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ABSTRACT. Here we find the order of convergence of the Hermite and Hermite-Fejér
interpolation polynomials constructed on the zeros of (1 —z%)P,(z) where P,(z) is the Legendre
polynomial of degree n with normalization P,(1) =1
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1. INTRODUCTION.
Let
~l=z, 1<zp<... <7 <z)=1 (1.1)

be the n + 2 distinct zeros of (1 — z2)Py(z) where Py(z) is the Legendre polynomial of degree n with

normalization P,(1)=1. Let f be a given function on [—1,1]. Let Qu(f,z) be the unique
polynomial of degree < 2n + 1 such that

Qn(f7zk) = f(zk)$ Qn(f’ + 1) = f( + 1)1 Q;l(fyxk) =0, k=12,...,n (12)

Then it is known [11] that

Qn(f,2) = £(-1) 152 PY(2) + £(1) L3 PY(a) + ): flzg) L zk 2 1) (13)

where

1y(z) = Gﬂ“—::%-(_ﬂj (1.4)
is the fundamental polynomial of the Lagrange interpolation. According to a well-known result of
Szasz [11]

Jim Qu(f,2) = f(z),
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uniformly on [—1,1], for every f continuous there. A quantitative version of Szasz’s result was
given by Prasad and Saxena (8] who showed that

1 ,|1_ 2
| Qul(f,2) = f()| <cyn lkglwf( — +k-1§) (1.5)

where w ¢ is the modulus of continuity of f on [~1,1] on ¢; (later on cy,c3...) is a positive absolute
constant. Prasad and Varma [9] further improved (1.5) by proving that

10u7.9)= 1a)] < e 35 wp (L (19)

Our aim is here to consider the interpolation process which requires that the derivative of the
polynomial vanishes not only at the interior points z;,k =1,2,..,n, but also at the end points —1
and 1.  As we will see, the situation is quite different in this case. Let us denote by R, (f,z) the
unique polynomial of degree < 2n + 3 satisfying the conditions

Rn(fvzk) = f(xk)) Rn(f) + 1) = f( + 1)’ R‘l(f)zk) = Oa R;l(f’ + 1) = 01 k= 1,2,...,71. (1'7)
Then from (1.2), (1.3) and (1.7) it follows that

Ralf,2) = Qulf,2)+ (1 - z)[‘i%”"ﬂ]zo:.(f, 1)

_apye (18)
— 1+ o= Pule) )]ZQ;.(f,—l).

Bojanic, Varma and Vertesi [3] proved the following:
THEOREM A. Let f €C[-1,1]. In the case when a € [—%,%) the necessary and sufficient
conditions for

Jim || R *)(f,2) - f() || =0 (19)
is given by 1
dim, [ (RE)(f.2) - f(z)) d= = 0

-1

and
1
Jimy, [ = (RE )£, 2) - £(2)) da = 0.
-1

Ifae [%,2), (1.9) holds true for arbitrary f € C[—1,1] (i.e., no conditions are needed).
In the case a €[p—1,p), p>3 (p integer) the necessary and sufficient conditions for the
validity of (1.9) is given by
(r)
[R{®2)f,2)] =o(n?),r=1,2,..,p—1.
z==%1
Here Rs,a’ a)( f,z) is the polynomial of degree < 2n + 3 satisfying the interpolatory conditions (1.7)
on the zeros of ultraspherical polynomial.
For R,(f,z) satisfying the interpolatory conditions (1.7) on the zeros of (1 — z2)P,(z) we prove
the following:



APPROXIMATION OF THE HERMITE AND HERMITE-FEJER INTERPOLATION 49

THEOREM 1. Let fe€C[-1,1] and let R,(f,r) be the Hermite-Fejer interpolation
polynomial of degree < 2n + 3 defined by (1.7). Then for all z € [-1,1]

| Ro(f,x)— f(2)] S W Z wf (‘l ’+04J1 —z? [%+kzj:lwf (;15)] (1.10)

From (1.10) it is evident that the sequence {R,(f,z)} converges to f(z) at the end points —1 and 1.
Also, if f € Lipo, 1/2 < o <1, then from (1.10) it follows that

