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Abstract

Spectral and scattering theory is discussed for the Stark effect Hamiltonians Ho =
—(1/2)A - z; and H = Ho + V where V is a long range perturbation. Most significantly,
in one dimension, and for V consisting of a slowly decaying term and an almost periodic
term, the two Hilbert space wave operators (of Isozaki and Kitada) are shown to exist and
be complete by Enss’s time dependent method.
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1 Introduction

This note concerns quantum mechanical scattering in the presence of a constant electric field.
The corresponding “ Stark effect” Hamiltonians are,

Ho = —3A -z, where A=) 8*/0z} (1.1)
=1
H = Hoy+V=Ho+Viu+Vi3+Vs (1.2)

where —z; is the potential corresponding to the constant electric field in the positive z; direction
(z € R™) and H is a perturbation of Ho by another potential V = Vi, + Vi3 + Vs consisting of
two long range terms and a short range term. More precisely assume

Conditon LR1. Vi, € C®(R") is real valued and for some € > 0
ID*Via(z)] < Calz1) V3¢ for every multi-indez

where (z1)? = (1 + z3).
Conditon LR2. Vi, = 0 if the space dimension isn > 1 but if n =1 then Vi, € C*(R) is
real valued and bounded along with all its derivatives and

/:o Via(z + 37%) dr
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crists as an improper Riemann integral for every z.

Condition SR. Vs is a symmetric operator which is Ho-compact and
S IF@ > r)Vs(Ho +i) N dr < oo
where F(-) is multiplication by the characteristic function of the indicated set.

It should be clarified that the term Vi, which allows an almost periodic potential is only
present in the one dimensional case, Much of the recent work, has focused on the one dimen-
sional case; see Hislop-Nakamura [1], Jensen [2], Jensen-Yajima [3] and Ozawa [4] for example.
The methods here are primarily multi-dimensional and the role of the assumption n = 1 will
be highlighted below. Almost periodic potentials and the existence and completeness of the
ordinary wave operators (of equation (1.6) below) have been studied previously [2]. Long range
scattering in this setting is relatively new but there has been some interest recently because there
is a discrepancy between quantum and classical mechanics; the ordinary wave operators exist
in the classical setting but not the quantum one when n = 1 and Vi, = 0 as was noted recently
by Jensen-Yajima (3] and Jensen-Ozawa [5]. In Theorem 2 below an additional condition on
the potential is introduced which assures that the two Hilbert space wave operators equal the
ordinary wave operators. In general one expects that the two Hilbert space wave operators are
equal, up to a phase function, to the Dollard’s modified wave operators; the justification of this
expectation will be the subject of a future investigation. That result and Theorem 1 below will
precisely delineate for which potentials of those considered here, the usual wave operators exist
and are complete. For the potentials V1, the condition is ¢ > 1/2 (see Jensen-Yajima [3] and
Ozawa [4] when n=1) but for Vi, the condition is not obvious; see Theorem 2.

The main result is the existence and completeness of the two Hilbert space wave operators,
W2 = W*(H, Hp; J*) defined by

wt = s, Jim e'tH Je-itHo (1.3)

where J* are two bounded operators on L?(R"), to be specified and “s-lim” is the limit in
the strong operator topology. Note the reversal of sign in equation (1.3) which is for historical
reasons (see Reed and Simon’s third volume [6, p. 17]). The two operators J* could equally well
be replaced by a single operator as was previously noted by the author [7][equation (2.10)] and
as is customary in most discussions of two Hilbert space scattering. (The operators J* are not

unique.) Isozaki and Kitada [8] were the first to introduce J* (“time independent modifiers”)
in this context; they are defined by

TH8(@) = [t e0g) e (1.4

where ¢ is the Fourier transform of #, diz = (2r)~"/*dz and 6% are functions to be chosen. The
functions 6* will be specified in §3 below but roughly they are chosen so that the commutator
HJ* — J*H, is small. (Recall Cook’s method.) The symbol of HJ* — J£Hj is, at least in the
case that Vs =0:

PO = € V@O + 0500 - 10040
+ 1V.6%(z,£) - V.0%(2,€) + Via(z) + Via(z) (1.5)

and this should be small; that is roughly “short range” when F¢;, > 0. The main results may
now be stated.
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Theorem 1 Assume the Conditions LR1, LR2 and SR. Then for J* as defined above
(for appropriate 6%), the wave operators W* of (1.8) erist, are isometries and are complete.
Moreover H has no singularly continuous spectrum, and its eigenvalues are discrete and of finite

multiplicity.

