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ABSTRACT. Many of the contractive definitions do not require continuity of the map. How-
ever, in a previous paper the second author has shown in [1] that, in most cases, the function
is continuous at a fixed point. In this paper we show that the same behavior is exhibited for
many multivalued mappings.
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In a recent paper, Rhoades [1], it was verified that, for most contractive definitions, the
contractive definition was strong enough to force continuity of the function at a fixed point,
even though continuity was neither assumed nor implied by the contractive definition.

The purpose of this paper is to prove that the situation is the same in the multivalued
arena.

Before examining the multivalued cases, we shall establish a result, which is of interest in
its own right.

PROPOSITION 1. Let T be a selfmap of a complete metric space with a fixed point p.
Then the following are equivalent:

(a) T is continuous at p.

(b) If {yn} is any sequence contained in X with y, — p, then limd(yn,Tyn) = 0.

PROOF. To show that (a) and (b) are equivalent, suppose that (a) is satisfied. Then
Yn — p implies that Ty, — Tp = p, and thus lim d(y,,Ty,) = 0.

Conversely, d(Tyn,Tp) < d(Tyn,yn) + d(yn,p), so that
limsup d(Tyn,Tp) < limsup[d(Tyn,yn) + d(yn,Tp)] = 0. Then T is continuous at p.

In the multivalued case, a multivalued map T has a fixed point p if p € Tp. Let CL(X)
denote the collection of nonempty closed subsets of X, D(A,B) := inf{d(a,b) : a € A,b € B}.
A multivalued map T : (X,d) — (CL(X),D) will be said to be continuous at a point p if
limy, d(zn,p) = 0 implies that lim,, D(Tz,,Tp) = 0.

PROPOSITION 2. Let T : (X,d) — (CL(X),D), with p a fixed point of T. Then the
following are equivalent :
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(a) T is continuous at p,

(b) If {yn} C X with limy, = p, then lim D(y,,,Ty,) = 0.

Suppose that (a) is satisfied, D(yn,Tyn) < D(yn,p) + D(p, Tyn) — 0, and (b) is satisfied.
Conversely, if (b) holds, then D(Tyn,Tp) < D(Tyn,yn) + D(yn,p) — 0, and (a) is satisfied.

In Proposition 2, we obtain the same conclusions by replacing CL(X) with B(X), the set of
all nonempty bounded subsets of X, and replacing D by §(A,B), where 6(A,B) := sup{d(a,b) :
a € Ab € B}. We can also replace CL(X) with CB(X), the collection of nonempty closed,
bounded subsets of X, and replace D with H, the Hausdorff metric.

THEOREM 1. Let F: X — B(X),I: X — X, I continuous, F,I satisfying

§(Fz,Fy) < cmax{§(Iz,Iy),6(Iz,Fz),6(1y,Fy),6(Iz,Fy),6(1y,Fz)} (1)

forall z,y in X, 0 < ¢ < 1. If F and I commute and I(X) D F(X), then F and I have a
unique common fixed point z, Fz = {z}, and F is continuous at z.

The fact that F and I have a unique common fixed point comes from Fisher (2] . Although
not mentioned in the statement of Theorem 1, Fisher [2] has shown that Iz = {z}. To show
that F is continuous at z, let {y,} C X,y — z. From (1),

8§(Fyn,2) < cmax{6(Iya,I2),8(Iyn,Fy,), 6(12,Fz),8(Iyn,Fz),6(I1z, Fyn)}.

Since y, — z and I is continuous, Iy, — Iz = z. Also, §(Iyn,Fyn) < 6(Iyn,z) + (2, Fyn).
Therefore 6(Fyn,z) < c[6(Iyn,z) + 6(2,Fyy,)], which implies that
8(Fyn,2) < c[6(Iyn,2)]/(1 —c) — 0 as n — oo, and F is continuous at 2.

By setting I equal to the identity map, Theorem 1 is a generalization of the result in
Fisher [3].

For an integer n,z € X, F™ is defined inductively by F"(z) = F(F"~1(z)).