—x2“/2
| Ra(f,) - f(x)|<7rz A=2)"” | ci= a2 12

<c (l-.1:2)"'/2 T+ 1—z2nl-2
a
<eg(l —z?)2Z pl-2

Thus, {R,(f,z)} converges to f(z) for —1 <z <1if f € Lipo, %< o < 1. Next, we show that there
is a f € C[-1,1] for which {R,(f,z)} diverges at z =0. More precisely we prove the following:
THEOREM 2. The Hermite-Fejér interpolation process {R,(f,z)} for the function
flz)= —(1-2%)7,0<0 < % with the nodes (1.1) diverges at the point z = 0.
This result is similar to a result of Berman [1] who proved that the Hermite-Fejér interpolation
process {H,(f,z)} constructed for f(z) = |z | with

T = cos 2k2;11r, k=12.,n15=1, z,,1=-1 n=12,.,

diverges at £ = 0.
Let F,(f,z) be the unique polynomial of degree < 2n + 1 satisfying the conditions

F(f,—1) = f(-1), Fa(f,1)=f(1),

(1.11)
Fﬂ(f’ Ik) = f(xk)7 F;I(f’ zk) = f,(zk)) k= 1a2) ey
where z}.s are given by (1.1). Then we see that
Fulf,2) = Quf,0)+ 3° Fep) 155 - op1f(e)
k=1 Tk (1.12)
nt1 n
=3 flph(a)+ Y. fl(zp)ow(z)
where k=0 k=1
ho(e) = L2 PR(a), hpyi(e) =152 P(a) (113)
and
hy(z) = }—:—;%i (), o4e) = (2 -z helz), k=1,2,..m. (114)

For the polynomials F(f,z) we prove the following:
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THEOREM 3. Let f be defined and have a continuous derivative f’ on [—1,1]. Then for the
Hermite interpolation polynomial Fp(f,z) of degree <2n+1 defined by (1.11) we have for all
z€[-1,1],

logn

| Fn(f,2) = f(2)| < cg =5~ Egn(f’)

where E,, (f’) is the best approximation of f/(z) by polynomials of degree at most 2n.

Now, if we compare the zeros of (1 — 22)Py(z) with the zeros of (1 — z2)Ty(z), the nth degree
Tchebycheff polynomial of the first kind, we find that they are equally good as far as the
convergence and the order of convergence of the Hermite and the Hermite Fejér interpolation is

concerned.
2. PRELIMINARIES. In this section we state a few known results which we shall use later on.

From [5] we have for -1 <z <1,

P(z) +k2i:lhk(:c) -1 21)

Further, due to Fejér [7] we know that

n

(22)
E_:l - %)[P (ﬂ%)]2
Also, from Szegd [12] we have
1/4 1/2
(1—x2)/ |Pa(z)| <(B) n~ ' —1<2<1, (23)
(1-2%> (k- %)2(,1 + %)'2, k=1,2,..[3], (24)
2 -2
(=2 >m-k+ (+) " k=[Fl+1 ., (25)
| Prz)| ~ k73202 k=12,.03) (26)
| Pa(ag) | ~(n+1-0)7 /22 k=([8]41,..n, (27)
3.5..... -1
| Pafe)] =532 e (29)
1 -
>
and L L3
( n—+11//22)7r <6< - _f”l/? k=12,.,n, z=cos® and z = cos O,. (2.9)
Further, from [9] we also have for -1 <z <1 and k=1,2,..,n,
¢ —zk) IP (zk)l
and
1/4
1— g2
Cof) @) <y (1)

(1-2d)
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Next, from [6] it follows that for -1 <z <1,
I lk(z)l _<_ €19 k= 1, 2, ey 1. (212)

3. SOME LEMMAS. In this section we state and prove a few lemmas which will enable us to
prove the theorems.
First, we assume z; to be that zero of Pp(z) which is nearest to z. From (2.9) and using the

fact that z; is the nearest zero to z we get

2n+1 o
Ie ek|52l 1’ k#], k_.’:tt' (3'1)
__2__
Also, we note that
sin © <sin © +sin O, <2 sin (%2&) . (3.2)

