in
general are more precise than those in Theorem 2.

THEOREM 3 (KUHN-TUCKER CONDITIONS). Suppose H* is closed and G is a closed
convex cone in X such that 6 n J = cIM, for a convex cone M contained in K(S;X),
and G® + J° is closed. If X is a local minimum of f over S, where f is Lipschitz
at %, then there exists s € [P(B;g(x))]° such that 0 € af(X) + udg(x) + G° .

PROOF. In the proof of Theorem 2 use Proposition 8 instead of Proposition 7 and
the relation M® = (cIM)? (property C2, Guignard [37]). I

Sufficient conditions are obtained by imposing mild convexity assumptions.

THEOREM 4. If G is a closed convex cone in X such that x - X € G for all x €
S, if there exists g € [P(B;g(X))]° such that 0 € af(x) + pdg(x) + 6%, if S is
strictly pseudoconvex at % and T(K(S;X)) c K(B;g(x)) for all T € dg(k), and
if f is pseudoconvex over S at X, then X is optimal for f over S.

PROOF. There exists & € af(x), T e dg(x) and x" € G° such that 0 = & + BT
+ x*, hence 0 = &(x - X) + p(T(x - X)) + x*(x - X). Since S is strictly
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pseudoconvex at X, for all x € S we have T(x - X) € K(B;g(x)) and thus g(T(x - X))
< 0; also, x*(x - X) <0 for all x € S, hence §(x - X) > 0. Hence, for all
x €S, fO%; x - %) > &(x - X) > 0 which, since f is pseudoconvex over S at X,
implies f(x) > f(X).
4. SUMMARY

For a vector-valued function f: X - V that is interval-Lipschitz at X we have
defined and obtained properties for the generalized directional derivative fO(x;y)
and the generalized gradient df(X). In particular, we have discussed conditions
under which the sublinear mapping f°(%;.) is continuous and have shown that when
this is the case, df(x) is nonempty, convex, closed and equicontinuous (as a subset
of £(X,V) with the topology of pointwise convergence) and fO(x;y) = max{T(y)|T €
af(x)}. If the order intervals in V are compact, then 8f(X) is also compact. We
also have obtained necessary and sufficient optimality conditions for a nondif-
ferentiable mathematical programming problem with a vector-valued operator constraint
and/or an arbitrary set constraint. The proof techniques point to future research in
the area of convex-valued multifunctions as in Ioffe [30], for example, which in turn
could lead to more general optimality conditions.
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