THEOREM 2. Let F: X — B(X) satisfying

§(F?z,Fy) < cmax{§(F"z,F*y),§(F z,F" z),8(y,Fy) : 0 < r,r' <p,s =0,1}  (2)

for all z,y in X,0 < ¢ < 1 for some fixed integer p. If F' also maps B(X) into itself, then F
has a unique fixed point z, Fz = {2z}, and F is continuous at 2.

PROOF. The fact that F has a unique fixed point z and that Fz = {z} comes from Fisher
[4]. Let {yn} C X,yn — 2. In (2) set z = z,y = yn to get

§(FPz,Fy,) < cmax{6(F"z,F*y,),6(F 2,F" 2),8(yn,Fyn) : 0 < r,v' < p,s = 0,1}
= cmax{6(z,yn), 6(2,FYn), §(yn,Fyn)}-

Since 6(yn,Fyn) < 6(2,yn) + 8(2,Fyy,), the above inequality becomes §(z,Fyn) < c[6(z,yn) +
8(2,Fyn)], which implies that §(z,Fy,) < c[6(z,yn)]/(1 —¢c) — 0 as n — oo. Thus F is
continuous at z.

Theorem 2 also generalizes the corresponding result in Fisher [4].

For a metric space X, N(¢,A) := {z € X : d(z,a) < ¢ for some a € A € CL(X),e > 0}.
The Hausdorff metric H is defined by H(A,B) = inf{e > 0: A C N(¢,B) and B C N(g,A4)},
if the infimum exists, and H(A,B) = oo otherwise. An equivalent definition of H is

H(A,B) = max {sup d(z,A), sup d(z,B)} .
z€B ZEA
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THEOREM 3. Let Fy, F; : X — CB(X) satisfying

H(Fiz,Fyy) < a18(z,Fiz) + a28(y, Foy) + a36(z,Fay) + asé(y,Fiz) + asd(z,y)  (3)

for all z,y in X, where the a; > O,Z:,s=l a; <1 and a; = a2 or a3 = a4. If 2z is a common
fixed point of F; and F; such that Fyz = {z} or F;z = {z}, then z is the unique common fixed
point of F} and F;. Moreover, F; and F; are continuous at 2.

PROOF. The conclusions about the fixed point z come from Mendaglio and Dube [5]. We
first observe that the hypotheses of the theorem implies that both Fyz = F,z = {z}. For,
suppose that Fyz = {z}. Then, in (3) with z = y = z, we have

H(F\z,F2z) < a16(2,F1z) + a36(2,F2z) + a38(2,F22) + a46(z,F1z) + as6(z,2),

and H(Fi2,{z}) < (a1 + a4)8(2,F1z). But H(Fyz,{z}) = 6(z,F12). Therefore F1z = {z}.
Similarly, Fiz = {2} implies Fpz = {z}.
To prove continuity, let {y,} C X,yn — 2. In (3) set z = y,,y = 2 to get

H(Fyyn,Fo2) < 616(yn,Fiyn) + 0268(2,F22) + a36(yn,F22) + as6(2,F1yn) + asd(yn,z).
Thus

(al +az + a3)

ny2) = ny2) <
H(Fiyn,2) = 6(Fiyn2) < T

d(yn,2),

which tends to 0 as n — oo, and Fj is continuous at z.
Setting z = z and y = y, in (3) leads to the result that F} is continuous at z.
THEOREM 4. Let F,G: X — B(X)

6(Fz,Gy) < a(p)8(z,Fz) + a2(p)é(y,Gy) + a3(p)é(z,Gy) + au(p)é(y,Fz) + as(p)d(z,y) (4)

for all z,y in X, where p := §(Fz,Gy) > 0, and where each a; : (0,00) — [0,1) is a decreasing
function such that (a3 + a3 +2a3 +2a4 + as)(t) < 1 for each t > 0. Then there exists a unique
point z in X satisfying Fz = Gz = {z}, F and G have a unique common fixed point in X,
and F and G are continuous at z.