LEMMA 1. If the polynomials Q,(f,z) and R,(f,z) are defined by (1.2) and (1.7),
respectively, then
2(1—3?)
Bn(f,2) = @n(f,2) + —=—7— Pu(e) [f(1) - f(-1)]

[F1) — )]
@Y T=) 1==p?(PaepP

S

+31-2Y) (1+2) PYz

.2 2 [f( 1) = f(zp)]
+—( I)(l T Pn( )2_: l—zk (1+xk)? [P'(Ik)]2
PROOF. From (2.1) it follows that

PL(1) = 1 3.3
=3 P T )
Also, it is easy to see that
Pp(=1)Pp(—1) = —Py(1) . (34)
Consequently, from (1.3, (3.3) and (3.4) we obtain
P ORF(C) ,

AN =R - V1428, g P (55)
and

Qs = ) - se-nl-2% = 39)

1-23) (1+2,) [Pa(z)

Substitution into (1.8) yields the desired result.
LEMMA 2. Let f be a continuous function on [-1,1] and let z;, k¥ =1,2,...,n, be the zeros of
P,(z), the nth degree Legendre polynomial, then

[f(£1)— f(w,,)] S N
'El (1—2}) 1 F2,)% [Py (mk)lf' S El 7 @

PROOF. 1t is clearly sufficient to consider one choice of signs. Let us put m = [%] and
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consider
2 =1 B G G
= él (- z%l)i(ll)—;kf)(“’zf;!,.(zk)l2
% =§+ L= zil)f((ll )—_zf)(; fi’l'n(z,,n?
=1 +1,.

First, we estimate I5. On using (2.2) we obtain

I<wg2) S 1
25vf2) =§+ 1 (1=2}) [Pl

1
kgl (1 = =zi) [Pp(zy)]

Sw f(2)

Next, we consider
m
1

l:gl (1-23) (1 — ) [Prlzy)f

m wf(l—:tk) 1 ]2
< X =T

(S)
l-zp=1-cos 6k=28in2—7"

I1=

Since

hence on using (2.9) we see that

B g <208
412 ES (i1

n

Thus from (3.9), (3.10), (2.4) and (2.6) it follows that

n 2
I, < epn? Low (£ )
1=t k;liswf((ﬂ-{-l)

Consequently, from (3.7), (3.8) and (3.11) we obtain

LS| k2

n

Now following the same lines as in [3] we get

3 K? 23 . (1
kglzs f((n+l)§)s"+1 1;::1 f(;f)

3.7)

(38)

(39)

(3.10)

(3.11)

(3.12)

(3.13)
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Hence from (3.12) and (3.13) we conclude that
| Ba] <en 35wy ()
<cgn wel=).
" 16 k=1 f k2

LEMMA 3. If -1 <z <1 then

|o(z) | <enr logn.
1—$k

PROOF. From (1.14) we have

| ok(z) n l—z NERE 12
=1 \Jl - .’Ek kzz: 2)3/2 k(z)

_(1—x2>|x—z,~| )
= (1 — z?)3/2 11(3) +k§] (

1- z%)al 2

If z; is the zero of Py(x) which is nearest to z then one can easily see that

Now from (2.10), (2.11), (2.12) and (3.15) it follows that

)\ —2.
=)ozl

ST

| a=a)4| Py} (1—z2)‘/‘| Y
|- Py | |a-2HYE e

S Clgn—l

Next, on using (2.10), (3.2) and (3.1) we obtain

(1—12)|:t—:ck| 2

2= T

K
21/2
2y (1=3P)
S 2 TemmT
Cepn?$ L
=720 . 106
K7 jinl 05Ol
< logn
‘1™
Consequently from (3.14), (3.16) and (3.17) it follows that

Z la‘k(‘t)l < 22 IOgn
k=1 1—

which yields the lemma.

(1—x2)|z—xk|

1}(z) =

Ji+Jy.

