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ABSTRACT. Here we find the order of convergence of the Hermite and Hermite-Fej6r
interpolation polynomials constructed on the zeros of (1- z2)Pn(z) where P,(z) is the Legendre
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INTRODUCTION.
Let

--l xn + < xn <’’" < xl < xO l (1.1)

be the n + 2 distinct zeros of (1 x2)pn(x) where Pn(x) is the Legendre polynomial of degree n with

normalization Pn(1)= 1. Let f be a given function on [-1,1]. Let @,(f,z) be the unique
polynomial of degree < 2n + such that

Qn(f xk) f(xk), Q,n(f 4-1) f( 4-1), Q’n(.f, xk) 0, k 1,2,...,n. (1.2)

Then it is known [11] that

where

(n(S,x) :(--1) 1-_.Xp2n(x)+ :(1) -P2n(x + f(xk) 1 x2 l(x)
k=l 1-x (1.3)

Pn(x) (1.4)Ik(x) (x- xk)P’n(xk)

is the fundamental polynomial of the Lagrange interpolation. According to a well-known result of

Szasz [11]
nlirnQn(f,x) f(x),
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uniformly on [-1,1], for every f continuous there.

given by Prasad and Saxena [8] who showed that

A quantitative version of Szasz’s result was

Qn(f’x) f(x) <- cln-l lWf(+-)
where w/is the modulus of continuity of f on [-1,1] on c (later on c2,c3... is a positive absolute

constant. Prasad and Varma [9] further improved (1.5) by proving that

On(f,z)-.f(x) < c n--l
n

w--2 k= f(l) (1.6)

Our aim is here to consider the interpolation process which requires that the derivative of the

polynomial vanishes not only at the interior points xk, k 1,2,...,n, but also at the end points -1

and 1. As we will see, the situation is quite different in this case. Let us denote by Rn(f,x) the

unique polynomial of degree < 2n + 3 satisfying the conditions

Rn(.f, xk) .f(xk), Rn(.f, :I: i) f( :I: I), R’n(f, xk) 0, R’n(f, :I: I) 0, k 1,2,...,n. (1.7)

Then from (1.2), (1.3) and (1.7)it follows that

2

Rn(f,x) Qn(f,x) + (l xI(l + x)2Pn(x) On(f 1)

-(1 +xI!l-Pn(x)]2Q’n(f,-1). (1.8)

Bojanic, Varma and Vertesi [3] proved the following:
11THEOREM A. Let f {5 C[-1,1]. In the case when a E [--,) the necessary and sufficient

conditions for

ji R(na’o’)(f, x) f(x)II o (1.9)

is given by

and

lim I(R(na’a)(.f,z)- .f(x))d. =0
-1

-1

a e [1/2,2), (.9) holds true for arbitrary f E C[-1,1] (i.e., no conditions are needed).If
the ce a [p-1,p), p 3 (p integer) the necsy d sufficient conditions for the

vMidity of (1.9) is given by

()

[Ra’a)(f,x)] o(n2r),r 1,2,...,p-1.
z= 1

Here Ra’a)(f,x) is the lynomiM of de 2n + 3 satisfying the interpolatory conditions (1.7)
on the zeros of ultrphericM polynomiM.

For Rn(f,x) satisfying the interpolatory conditions (1.7) on the zeros of (I -x2)Pn(x) we prove

the following:
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THEOREM 1. Let f EC[-1,1] and let Rn(f,x be the Hermite-Fejer interpolation

polynomial of degree _< 2n + 3 defined by (1.7). Then for all x [-1,1]

[Rn(f,z)-/(x)l < +c4,1 x21; += (a0)

From (1.10) it is evident that the sequence {Rn(f,x)} converges to f(x) at the end points -1 and 1.