That 2 is the unique common fixed point of F and G follows from Samanta and Baisnab
[6]. To prove continuity, let {y,} C X,yn, — 2. From (4), with z = y,,,y = z, we have

§(Fyn,Gz) < a1(p)6(yn,F'yn) +a2(p)6(2,G2) + a3(p)b(yn,Gz) + 24(p)8(2,Fyn) + as(p)d(yn,2),

or

8(Fyn,2) < (a1(p) + a4(p))6(2,Fyn) + (a1(p) + as(p) + as(p))d(yn,2);

ie.,

a1(p) + as(p) + as(p)
8(Fyn,2) < ll—al(;)-— a4(15>) d(yn,2),
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which tends to 0 as n — oo, and F is continuous at z. A similar argument shows that G is
continuous at z.

THEOREM 5. Let F,G : X — B(X) satisfying

§(Fz,Gy) < a16(z,Fz) + 026(y,Gy) + a3é(z,Gy) + a48(y,Fz) + asd(z,y) (5)

for all z,y in X, where the a; > 0,07 + a2 + 204 + a5 < 1 and a; + a4 < 1. Then F and G
have a common fixed point. If, further, a3 + a4 + as < 1, then Fz = Gz = {z} and z is the
unique common fixed point of F' and G. Moreover, if F and G have a unique common fixed
point z, then F and G are continuous at z.

The fixed point properties come from Theorem 2 of Dixit [7]. To prove continuity, let
{yn} C X,yn — z and set z = y,,y = z in (5) to get

§(Fyn,Gz) < a16(yn,Fyn) + a26(2G2) + a36(yn,G2) + a46(z,Fy,) + asd(ys,2).

Thus

8(Fyn,z) < (o + a4)8(2,Fyn) + (a1 + a3 + a5)d(yn,2),

or,

ay +az + a3
8(Fyn,2) < 7 = duns2),
which tends to 0 as n — oo, and F is continuous at z. A similar argument shows that G is
continuous at 2.

THEOREM 6. Let F,G : X — B(X) satisfying

6(Fz,Gy) < cmax{é(z,Fz),6(y,Gy), 6(z,Gy), 6(y,Fz), d(z,y)} (6)

forall z,y in X,0 < ¢ < 1. Then F and G have a unique common fixed point z, Fz = Gz = {z},
and F and G are continuous at 2.

The existence and uniqueness of the fixed point come from Fisher [8]. To prove continuity,
let {yn} C X,yn — z and set = = y,,,y = z in (6) to get

8(Fyn,G2) < cmax{8(yn,Fyn), 8(2,G2),8(ya,G2),8(2,Fyn), d(yn,2)},

or, since 8(yn,Fyn) < 6(yn,2) +6(2,Fyn), 8(Fyn,z) < c[6(yn,2) + 6(2,Fyn)], which implies that
8(Fyny2) < c6(yn,2)/(1 — ¢)] = 0 as n — o0, and F is continuous at z.

A similar proof show that G is continuous at z.

THEOREM 7. Let F,G : X — B(X), X bounded, F continuous, F' commutes with G,
and satisfying

§(FPG?z,Gy) < cmax{§(F"G’z,G'y),6(F"G’z,F" G* z), §(y,Gy)
:03r,r',s,s'_<_p;i=0,1} (7)

for all z,y in X,0 < ¢ < 1, p a fixed positive integer. Then F and G have a unique common
fixed point 2z, Fz = Gz = {z}, and G is continuous at z.
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The existence and uniqueness of the fixed point come from Theorem 2 of Fisher [9]. To
prove the continuity of G, let {y,} C X,yn — 2, and set £ = z,y = y,, in (7) to get

§(FPGPz,Gyn) < cmax{6(F"G*z,G'yn),6(F"G*2z,F" G* 2),6(yn,Gyn)

:037‘,7",8,3' SP;i=0,1}7

or,

8(2,Gyn) < cmax{d(z,yn), 8(yn,Gyn)}.

Since 8(Yn,Gyn) < 8(2,Gyn) + d(2,yn), 6(2,Gyn) < c[6(2,Gyn) + d(z,yn)], which implies that
8(z,Gyn) < c[d(yn,z)/(1 = ¢)] = 0 as n — oo, and G is continuous at 2.
THEOREM 8. Let F,G : X — B(X) satisfying

6(Fz,Gy) < cmax{d(z,y),6(z,Gy), §(y,F'z)} ®

for each z,y in X,0 < ¢ < 1. Then F and G have a unique common fixed point z, Fz = Gz =
{z}, and F and G are continuous at 2.

