

## A METHOD OF SOLVING $y^{(k)} - f(x)y = 0$

\* P.J. O'HARA, R. OSTEEN, R.S. RODRIGUEZ

Department of Mathematics  
University of Central Florida  
Orlando, FL 32816

(Received June 4, 1991)

**ABSTRACT.** An alternative method is shown for solving the differential equation  $y^{(k)} - f(x)y = 0$  by means of series. Also included is a result for a sequence of functions  $\{S_n(x)\}_{n=1}^{\infty}$  which gives conditions under which  $\lim_n \left( \frac{d^k}{dx^k} S_n(x) \right) = \frac{d^k}{dx^k} \left( \lim_n S_n(x) \right)$ .

**KEY WORDS AND PHRASES.** Differential equations, sequence of functions.

**1991 AMS SUBJECT CLASSIFICATION CODE.** 40A30.

### 1. Introduction

Consider the differential equation  $y'' - f(x)y = 0$  for  $a < x < b$  where  $f$  is a given function continuous on  $a \leq x \leq b$ . If  $f$  is analytic then the method of power series may be used to solve for  $y$ . However, for more general  $f$ , heuristics suggest that one "iterate" to a solution by finding a sequence of functions  $\{f_n(x)\}_{n=1}^{\infty}$  that satisfy  $f_n''(x) = f_{n-1}(x)f(x)$ . Then possibly  $\sum_{n=1}^{\infty} f_n(x)$  is a solution. Under suitable hypothesis this is indeed the case. The results can be generalized to the differential equation  $y^{(k)} - f(x)y = 0$  as shown in Theorem A. The proof depends on an interesting result, Theorem 1, which gives conditions that insure that the limit of the  $k^{\text{th}}$  derivative is the  $k^{\text{th}}$  derivative of the limit. Theorem 1 generalizes the usual result found in Advanced Calculus books for differentiating the limit of a sequence of functions. We also include two examples that illustrate the method of solution when  $k = 2$ .

### 2. Statement of Theorems

**Theorem A.** Suppose  $f$  is continuous on  $[a, b]$ ,  $c \in [a, b]$ , and  $k$  is a natural number. Define the sequence of functions  $\{f_n(x)\}_{n=0}^{\infty}$  by

$$f_0(x) = a_0^{(0)} + a_1^{(0)}x + \dots + a_{k-1}^{(0)}x^{k-1} \neq 0,$$

$$f_n(x) = \int_c^x \int_c^{u_{k-1}} \dots \int_c^{u_1} f_{n-1}(u) \cdot f(u) du du_1 \dots du_{k-1} + \sum_{j=0}^{k-1} a_j^{(n)} x^j, \quad n = 1, 2, \dots$$

where  $a_0^{(n)}, a_1^{(n)}, \dots, a_{k-1}^{(n)}$ , are constants,  $n = 0, 1, 2, \dots$  (Note  $f_n(x)$  is any  $k^{\text{th}}$  antiderivative of  $f_{n-1}(x)f(x)$ .)

If the series  $\sum_{n=0}^{\infty} f_n(x)$  converges uniformly on  $[a, b]$  to some function  $S(x)$  then  $\sum_{n=0}^{\infty} f_n^{(j)}(x)$  converges uniformly to  $S^{(j)}(x)$  for  $a \leq x \leq b$ ,  $j = 1, 2, \dots, k$ , and  $S^{(k)}(x) = S(x) \cdot f(x)$  on  $[a, b]$ .