Theorem 2 Under the hypotheses of Theorem 1 and in the special case n =1, Vi, = 0

and
im [ Vig(z—3€+3r)dr=0

z,§—00 3
it is possible to choose J* to be the identity operator in Theorem 1, that is

W% = s-lim efeitHo, (1.6)
t—+Foo

Examples. The conditions of Theorem 1 are verified if: for ¢ > 0 and a,8 < 1/2 and
1 >4 >1/2 and b, by, b are real,

Via(z) = (2)7 cos(by|21]*) cos(ba|z|)
Via(z) = sin(bz”) + U'(z)

where U is a real function which is bounded along with all its derivatives (but Vi3 = 0 if
n > 1.) The conditions of Theorems 1 and 2 are linear and so the set of potentials covered by
these results form a linear space. For examples of the short range potentials Vs see Yajima [9].
Roughly Vs should be O({z,)~'/*~¢) for z, > 0 and some € > 0 and o({z,)) for z; < 0.

One simple example indicates that there is indeed a difference between one and more dimen-
sions: for V(z1,z;) = sinz, +sinz; and n = 2 the wave operators (1.6) do not exist by a tensor
product argument whereas they do if Viz(z) = sinz when n = 1. If Vi3(z) = sin(z%?) then
Theorem 1 applies but not Theorem 2. Jensen, [2] using Mourre’s [10] method obtains a result
similar to Theorem 2 for a class of real valued almost periodic potentials,

Via(z) = /

e
—o0

00

€ du(¢) provided [~ € +¢du(6) <oo

(and with J* = 1 and Vi, = 0). Theorem 2 requires more differentiability but one less anti-
derivative; more precisely, for each N > 0

716+ 6% du(e) < oo.

Theorem 1, which includes both slowly decaying and almost periodic potentials, is new.

2 Two Hilbert Space Scattering.

The derivation of Theorem 1.1 is broken into two main steps. The first step (Theorem 2.1
below) is to derive necessary conditions on J* or, in view of (1.4), conditions on 6% to conclude
Theorem 1.1. The second step (in §3) is to construct 6* satisfying those conditions, from the
long range potential V. Portions of the proofs will be cited from White 7] which will be quoted
frequently simply as [W] for brevity’s sake. More general potentials V; are allowed in the one
dimensional case because

F(|Dy| < r))(Ho +t)™! is compact if n = 1. (2.1)
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since it is unitarily equivalent via exp(—iD}/6) to a Hilbert Schmidt operator (see Perry [11,
Proposition 19.1]); here D, = —id/dz,.

Before stating the conditions on 6% it is convenient to recall the Calderén-Vaillancourt the-
orem which will be required to show that J* and related operators are bounded. Introduce
therefore the pseudo-differential operator R

Ro(z) = Os-[ [ e p(z,y, 6)8(y) dz ¢ (22)

for all ¢ € S(R™). Here “Os-" indicates that the integrals are oscillatory integrals (see Kumana-
go [12]). The theorem can be stated in terms of certain norms on the symbol, p: for each integer
k

lele = sup{|D2 D p(z,y,£)|,|1Dy D% p(z,y,€)]} (23)
where the sup is over all (z,y,£) € R®" and all @, 3,7 so that 0 < |a},|7] <2m and 0 < |3| <

2([n/2] + k+1) and where m is the least integer m > 5n/4. The Calderén-Vaillancourt theorem
[13] says that there is a constant C not depending on p so that

IRl < Clolo

where || - || denotes the operator norm on L?(R").

Anticipating the use of Enss’s time dependent method ({14]) we introduce smooth versions
of the incoming and outgoing operators, F(D; < 0) and F(D, > 0) respectively. Choose 7 in
C>(R) so that

1 ife>1,
(&) = and (&) + n(=&) = 1. (24)
0 if& < -1
Then the smooth versions of the incoming and outgoing operators are n(—D;) and n(D,) re-

spectively. Define further 7;(£1) = n(é — 2) so that

m(&) = { (l) :g g z :13’ (2.5)

The hypotheses on 6* can now be stated, beginning with 6~ for simplicity. The first as-
sumptions are technical: 4= € C°(R"™ x R"), is complex valued and for all multi-indicies o and
B there are constants C > 0, and N > 0 so that

ID:DfO'(z,E)I < C  provided Ja| > 1;
wfg}lo-(z,ol < &) + ©);
IDE6-(z,6)] < C(1+Iz)(1 +€D™; (2.6)
10,0607 |m < 1/2. @2.7)

where (£)? = (1 + |¢)?) and m is the least integer m > 5n/4. Now define p~ by (1.5). The short

range assumption is -
/1 Im(z1/r)m(é/r)p" lmdr < oo. (2.8)