The existence and uniqueness of the fixed point follow from Fisher [10]. To prove the
continuity of G, let {yn} C X, yn — 2z, and set z = yn,y = 2z in (8) to get

§(Fyn,Gz) < cmax{d(yn,z), 6(yn,Gz),8(2,Fyn)}

Thus 6(Fyn,z) < ¢ d(yn,2) = 0 as n — oo, and F is continuous at 2. Setting £ = z,y = yn in
(8) leads to the fact that G is continuous at z.
THEOREM 9. Let F,G: X — B(X),I,J,: X — X satisfying

6(Fz,Gy) < cmax{d(Iz,Jy), §(Iz,Gy), 8(Jy,Fz)} )

for all z,y in X,0 < ¢ < 1. If F commutes with I and G commutes with J, F(X) C
I(X),G(X) C J(X) and, if F or I and G or J are continuous, then F,G,I, and J, have
a unique common fixed point z. Further, Fz = Gz = {z}, and z is the unique common fixed
point of F and I and G and J. If I and J are continuous, then F and G are continuous at z.
If F and G are continuous, then I and J are continuous at z.

PROOF. The existence and uniqueness of z follow from Theorem 1 of Fisher [11]. Suppose
that I and J are continuous. Let {y,} C X,yn — 2, and set £ = y,,y = 2z in (9) to get

6(Fyn,Gz) < cmax{d(Iyn,Jz), 6(Iyn,G2),6(J2,Fyn)}.
Thus 6(Fyn,z) < ¢ d(Iyn,z) — 0 as n — oo, and F' is continuous at z.
Now set z = 2,y = y,, in (9) to get

8§(Fz,Gyn) < cmax{d(Iz,Jyn), 6(I12,Gyn),8(Jyn,Fz)},

or §(2,Gyn) < cd(2,Jyn) — 0 as n — oo, and G is continuous at 2.
A similar argument shows that the assumption that F and J are continuous leads to the
continuity of I and J at z.
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The special case of Theorem 9 in which I is the identity map on X yields the result in
Fisher [12].
THEOREM 10. Let F,G : X — B(X),I,J,: X — X satisfying

§(Fz,Gy) < cmax{d(Iz,Jy),6(Iz,Fz),6(Jy,Gy)} (10)

for all z,y in X,0 < ¢ < 1. If F commutes with I and G commutes with J, G(X) C
I(X),F(X) C J(X) and, if I or J is continuous, then F,G,I, and J have a unique common
fixed point z. Further, Fz = Gz = {z}, and z is the unique common fixed point of F,G,I,
and J. Further, the continuity of I implies that F is continuous at z, and the continuity of J
implies that G is continuous at z.

The existence and uniqueness of z follows from Theorem 1 of Fisher [13]. Suppose that I
is continuous. Let {y,} C X,yn — 2z, and set = = yn,y = z in (10) to get

8(Fyn,Gz) < cmax{d(Iyn,Jz),(Iyn,Fyn),6(J2,Gz)};

ie.,

8(Fyn,z) < cmax{d(Iyn,z),6(Iyn,Fyn)}, which, since §(Jyn,Fyn) < 6(Iyn,2) + 6(2,Fya),
implies that 6(Fy,,z) < ¢[6(Iyn,z) + 6(2,Fys)] — 0 as n — oo, and F is continuous at z.

The assumption that J is continuous leads to the continuity of G at 2.

The special case of Theorem 10 with I = J = Ix yields the result of Fisher [10], and the
continuity of both F' and G at z.

THEOREM 11. Let F,G: X — B(X),I,J,: X — X satisfying

§(F?z,Gy) < cmax{§(F"z,Gy),6(F z,y):0<r < p} (11)

for all z,y in X,0 < ¢ < 1, p a fixed positive integer. If F' also maps B(X) into itself, then
F and G have a unique common fixed point z. Further, z is the unique fixed point of F' and
G,Fz = Gz = {2}, and G is continuous at z.