**Remark:** All derivatives at the endpoints  $a$  and  $b$  are necessarily one sided.

As mentioned, the proof of Theorem A depends on the following interesting result for sequences of differentiable functions:

**Theorem 1.** Suppose (i)  $\{S_n(x)\}_{n=1}^{\infty}$  is a sequence of real functions defined on an interval  $[a, b]$  and  $k$  is a natural number;

- (ii)  $S_n'(x), S_n''(x), \dots, S_n^{(k)}(x)$  exist at each  $x \in [a, b]$ ,  $n = 1, 2, \dots$
- (iii)  $\{S_n^{(k)}(x)\}_{n=1}^{\infty}$  converges uniformly on  $[a, b]$ ;
- (iv) either there is a  $c \in [a, b]$  such that each of  $\{S_n(c)\}_{n=1}^{\infty}, \{S_n'(c)\}_{n=1}^{\infty}, \dots, \{S_n^{(k-1)}(c)\}_{n=1}^{\infty}$  converge or there are distinct points  $c_1, \dots, c_k$  such that each of  $\{S_n(c_1)\}_{n=1}^{\infty}, \{S_n(c_2)\}_{n=1}^{\infty}, \dots, \{S_n(c_k)\}_{n=1}^{\infty}$  converge.

Then

each of the sequences  $\{S_n^{(j)}(x)\}_{n=1}^{\infty}$  converges uniformly on  $[a, b]$  to differentiable functions,  $j = 0, 1, 2, \dots, k-1$ , and

$$\frac{d^j}{dx^j} \left( \lim_{n \rightarrow \infty} S_n(x) \right) = \lim_{n \rightarrow \infty} \left( \frac{d^j}{dx^j} S_n(x) \right), \quad j = 1, 2, \dots, k.$$

### 3. Discussion and Proofs

In order to prove Theorem 1 we need some preliminary results. First is a standard result from Advanced Calculus.

**Theorem 0.** Suppose that  $\{S_n(x)\}_{n=1}^{\infty}$  is a sequence of real functions differentiable on an interval  $a \leq x \leq b$  and such that

- (i)  $\{S_n'(x)\}_{n=1}^{\infty}$  converges uniformly on  $[a, b]$ ;
- (ii)  $\{S_n(c)\}_{n=1}^{\infty}$  converges for some  $c \in [a, b]$ .

Then  $\{S_n(x)\}_{n=1}^{\infty}$  converges uniformly on  $[a, b]$  to a function  $S(x)$ , and  $\frac{d}{dx} \left( \lim_{n \rightarrow \infty} S_n(x) \right) = S'(x) = \lim_{n \rightarrow \infty} \left( \frac{d}{dx} S_n(x) \right)$ ,  $a \leq x \leq b$ .

For a justification of Theorem 0, see [1], pp. 451-2.

Also required is the following

**Lemma.** Suppose  $k$  is a natural number,  $\{p_n(x)\}_{n=1}^{\infty}$  is a sequence of polynomials each of degree  $\leq k$ , and  $c_1, \dots, c_{k+1}$  are  $k+1$  distinct numbers. If  $\{p_n(c_j)\}_{n=1}^{\infty}$  converges for  $j = 1, \dots, k+1$  then  $\{p_n(x)\}_{n=1}^{\infty}$  converges

for each  $x \in \mathbb{R}$  to a polynomial  $h(x)$  where either  $h(x) = 0$  or degree of  $h(x)$  is  $\leq k$ , and convergence is uniform on each bounded closed interval in  $\mathbb{R}$ . Moreover,  $\lim_n p_n^{(v)}(x) = h^{(v)}(x)$ ,  $v = 1, \dots, k, x \in \mathbb{R}$ .

**Proof:** Let  $Q(x) = (x - c_1)(x - c_2) \dots (x - c_{k+1})$ . Using the Lagrange Interpolation formula, we have for each  $n$ ,

$$p_n(x) = \sum_{j=1}^{k+1} \frac{p_n(c_j)Q(x)}{Q'(c_j)(x - c_j)}. \quad (2.1)$$

Clearly for each  $x$ ,

$$h(x) := \lim_{n \rightarrow \infty} p_n(x) = \sum_{j=1}^{k+1} \frac{[\lim_n p_n(c_j)] Q(x)}{Q'(c_j)(x - c_j)}$$

exists and is finite; moreover  $h(x)$  is a polynomial of degree  $\leq k$ . For each  $x$  in some interval  $[a, b]$ ,