Further there are two compactness assumptions and here the dependence on dimension becomes
apparent. Assume, forn =1

Jim [Im(z/r)m(E/m)p"|lm +  |m(z/r)m(£/r)20” |0z|msr (2:9)
+ Im(z/r)m(&/r)S07|m) = 0,
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where 30~ denotes the imaginary part of 6~. When n = 1 we write z for z; etc. If n > 1 then
a stronger assumption is needed:

r—00

lim 1n(6s ~ (21 ~ Om( el + Ines ~ (e ~ (9,07 s

+ |n(z1 = b)n(&: — “)ﬂl(@

for all real a,b. Similar hypotheses hold for 6+ but it is more convenient to define

)90~ |m] = 0 (2.10)

0*(z,€) = —0-(z,—£) so that J¥g(z) = J~(9)(z) (2.11)

(“time reversal”) where the bar denotes complex conjugation. Under these assumptions we have
the following theorem.

Theorem 1 Define Hy by (1.1) and let H = Hy+ Vi + Vs where Vi, = Vi (z) is a real valued
function which as an operator acts multiplicatively, is Ho-bounded, and has Hy-bound strictly
less than 1 and where Vs satisfies Condition SR. If J* and p* are as defined in equations (1.4)
and (1.5) and if 6* and p* satisfy the above hypotheses then the conclusions of Theorem 1.1 are
valid.

Outline of the Proof. The proof is by Enss’s time dependent method which here is adapted
to a two Hilbert space setting appropriate for studying long range scattering. The method can
be described as follows. Let H be any self adjoint operator on L?(R") with spectral measure by
E (but Hy is defined by (1.1)) and suppose J* be bounded operators. Assume further

Hypothesis H1. There is ag < —1 so that, for all a,a > ag
((H+3#)7'J* — JX(Ho + i) ")n(¥ D\ — a) are compact.
Hypothesis H2. For every compact real interval I, there is an integer N so that
JTNEW I - T HmGEDurIm(z /) (Ho + )M ldr < oo.
Hypothesis H3. The following operator is compact
(H 437" [J*n(=Da)(J*)" + J79(D)(J7)" = 1)(H +3)7".

Hypothesis H4. e*Ho((J¥)*J* — 1)e~**Ho — 0 weakly as t — Foo.

Enss method arguments apply to derive the present theorem from these hypotheses; see [W,
Theorems 2.1 and 2.2]. The first two hypotheses correspond to the standard Enss assumptions
for the short range case; H3 assures that the operators J* are “almost” unitary and H4 assures
that the wave operators W* are isometries, if they exist.

Check therefore Hypotheses H1 through H4. Suppose n = 1 since the case of n > 1 was
considered in [W]. Only the outgoing “—” case is considered but see (2.11).

Let P = (Ho + VL)J- — J~ Hg so that

Po(a) = [ =0y (2, 9(€)

for p~ defined by (1.5). Since Vs is Ho-compact by Condition SR, it suffices to show that (H +
)" P(Ho +1)~'n(D, — a) is compact for all a to verify H1. Since 1 —n,(D/r) is Ho-compact for
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any r > 0, by (2.1), this may be simplified to showing that (H +:)~! Py, (|D|/r)(Ho+1)'n(D—a)
can be made arbitrarily close to a compact operator by choosing r large enough. The proof of
this latter statement is the same as the proof of H1 given in [W] but P there is replaced by
Pni(|D}/r). (It should be remarked that [W, Proposition 3.2 (a) and (b)], which is used in the
proof cited above, assumes that 0% is real valued but the proofs apply without change to the
complex valued case provided the factor exp(—S360%) appearing in the Fourier integral operators
is treated as part of the symbol (and not the phase) as in the proof of H3 below.

The proof of H2 is exactly as in [W]; it uses the critical short range assumption (2.8) and
the Calderdn-Vaillancourt theorem.

To verify H3, it suffices to show that

(H + i)' [JEp(¥D)(J*)* — n(FD))(H + i)™ are compact (2.12)

because the sum of these two operators is the operator in H3. The argument is given for J~ only;
the J* case is similar (or use (2.11)). First, by Hypothesis H1, Hy is roughly “J~-subordinate”
to H or more precisely ’

lim [|(H + )" n(D)Ea(A] > 8)][ = 0

by [W, Lemma 2.5]. This and (2.1) reduces (2.12) to showing
(H 4+ )Y [J " m(D/r)(J7) —n(D/r))(H +¢)~! are compact (2.13)

for all r > 0. (Note H and Hj have to same domain and so may be interchanged in (2.1).)
The argument of [W] applies (see also [W, Proposition 3.2(c)]). The change of variables in that
argument involves only the real part 0~ of 6:

€ = €l6ey) = €+ [ VRO +s(z 1), 8)ds.

and uses assumption (2.9) but the proof is essentially the same.
The following theorem will be used for the proof of H4 and Theorem 1.2 both.