The existence and uniqueness of z come from Theorem 2 in Fisher [14]. To prove the
continuity of F, let {y,} C X,yp — z, and set z = z,y = y, in (11) to get

§(F?2,Gyyn) < cmax{8(F 2,Gy,),8(Fz,yn) : 0 < r < p};

ie.,

§(2,Gyn) < cmax{8(z,Gyn), 8(z,yn)},

which implies that §(2,Gy,) < ¢ 6(z,yn) — 0 as n — o0, and G is continuous at z.

A similar calculation verifies that G is continuous at z.
We now establish continuity for multivalued mappings with metric defined by the Hausdorff
metric.

THEOREM 12. Let T : X — CB(X) satisfying

H(Tz,Ty) < a(z,y)D(z,Tz) + a'(2,y) D(y,Ty) + b(z,y)D(z,Ty)+
¥ (z,y)D(y,Tz) + c(z,y)d(z,y) (12)

for all z,y in X,a,d’,b,b',c: X x X > R+ and (a+a' +b+ b +c)(z,y) < 1forall z,yin X.
If
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limsup(a+a' +b+b +c)(zy) <1,
d(z,y)—0

then for each z, in X there exists a sequence of iterates converging to a fixed point z of T,
and T is continuous at 2.

The existence of a fixed point is a consequence of Garegnani and Massa [15]. To prove
continuity, let {y,} C X,yn — 2, and set z = y,,,y = 2z in (12) to get

H(TymTZ) < a(yn,z)D(ynsTyn) + a,(ynyz)D(z’Tz) + b(yn1z)D(yn)Tz)
+ b'(yn,2)D(2,Tyn) + c(yn,2)d(yn,2).

Thus,

D(Tyn,z) < H(Tyn,Tz) < a(d(yn,2) + D(2,Tyn)) + bD(yn,T2)
+ ' D(2,Tyn) + cd(yn,2),

or

(a + ¢)d(yn,2) + bD(yn,T'2)
l—a-V
which tends to 0 as n — oo, since lim(1 — a — b') > 0, and lim;,; D(Tyn,z) = 0, which implies
that lim, D(yn,Tys) = 0. Taking the limit as n — oo of the inequality involving H yields
limp H(Tys,Tz) =0, and T is continuous at 2.
THEOREM 13. Let T : X — CL(X),f : X — X such that TX C fX, fX is (T,f)-
orbitally complete and

D(Tyn,2) <

H(Tz,Ty) < gmax{d(fz,fy), D(fz,Tz), D(fy,Ty),(D(fz,Ty) + D(fy,Tz)]/2} (13)

for all z,y in X,0 < ¢ < 1. Then T and f have a coincidence point; i.e., there exists a z in X
such that fz € Tz.

COROLLARY 1. Let f be the identity map on X. Then, under the hypotheses of Theorem
13, T has a fixed point z, and T is continuous at z.

The fact that T has a fixed point comes from Singh and Kulshrestha [16]. To prove
continuity, let {yn} C X, yn — 2, and set z = y,,y = 2z in (13) to get

H(Tya,T2) < ¢gmax{d(yn,z), D(yn,Tyn), D(2,T2),[D(yn,Tz) + D(2,Tyn)]/2}.

Thus

D(Tyn,z) < gmax{d(yn,z), D(y,.,Ty,.),O [D(y,,,Tz) + D(2,Tyn)}/2}
< ma.x{qd(y,,,z), 1— D(yn,z), 29— D(y,,,Tz)} — 0as n — oo.

and lim, D(Tyy,,z) = 0, which implies that lim, D(y,,Ty,) = 0. Taking the limit as n — oo,
in the inequality involving H, yields lim, H(Ty.,Tz) = 0, and T is continuous at z.
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The fixed point portion of Corollary 1 is essentially due to Ciric [17]. The theorem of Ciric
also contains a result of Reich [18] as a special case.

Kaneko [19] proves the Ciric result under the weaker conditions that X be a reflexive
space and the range of T is the family of all nonempty weakly compact subsets of X. He is
apparently unaware that the two standard definitions of the Hausdorff metric are equivalent.