$$|p_n(x) - h(x)| \leq \sum_{j=1}^{k+1} \left| \frac{(p_n(c_j) - h(c_j))Q(x)}{Q'(c_j)(x - c_j)} \right| \leq M \sum_{j=1}^{k+1} |p_n(c_j) - h(c_j)| \quad (2.2)$$

where  $M > 0$  is such that

$$\max_{a \leq x \leq b} \left| \frac{Q(x)}{Q'(c_j)(x - c_j)} \right| \leq M \quad \text{for } j = 1, 2, \dots, k+1.$$

Uniform convergence follows from inequality (2.2). By first differentiating (2.1) and then passing to the limit with  $n$  we obtain  $\lim_n p_n^{(v)}(x) = h^{(v)}(x), x \in \mathbf{R}$ . ■

We proceed to the

**Proof of Theorem 1.** We use induction on  $k$ . The case  $k = 1$  is given by Theorem 0. So assume the theorem holds for  $k - 1 \geq 1$  and let  $\{S_n(x)\}_{n=1}^{\infty}$  satisfy (i)-(iv). If  $\{S_n(c)\}_1^{\infty}, \{S_n'(c)\}_1^{\infty}, \dots, \{S_n^{(k-1)}(c)\}_1^{\infty}$ , each converge then  $\{S_n^{(k-1)}(x)\}_{n=1}^{\infty}$  converges uniformly by Theorem 0 and hence the conclusion follows from the induction hypothesis and Theorem 0. Next suppose  $\{S_n(c_1)\}_1^{\infty}, \{S_n(c_2)\}_1^{\infty}, \dots, \{S_n(c_k)\}_1^{\infty}$  each converge and define

$$\begin{aligned} G_{n,1}(x) &= \int_{c_1}^x S_n^{(k)}(u) du = S_n^{(k-1)}(x) - S_n^{(k-1)}(c_1) \\ G_{n,2}(x) &= \int_{c_2}^x G_{n,1}(u) du = S_n^{(k-2)}(x) - S_n^{(k-2)}(c_2) - S_n^{(k-1)}(c_1) \cdot (x - c_2) \\ &\vdots \\ &\vdots \\ G_{n,k}(x) &= \int_{c_k}^x G_{n,k-1}(u) du = S_n(x) - p_n(x) \end{aligned}$$

where  $p_n(x) := S_n(x) - \int_{c_k}^x \dots \int_{c_2}^{u_3} \int_{c_1}^{u_2} S_n^{(k)}(u_1) du_1 du_2 \dots du_k = S_n(x) - G_{n,k}(x)$  is a uniquely determined polynomial of degree  $\leq k - 1$ , each  $n$ . Repeated use of Theorem 0 shows  $\{G_{n,j}(x)\}_{n=1}^{\infty}$  converges uniformly on  $[a, b]$ , for  $j = 1, 2, \dots, k$ , and in particular  $\{G_{n,k}(x)\}_{n=1}^{\infty}$  converges uniformly. Since  $\{S_n(c_j)\}_{n=1}^{\infty}$  converges then  $p_n(c_j)\}_{n=1}^{\infty}$  converges, for  $j = 1, \dots, k$ . By the lemma the sequence of polynomials  $\{p_n(x)\}_{n=1}^{\infty}$  converges uniformly to a polynomial  $h(x)$  where either  $h(x) = 0$  or degree of  $h(x)$  is  $\leq k - 1$ , and  $\{p_n^{(k-1)}(x)\}_{n=1}^{\infty}$  converges to  $h^{(k-1)}(x)$ . Because  $p_n^{(k-1)}(x) = S_n^{(k-1)}(c_1)$ ,  $n = 1, 2, \dots$  then  $\{S_n^{(k-1)}(c_1)\}_{n=1}^{\infty}$  converges. It follows that  $\{S_n^{(k-1)}(x)\}_{n=1}^{\infty}$  converges uniformly. Also  $\lim_{n \rightarrow \infty} S_n^{(k)}(x) = \frac{d}{dx} \left( \lim_{n \rightarrow \infty} S_n^{(k-1)}(x) \right)$ . Now the induction hypothesis can be used and the conclusion obtained. ■