Also, if f Lipa, 1/2 < a < 1, then from (1.10) it follows that

c5 (1 x2)a/2Rn(f,x)- f(x) <_ "a" ka + c61 z2n 1- 20"

k=l

< cS(1 z2) n 2

Thus, {Rn(f,x)} converges to f(x) for -1 _< x _< 1 if f e Lipa, 1/2 < a < 1. Next, we show that there

is a f e C[-1,1] for which {Rn(f,x)} diverges at x 0. More precisely we prove the following:

THEOREM 2. The nermite-Fej6r interpolation process {Rn(f,x)} for the function

f(x) (1 x2)a, 0 < a < 1/2 with the nodes (1.1) diverges at the point x 0.

This result is similar to a result of Berman [1] who proved that the Hermite-Fej6r interpolation

process {Hn(f,x)} constructed for f(x) Ix with

xk=cos2k-1 =-1; n=1,2,2n r, k l, 2, n, x0 1, xn+l

diverges at x 0.

Let Fn(f, x) be the unique polynomial of degree _< 2n + 1 satisfying the conditions

Fn(f,-1 f(-l), Fn(f, 1 f(1),

Fn(f, xk, f(xk) Fn(f, xk)= f’(xk) k 1,2,...n,
(1.11)

where xs are given by (1.1). Then we see that

n x2Fn(f,x Qn(f,x + y] f,(xk) 1 (x- xk)l(x
k= 1-x

where

n+l n, f(xk)hk(x)4" _, f’(xk)ak(x)
k=O k-1

(1.12)

and
ho(x - P2n(Z), hn + 1(x) P2n(X) (1.13)

1 x2hk(x)
1 :r: 12k(x)’ ak(x) (x- xk)hk(x),

For the polynomials Fn(f,x we prove the following:

k 1, 2,..., n. (1.14)
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THEOREM 3. Let f be defined and have a continuous derivative f’ on [-1,1]. Then for the

Hermite interpolation polynomial Fn(f,x) of degree _< 2n + 1 defined by (1.11) we have for all

x E [-1,1],

lognF,(f,x)- f(c) <_ c9 --w- E2n(f’)

where E2n(f’ is the best kpproximation of f’(z) by polynomials of degree at most 2n.

Now, if we compare the zeros of (1- x2)Pn(x) with the zeros of (1- x2)Tn(z), the nth degree
Tchebycheff polynomial of the first kind, we find that they are equally good as far as the

convergence and the order of convergence of the Hermite and the Hermite Fej6r interpolation is

concerned.

2. PRELIMINARIES. In this section we state a few known results which we shall use later on.

From [5] we have for -1 <_ z _< 1,

P2n(x + hk(x)= 1. (2.1)
k=l

Further, due to Fej6r [7] we know that

1. (2.2)
(I x)[P’n(Xk)]2

and

Also, from Szeg6 [12] we have

z2)114 ()1/2 1/2(1- IP,,(z)l < n -1 <:r<l,

(1 -z2) > (k-1/2)2(n + 1/2)-2, k 1, 2, [1,
(1 z) > (n -k + 1/2)2(n + 1/2)-2, k [] + 1, n,

e,()l k-3/2n2, k 1,2 [],
e() (n + 1 k)-3/2n, k [] + 1,...,n,

e.(0)
1.3- (-- 1)
2. (n- 2).

(-/< < k 1,2,...,n, cos d cos .n +/ n + /’

(2.3)

(2.4)

(2.5)

(2.O)

(2.7)

(2.8)

(2.9)

Further, from [9] we also have for -1 _< x _< 1 and k 1,2,...,n,

and

(I x2)
1/4

IP.(z)l <__f, n>2,
(1 x)3/4 P’n(zt)

(2.10)

(2.11)
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Next, from [5] it follows that for -1 _< z _< 1,

ll/:(x)

_
c12 ]c 1,2,...,n. (2.12)

3. SOME LEMMAS. In this section we state and prove a few lemmas which will enable us to

prove the theorems.