(1=
(-

53

(3.14)

(3.15)

(3.16)

(3.17)
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4. PROOF OF THEOREM 1. Theorem 1 is now a simple consequence of Lemma 1 and Lemma
2. Due to Lemma 1 we have for -1 <z <1,

| Ro(f,2) = f(2) | < |Qn(fo2) = f(@)| + (1 =) PA()[| FQ) | + | F(-1)1]

[£(1) — f(z})] |
1(1- 31,-) (1- xk)2 [P; n(Ik)]?

D=l
1 (1 =2f) (1+2,)% [Ph(z)l?

+(1-2%) Pi(z) | Z

+(1 - 2%) Pi()]| Z

Using (1.6), the inequality (2.3), and Lemma 2, we find that
) =210 + S]]

| Balr.)- 1) < BE5 vy (B
k=1

el =L, s ()

and Theorem 1 follows.
5. PROOF OF THEOREM 2. Let f(z)=—(1-2%)%, 0<o0 <1/2, then we get from (1.3) for
-1<z<1,

1- Py(z)
f,z) Z f ) [(.1: zk) P'(xk):lz

Since f is even and z, are symmetrically situated around 0, Q,(f,z) is even. Thus Qy(f,z) is odd
so that Qn(f,—1) = —Qn(f,1) and we have

Ry(f,z) = Qn (f,x) +1/2 (1 - 2%) Pi(z) Qu(f,1) . (5.1)
But

_ L 22—t 1
Qn(f,1) = 21:;1 (-=) [(1 —z;) P;;(Ik)]z

NgE]

228, 0-4 [zt e =)
l(1 -2 HP )2 (52)

1

>2
k

M3

2
For k=1, 2,..,m,0 <6, = cos lxk < 7 Thus, 1-— "'l: =sin’@ ™~ 9% ~ % Hence on using (2.6)
we have from (5.2), "

1)> 2-20 1 > 20 —2 5.3
MCDEL YU Dt TRk T (53)
Consequently from (5.1), (5.3) and (2.8) we obtain
. _ : 1-20
lim sup | Rn(f,0) = Qn(f,0)| 2 co4lim sup n .

Since Qu(f,0)-f(0) = ~1, Ru(f,01Af(0)if 0< o <1/2.
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6. PROOF OF THEOREM 3. One can easily see that
Fo(f,2) = f(z) = Fn(f,2) = Fu(Ggy 4 1,7) + Gy 4 1(7) — f(2), (6.1)

where G, , |(2) is the polynomial of the best approximation of f(z) and Fp(f,z) is given by (1.12).
Thus from (6.1) we obtain

| Fu(f,2) = f(2)| < | Fn(f,2) = Fa(Gap 1 1,2)| + [Gop 4 1(2) — f(2)| =¥y +uy.  (62)

Now, from the definition of Gy, + 1(z) it follows that for -1 <z <1,

|G2n+l(f,x)—f(z)| < E2n+1(f)» (6.3)
where E,, | (f) is the best approximation of f(z). So owing to (6.3) we have for -1 <z <1,
Ug <E,y, + 1(f) . (6:4)

Next, we consider
W= I Fn(fvz)_ Fn(G2n+ 111:) I

nt1l

< D0 [ f(ze) = Gap 4 1(z) | Bil2)
k=0

+ 3 150 = Ghu (e 1oula)|

= uI + ué . (6.5)

Again due to (6.3) and (2.1) we have for -1 <z <1,

nt+1
u] < Egpi1(f) 3° hi(2)
k=0 (6.6)

SE2n+l(f) .

Further, on using a theorem of J. Czipszer and G. Freud [4] and Corollary 1.44 of T.J. Rivlin [10],
p- 23, it follows that

JT=21 Feg) = G 1(m) | S4B (f). (67)
Hence (6.7) and Lemma 3 yield

W <40Ey () 3 l94()]

_ 2
E=1N1-2 (638)

1
< cg5 - Ean(f) -
Consequently from (6.2), (6.4), (6.5), (6.6) and (6.8) we obtain for -1 <z <1,
logn ,
| Fa(f,2) = f(z)| <2Eq, 1 1(f)+co5s =i~ Eogn(f") - (6.9)
But due to Rivlin [10], p.23, we have

Egp 4 1(f) S 5207 Eanlf') - (6.10)

Hence , from (6.9) and (6.10) the theorem follows.
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