We are now able to give the

**Proof of Theorem A.** Apply Theorem 1 to the sequence of real functions

$$S_n(x) = f_0(x) + f_1(x) + \dots + f_n(x), \quad n = 0, 1, 2, \dots$$

Note that each  $S_n(x)$  has  $k$  derivatives and

$$\begin{aligned} S_n^{(k)}(x) &= (f_0(x) + f_1(x) + \dots + f_{n-1}(x)) \cdot f(x) \\ &= S_{n-1}(x) \cdot f(x) \quad \text{for } n \geq 1. \end{aligned}$$

By hypothesis  $\{S_n(x)\}_{n=1}^{\infty}$  converges uniformly on  $[a, b]$  to  $S(x)$ . Hence  $\{S_n^{(k)}(x)\}_{n=1}^{\infty}$  converges uniformly to  $S(x) \cdot f(x)$ . By Theorem 1, we obtain that the sequence of functions  $\{S_n^{(j)}(x)\}_{n=1}^{\infty}$  converges uniformly and  $\frac{d^j}{dx^j} \left( \lim_n S_n(x) \right) = \lim_n \left( \frac{d^j}{dx^j} S_n(x) \right)$  for  $j = 1, 2, \dots, k$ . Thus for  $a \leq x \leq b$ ,

$$\begin{aligned} S^{(k)}(x) &= \frac{d^k}{dx^k} \left( \lim_n S_n(x) \right) = \lim_n \left( \frac{d^k}{dx^k} S_n(x) \right) \\ &= \lim_n (S_{n-1}(x) \cdot f(x)) = S(x)f(x). \end{aligned}$$

This proves Theorem A. ■

#### 4. Examples and Remarks

We give some applications of Theorem A.

**Example 1:** Consider  $y'' - (Ax^k)y = 0$ ,  $a \leq x \leq b$ , where  $A$ ,  $k$  are constants,  $k \geq 0$ , and  $f(x) = Ax^k$  is continuous and bounded by  $M$  on  $[a, b]$ . We may assume  $c = 0 \in [a, b]$  and  $|a| \leq |b|$ . Let  $f_0(x) = 1$  and for  $n \geq 1$  let

$$\begin{aligned} f_1(x) &= \frac{Ax^{k+2}}{(k+1)(k+2)}, \quad f_2(x) = \frac{A^2 x^{2k+4}}{(k+1)(k+2)(2k+3)(2k+4)}, \dots \\ f_n(x) &= \frac{A^n x^{nk+2n}}{(k+1)(k+2)(2k+3)(2k+4)\dots(nk+2n-1)(nk+2n)}, \dots \end{aligned}$$

Thus  $f_n''(x) = f_{n-1}(x) \cdot f(x)$  and  $|f_n(x)| \leq \frac{M^n |x|^{2n}}{(2n)!} \leq \frac{M^n b^{2n}}{(2n)!}$  for  $a \leq x \leq b$ ,  $n = 1, 2, \dots$ . The series  $\sum \frac{M^n b^{2n}}{(2n)!}$  converges by the ratio test so  $\sum_0^{\infty} f_n(x)$  converges uniformly on  $[a, b]$  to a function  $S(x)$  by the Weierstrass  $M$ -test. Now let  $g_0(x) = x$  and for  $n \geq 1$ , let

$$\begin{aligned} g_1(x) &= \frac{Ax^{k+3}}{(k+2)(k+3)}, \quad g_2(x) = \frac{A^2 x^{2k+5}}{(k+2)(k+3)(2k+4)(2k+5)}, \dots \\ g_n(x) &= \frac{A^n x^{nk+2n+1}}{(k+2)(k+3)(2k+4)(2k+5)\dots(nk+2n)(nk+2n+1)}, \dots \end{aligned}$$