Theorem 2 Let 6~ be a complez valued function on R®® satisfying (2.7) and with 6~
bounded. Let J- be defined by (1.4) with phase function 0~ there replaced by 0=. If m is the
least integer m > 5n/4 and if

lim |m(z1/r*)m(Dy/r)(07(2,€) = 67(2,€))lm = 0

=00

then
s-lim(J™ = J-)e™tHe = ¢
t—oc0

Proof of Theorem 2.2. By a density argument it suffices to prove the strong convergence
on states of the form, n(D; —a)n(z; —b)¢. Recall that outgoing states evolving freely constantly

accelerate in the direction of the electric field except for an error term:
(1 = m(1621/¢%))e="Hop(Dy — a)n(z1 - B)|| = O(t) ™~
(see Perry [11, Lemma 19.7]). Also momentum is translated in the same direction:

e~"Hon(Dy — a) = (D1 — a — t)e™*Ho
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by [11, Proposition 19.1] of Perry’s book. Thus it is enough to show that
Jim |(J = J")m (162, /8)p(Dy — a = t)|| = 0.

and this is follows from the assumptions on 8 — 6~ (see [W, Proposition 3.2 (a) and (b)]). O

To complete the proof of Theorem 1, it remains to check Hypothesis H4. By Theorem 2,
and assumption (2.9) make it possible to assume 6~ is real valued and in this case the proof in
[W] applies. (There is an error in the proof just before equation (3.23) [W]: the definitions of ¢,
and g3 have been interchanged.) 0

Remark. To extend the above proof to n-dimensions, one would need a criterion, replacing
(2.1) when n > 1, for a pseudo-differential operator like R in (2.2) to be compact with respect
to Ho which does not require the symbol to decay to 0 as z; — oo.

3 Theorem 1.1.

The proof of Theorem 1.1 involves simply choosing - and checking the hypotheses of Theorem
2.1. The short range assumption (2.8) is the crucial to the choice.

Outline of the Proof of Theorem 1.1. Again it suffices to consider the n = 1 and the
outgoing “—” case. Moreover the construction of 6~ (and thereby J~) was carried out in (W)
in the case when Vi3 =0 and n > 1. 'Denote that function now as 0;. Next we construct 67
as the appropriate choice of 8~ for general Vi; and Vi; = 0 (and n = 1); then the appropriate
choice of 6~ in the general case will turn out to be simply 8~ = 0 + 6;. Define

03 (z,6) = /:o m(pr)Vea(z — 1€ + 37%) dr — 467 m(p€)Via(z)

where p is a small parameter to be fixed after checking property (2.7). The Condition LR2
assures that the integral exists as an improper Riemann integral and defines 67 to be a con-
tinuous function. In fact 87 is infinitely differentiable and the derivatives may be computed
by differentiating under the integral sign because if the derivatives are computed formally by
this formula then the resultant integrals converge locally uniformly. This convergence can be
checked by integrating by parts, V/, being integrated. The choice of 6; is made with the short

range assumption (2.8) in mind. Compute

P (2,6)
= Via(2)[(1 = m(p)) + 53 >m(p€) — (20)¢ 01 (p€))] — 3¢ Via(2)
662 m(pE)Via(2) — € m(p€)Via(=)
+ [ (7 mlpr) — pr7imi(pr))V (2 — 362 + 377 dr) +
— 3 Bl 0 (pr) — 3pm~%n{(p€) + 3r~*m(p7) ]V (= — €2 + §77) dr

It is a routine matter of checking that 65 satisfies the hypotheses of Theorem 2.2 and it suffices
to remark that in checking (2.7) one must choose p sufficiently small; p then remains fixed. To
do the check of the same hypotheses for §~ = 6] + 0; there is only one nonlinear condition that
requires checking and that is the short range condition (2.8). Since

1 = O((=)™) and 28 = O((6)™")
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(sce [W, equation 4.10]) this is easily checked. o
Proof of Theorem 1.2. This Theorem follows directly from Theorem 2.3 if one chooses
0= = 0 there. u]
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