First, we assume xj to be that zero of Pn(x) which is nearest to x. From (2.9) and using the

fact that xj is the nearest zero to x we get

sin

1 <2n+1 k#j, k=j+i. (3.1)Io-o1 2i 1’
2

Also, we note that

sin 0 < sin O+sin 0/: _<2 sin (0 Ot:). (3.2)

LEMMA 1.

respectively, then

If the polynomials Qn(f,x) and Rn(f,x) are defined by (1.2) and (1.7),

Rn(f,x) Qn(f,x)+2:(1 2:2) p2(2:) If(1) f(- i)]4

n

+1- 2:2)(1 + x) P2n(x)-’/:= (I x)(I x/:)2[P’n(x/:)]2

" [/( I) f(2:/:)]+1 2:2) (1 x) P2(x)/:=l (1 x.) (1 / 2:/:)2 [P(x/:)]2
PROOF. From (2.1) it follows that

n 1P(1) =/:=1(1- x) (1 x/:)2 [P(x/:)]2"
(3.3)

Also, it is easy to see that

Pn(-1)P(-1) -P(1). (3.4)

Consequently, from (1.3, (3.3) and (3.4) we obtain

n [f(1)-f(x/:)]Q’(f, 1)={f(1)-f(-1)]+2.,/:=1 (1 x2k)(1 2:/:)2 [p(z/:)]2
and

n
Q(f, -1) f(1)- f(-1)]- 2/:= (1 x) (1 4- x/:)2 [P(x/:)]2

(3.6)

Substitution into (1.8) yields the desired result.

LEMMA 2. Let f be a continuous function on [-1,1] and let xk, k 1,2,...,n, be the zeros of

Pn(x), the nth degree Legendre polynomial, then

k (1- 2:t)2 [pn(x/:)]2 k

PROOF. It is clearly sufficient to consider one choice of signs. Let us put m [] and
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consider

A.(f)
n [f(1)_f(zk)]

( )( ) [P()lk--I

(1 z) (I k)2 [P’n(xk)]2

" f(1)- f(k)
4-

(1 x2k)(1 xk)2 [P’n(xk)]2k=m+l

=I1+I2.
First, we estimate 12 On using (2.2) we obtain

n 112 < w:(2k) (1- x2k)[P(xk)]2=m+l

n 1<
(1 x2k)[P’n(xk)]2

wf(2)
k

< w/(2).

Next, we consider

m 1Zl-
k=l
y

(1 xl)(1 Xk)2 [P(x)l2

m wf(1-xk)[ ;<
( ) P’.(,)

Since

1- xk 1- cos Ok 2sin2 ok--hence on using (2.9) we see that

k2 20k2

2(n 4- 1)2 -< 1 :rk < (n 4- 1)2"
Thus from (3.9), (3.10), (2.4) and (2.6)it follows that

k=l ’ ("+i)2

Consequently, from (3.7), (3.8) and (3.11) we obtain

lwf(k2)n.(f) -< c15 n2
k=l (n + 1)2

Now following the same lines as in [3] we get

Y ’ (n4-1)2
-< f

1
k=l k=l

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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Hence from (3.12) and (3.13) we conclude that

LEMMA 3. If -1 < x < then

n ak(x) logn< c17 n

PROOF. From (1.14) we have

(1-xe)lx-xl l.(x)
k (1 x)3/2

(1 z2) x .1 l(x) + ’ (1 x2) lx xkl l(x) J1 + J2
k j (1 x)3/2

(3.14)

If xj is the zero of Pn(z) which is nearest to z then one can easily see that

(_ 2)/2
(1- z)1/2

< c18"

Now from (2.10), (2.11), (2.12) and (3.15) it follows that

(1-x2) lx-xjl l(x)Jl
(1 x.)312

< c19n-1

Next, on using (2.10), (3.2) and (3.1) we obtain

J2
(l-x2)Ix-x:l l(x)

# j (1-)/

<o’- (__ .)1/2

c20n_j ,
j i, %

2logn
c21 n

Consequently from (3.14), (3.16) and (3.17)it follows that

n ,..() logn

k=l l--x -c22 n

which yields the lemma.