As before  $g_n''(x) = g_{n-1}(x) \cdot f(x)$  and  $|g_n(x)| \leq \frac{M^n |b|^{2n+1}}{(2n+1)!}$ ,  $a \leq x \leq b$ ,  $n = 1, 2, \dots$  so that  $\sum_{n=0}^{\infty} g_n(x)$  converges uniformly on  $[a, b]$  to a function  $T(x)$ . By Theorem 1,  $S(x)$  and  $T(x)$  are solutions to  $y'' - Ax^k y = 0$ . Since

the Wronskian of  $S(x)$  and  $T(x)$  is  $W(x) = S(x)T'(x) - T(x)S'(x)$  and  $W(0) \neq 0$  then  $S(x)$  and  $T(x)$  are linearly independent on  $[a, b]$ , see e.g. [2], pp. 111-113. It follows that the general solution is  $C_1S(x) + C_2T(x)$  for constants  $C_1, C_2$ . In particular if  $k = 0$  and  $A > 0$  then

$$S(x) = \sum_{n=0}^{\infty} \frac{(\sqrt{A}x)^{2n}}{(2n)!} = \cosh(\sqrt{A}x) \quad \text{and} \quad T(x) = \frac{1}{\sqrt{A}} \sum_{n=0}^{\infty} \frac{(\sqrt{A}x)^{2n+1}}{(2n+1)!} = \frac{\sinh(\sqrt{A}x)}{\sqrt{A}}$$

and if  $k = 0$  and  $A < 0$  then

$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (\sqrt{|A|}x)^{2n}}{(2n)!} = \cos(\sqrt{|A|}x) \quad \text{and} \quad T(x) = \frac{1}{\sqrt{|A|}} \sum_{n=0}^{\infty} \frac{(-1)^n (\sqrt{|A|}x)^{2n+1}}{(2n+1)!} = \frac{\sin(\sqrt{|A|}x)}{\sqrt{|A|}}$$

These solutions are the same as those obtained by elementary methods.

**Example 2:** Consider  $y'' - Ae^{kx}y = 0$ ,  $-a < x < a$ , where  $A, k$  are constants,  $a > 0$ ,  $k \neq 0$  and  $f(x) = Ae^{kx}$ .

Let  $f_0(x) = 1$ ,

$$f_1(x) = \frac{A}{k^2}e^{kx}, \quad f_2(x) = \frac{A^2e^{2kx}}{(k^2)(2k)^2}, \dots$$

$$f_n(x) = \frac{A^n e^{nkx}}{[(k)(2k) \dots (nk)]^2}, \dots$$

Then  $f_n''(x) = f_{n-1}(x)f(x)$  and  $|f_n(x)| \leq \frac{(|A|e^{|kx|})^n}{[(k^n)(n!)^2]}$  for  $|x| \leq a$ ,  $n = 1, 2, \dots$  The series  $\sum_{n=1}^{\infty} \frac{(|A|e^{|kx|})^n}{[(k^n)(n!)^2]}$  converges by

the Ratio Test so  $\sum_{n=0}^{\infty} f_n(x) = 1 + \sum_{n=1}^{\infty} \frac{A^n e^{nkx}}{[(k^n)(n!)^2]}$  converges uniformly on  $[-a, a]$  to a function  $S(x)$ . Now let

$c = 0, g_0(x) = x$ ,

$$g_1(x) = \frac{Ae^{kx}}{k^2} \left( x - \frac{2}{k} \right), \quad g_2(x) = \frac{A^2e^{2kx}}{(k^2)(2k)^2} \left[ x - \frac{2}{k} \left( 1 + \frac{1}{2} \right) \right], \dots$$

$$g_n(x) = \frac{A^n e^{nkx}}{[(k^n)(n!)^2]} \left[ x - \frac{2}{k} \left( 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) \right], \dots$$

Then  $g_n''(x) = g_{n-1}(x) \cdot f(x)$  and  $|g_n(x)| \leq \frac{(|A|e^{|kx|})^n}{[(k^n)(n!)^2]} \left[ |x| + \frac{2}{k} \left( 1 + \frac{1}{2} + \dots + \frac{1}{n} \right) \right] := b_n$  for  $|x| \leq a$ ,  $n = 1, 2, \dots$ .