Theorems 1 and 2 in Czerwick [20] are special cases of Corollary 1, as are Theorem 1 of
Iseki [21] and Theorem 1 of Ray [22].

THEOREM 14. Let (X,d) be a complete metrically convex metric space, K a nonempty
closed subset of X,T : X — CB(X) such that there exist a,,7 > 0,a + 28 + 27 < 1 such
that for all z,y in X,

H(T2,Ty) < ad(z,y) + A{D(x,Tz) + D(y,Ty)} + 1{D(=,Ty) + D, Tx)}.  (14)

If for each z € 0K, Tz C K and (a+ B8+ 7)(1+ B +17)/(1 — B —7)% < 1, then there exists a z
in K with z € Tz. Moreover T is continuous at z.

The existence of z is Theorem 1 of Itoh [23]. To show continuity, let {yn} C X,yn — 2,
and set £ = y,,y = z in (14) to get

H(TymTz) < ad(ymz) + ﬂ{D(ynaTyn) + D(2,T2)} + 7{D(ymTZ) + D(Zvan)}'

Then

D(Z»Tyn) < H(Ty,.,Tz) < ad(ymZ) + B{D(ymz) + D(z,Ty,.)} + 7{D(ymTZ) + D(z’Tyn)}v
or,

(@ + B)d(yn,z) + 1D (yn,T2)
1-8-7
and lim,, D(z,Ty,) = 0, which implies that lim, D(yn,Ty,) = 0. Now take the limit as n — oo
in the inequlality for H to get lim, H(Tz,Ty,) = 0, and T is continuous at z.
THEOREM 15. Let (X,d) be a complete bounded metric space, F, : X — CL(X),i =1,2
satisfying

D(z,Ty,) <

— 0 as n — oo,

H(Fiz,Fy) < a1D(z,Fi1z) + a;D(y,Fay) + a3 D(y,F1z) + ay D(z,Fay) + asd(z,y)  (15)

for all z,y in X,a; > 0,%%_,a; < 1 and a; = a; or a3 = a4. Then F} and F; have a common
fixed point 2. Moreover F; and F, are continuous at z.

The existence of z comes from Theorem 1 of Bose and Mukherjee [24]. To prove continuity
of Fy,let {y,} C X,y, — 2, and set z = y,,y = z in (15) to get

H(Fyyn,F22) < a1 D(yn,Fiyn) + a2 D(2,F22) + a3 D(2,F1yn) + as D(yn,F22) + asd(yn,z).

Setting z = y = z in (15) yields the fact that Fyz = Fyz. Thus

D(Fiyn,z) £ H(Fiyn,F12) < (a1 + a3)D(2,F1yn) + a4 D(yn,F2z) + (a1 + as)d(yn,2),
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and

D(2,Fuya) < a4D(yn,F22) + (a1 + GS)d(yn,Z)’
l—a;—a3
which leads to the facts that lim, D(z,Fiy,) = 0 and lim,, D(yn,Fiyn) = 0. Taking the limit
of the inequality for H, and using the fact that Fyz = Fz, yields lim,, H(F,y.,F2z) = 0, and
F; is continuous at z.
Similarly, F; is continuous at z.
THEOREM 16. Let (X,d) be a complete metrically convex metric space, K a nonempty

closed subset of X. Let S,T : K — CB(X) satisfying

H(Sz,Ty) < ad(z,y) + B{D(z,5z) + D(y,Ty)} + v{D(z,Ty) + D(y,Sz)} (16)

for all z,y in X, a,8,v > 0 with a + 28 + 2y < 1. If for each z € 9K, S(z) C K, T(z) C K
and (a+8+7)(14+8+7)/(1—B—7)? < 1, then there exists a z in K with z € Tz and z € Sz.
Also S and T are continuous at z.

The properties of z come from Theorem 3.1 of Khan [24]. To establish the continuity of
S, let {yn} C X,yn — 2, and set z = y,,y = 2 in (16) to get

H(Syn,Tz) < ad(yn,z) + B{D(yn,Syn) + D(2,T2)} + v{D(yn,Tz) + D(2,Syn)}.