(3.16)

(3.17)
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4. PROOF OF THEOREM 1. Theorem 1 is now a simple consequence of Lemma 1 and Lemma
2. Due to Lemma 1 we have for -1 < z < 1,

[Rn(f,x)-f(x)[ <_ [Qn(f,x)-f(x)[ +(1-x2)p2n(x)[[f(1)[ + If(-1)[]

n [f(1)_f(xk)
4. (1 x2)p2n(x) [k=l (1 x2k) (1 k)2 [P(k)]2[

n _1)_ f(xk)]+(- ),2,.().,=. ( I(( +,)’
Using (1.6), the inequality (2.3), and Lemma 2, we find that

k=l

4. c231’ z2
k=l

and Theorem 1 follows.

5’. PROOF OF THEOREM 2. Let f(x)=-(1-z2)", 0 < a < 1/2, then we get from (1.3) for

-1 <x_l,
2

n x2 [(k 1 2
_

z) P,(z)]
Since f is even and xl: are symmetrically situated around 0, Qn(f,x)is even. Thus Q’n(f,x)is odd

so that Q,(f,-1) -Q,(f, 1) and we have

Rn(f,x) Qn (f,x)4-1/2 (1- x2) P2n(z) Q(f, 1). (5.1)
But

Q(f,1) 2 ’ (1 x2t.)"- 1

k (1 zk) P’n(xk)

> 2 (1 x)- i where m [],
k= (1-xk) P(xk)

2 (1-x)’-3lP(xk)]-2
k=l

k2Fo , 2,...,,0 < o-1 < . Th, l- i=2.- e-. S= o= i=g

we have from (5.2),

Q’(f, I) > c24n2 2.

k3
1 > 2

k
2ct c24n2tr

Consequently from (5.1), (5.3) and (2.8)we obtain

lim sup Rn(f, O) Qn(f, O) -> cgalim sup nl

Since Qn(f,O)-}f(O)= -1, Rn(f,O):f(O)if 0 < tr < 1/2.
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6. PROOF OF THEOREM 3. One can easily see that

Fn(f,x) f(x) Fn(f,x) Fn(G2n + l,X) + G2n + l(X) f(x), (6.1)

where G2n + l(X)is the polynomial of the best approximation of f(x) and Fn(f,x)is given by (1.12).
Thus from (6.1) we obtain

Fn(f,x) f(x) < Fn(f,x) Fn(G2n + 1,x) + ]G2, + I(x) f(x) tl + u2" (6.2)

Now, from the definition of G2n + l(X) it follows that for -1 < x < I,

G2. + (y,x) f(x) < E2n + l(f), (6.3)

where E2n + l(f) is the best approximation of f(x). So owing to (6.3) we have for -1 < x < 1,

u2 -< E2n + l(f)" (6.4)

Next, we consider

u q-u.
Again due to (6.3) and (2.1) we have for -1 < x < 1,

n+lu <_ E2n + l(f) Y hk(x)
k=0

<- E2n + l(f)"

Further, on using a theorem of J. Czipszer and G. Freud [4] and Corollary 1.44 of T.J. Rivlin [10],
p. 23, it follows that

i x f’(xk) G’2n + l(Xk) < 40E2n(/’)

Hence (6.7) and Lemma 3 yield

logn_< c25 E2n(f’).
Consequently from (6.2), (6.4), (6.5), (6.6) and (6.8) we obtain for -1 _< x < 1,

logn
F.(f,:)-/’(x) _< 2E2. + (/’) + c2a --a- E2.(.t")

But due to Rivlin [10], p.23, we have

6 E2n(f,E2n + l(f) -< (6.10)

Hence, from (6.9) and (6.10) the theorem follows.
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