Since  $\sum b_n$  converges by the Ratio Test then  $\left( x + \sum_{n=1}^{\infty} g_n(x) \right)$  converges uniformly on  $[-a, a]$  to some  $T(x)$ .

To see that  $S(x)$  and  $T(x)$  are linearly independent let  $x = x(u) = k^{-1} \ln u \Leftrightarrow u = e^{kx}$ . Then

$$S(x(u)) = 1 + \sum_{n=1}^{\infty} \frac{A^n u^n}{(k^n \cdot n!)^2}$$

and

$$\begin{aligned} T(x(u)) &= \frac{\ln u}{k} + \sum_{n=1}^{\infty} \frac{A^n u^n}{(k^n \cdot n!)^2} \left[ \frac{\ln u}{k} - \frac{2}{k} \left( 1 + \frac{1}{2} + \dots + \frac{1}{n} \right) \right] \\ &= \left( \frac{\ln u}{k} \right) \cdot S(x(u)) - \frac{2}{k} \sum_{n=1}^{\infty} \left\{ \frac{A^n u^n}{(k^n \cdot n!)^2} \left( 1 + \frac{1}{2} + \dots + \frac{1}{n} \right) \right\}. \end{aligned}$$

Note  $S(x(u))$  has a Maclaurin Series but  $T(x(u))$  does not; hence  $S(x)$  and  $T(x)$  are linearly independent.

Thus  $C_1S(x) + C_2T(x)$ ,  $C_1, C_2$  constants, is the general solution to

$$y'' - Ae^{kx}y = 0, \quad -a \leq x \leq a.$$

We conclude with some remarks. Theorem 1 is a generalization of Theorem 0 and is of interest by itself. It is possible to improve Theorem 1 by generalizing hypothesis (iv) e.g., to include in (iv) a third alternative as follows:  $c_1, \dots, c_{k-1}$  are distinct points and each of  $\{S_n(c_1)\}_1^\infty, \dots, \{S_n(c_{k-1})\}_1^\infty$  and  $\{S_n'(c_i)\}_1^\infty$  converge. It may be possible to generalize Theorem A to differential equations that include intermediate derivatives, e.g.,  $y''' + g(x)y' + f(x)y = 0$ ,  $f(x)$  and  $g(x)$  continuous on  $[a, b]$ ; such a generalization would require an improvement of Theorem 1. As seen in the examples, linearly independent solutions to the differential equation are obtained by using linearly independent functions for  $f_0(x)$ . Finally, we note that difficulties in the application of Theorem A may occur when finding the  $k^{\text{th}}$  antiderivative of  $f_{n-1}(x)f(x)$ , and thus this method of solution may be impractical for such cases.

\*Note: The first author is deceased.

#### References

1. OLMSTED, J. M. H. Advanced Calculus, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1961.
2. CODDINGTON, E. A. An Introduction to Ordinary Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1961.

## Special Issue on Intelligent Computational Methods for Financial Engineering

### Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

|                        |                  |
|------------------------|------------------|
| Manuscript Due         | December 1, 2008 |
| First Round of Reviews | March 1, 2009    |
| Publication Date       | June 1, 2009     |

### Guest Editors

**Lean Yu**, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; [yulean@amss.ac.cn](mailto:yulean@amss.ac.cn)

**Shouyang Wang**, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; [sywang@amss.ac.cn](mailto:sywang@amss.ac.cn)

**K. K. Lai**, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; [mskklai@cityu.edu.hk](mailto:mskklai@cityu.edu.hk)