Thus

D(Syn,2) < H(Syn,Tz) = ad(yn,z) + BD(yn,Syn) + 1{D(yn,T2) + D(2,5yn)},
or,

(a + B)d(ya,2) + YD (ya,Tz)
D(Syn,2) < ,
(Syn»2) T—B—v
which implies that limy, D(Syn,z) = 0, and thus that lim, D(y,Sy,) = 0. Setting z =y = 2
in (16) yields Sz = T'z. Substituting into the inequality for H yields

H(Syn,Tz) = H(Syn,S2) < ad(yn,2) + BD(Yn,Syn) + Y{D(yn,S2)} + D(z,5y.),

which impies that lim, H(Sy,,Sz) =0, and S is continuous at z.
A similar calculation verifies that T is continuous at z.
THEOREM 17. Let T, : X — CB(X) satisfying

{H(T12,Tay)}* < kmax{D(z,T1z)D(y,Tay),D(z,Tay)D(y,Tiz), D(z,T12) D(z,Tny),
D(valz)D(yiTny)1d2(z)y)} (17)

for all z,y in X,n > 2,0 < k < 1/2. Then {T,} has a common fixed point and F(Th) =
F(T,),n > 1, where F(T) denotes the fixed point set of T'. Moreover the {T,} are continuous
at each fixed point.

The conclusion concerning the fixed points follows from Theorem 3 of Popa [26]. To prove
continuity, let {yn} C X,yn, — 2, and set z = z,y = y; in (17) to get
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{H(T12,Toys)}? < kmax{D(z,T12)D(yx,Tnyx),D(2,Tuyx) D(yk, Ty z), D(2,T12) D(2,Tnys),
D(yi,T12)D(yx,Tuys), d*(z,yx) }»

or

{H(le’Tﬂyk)}z S k max{oy D(z,Tnyk)D(yk’le)voy D(yk7Tl Z)D(yk9Tnyk)7 d2(2,yk)}.

Setting ¢ = y = z in (17) yields Tyz = Tyz. Substituting in the above inequality yields
limsup{H (T,z,T,yx)}2 = 0 and each T, is continuous at z.
THEOREM 18. Let (X,d) be a complete metric space, T, T2 : X — CB(X) satisfying

d*(z,Tyz) + d*(y,T2y) (18)
67-m(z,Tyz) + 6p~™(y,Try)

for each z,y in X such that 6#~™(z,T1z) + 6P "™(y,T2y) #0,0<c<1,m >1,p>2,m < p.
Then T; and T} have common fixed points. Moreover T} and T} are continuous at each fixed

H™(Thz,Thy)<c

point.

The fact that T} and T have fixed points is Theorem 2 of Popa [27]. To establish continu-
ity, let z be a common fixed point of T} and T and let {yn} C X,yn — 2, and set z = z,y = yn
in (18) to get

dp(Z,TIZ) + dp(ymT2yn)
m <
H (le,szn) < C&,_m(z,le) + 6p—m(ymT2yn)
dp(ymszn)

= <cd® vy )
T (ymTan) = ¢ W)

since d(yn,T2yn) < 8(yn,T2yn). Therefore

D(2,Tzyn) < H(T12,T3yn) < /™ d(yn,T2yn) = /™ D(yn,Tayn)
< /™[D(yn,2) + D(2,T2yn)),

or, D(2,Tayn) < ¢"/™[D(yn,2)]/(1 —c) — 0 as n — oo, and lim,D(z,Tay,) = 0. Also,
limp D(yn,T2yn) = 0.

If 62~™(2,T12) +6P~™(2,T22z) = 0, then Ty z = Toz = {z}. f 6P~ ™(2,T12) + 6P~ ™(2,T22) #
0, then, from (18), Tyz = T;z. Substituting in the inequality for H yields H(Tyz,Toyn) =
H(T12,T2yn) € ¢/™D(yn,Toys) — 0 as n — oo, and T} is continuous at z.

Similarly, T} is continuous at 2.

Let C(X) denote the nonempty compact subsets of X. A space X is said to be z,-jointly
orbitally complete if every Cauchy sequence of each orbit at z, is convergent in X.

THEOREM 19. Let F; : X — C(X),i = 1,2,X z,-jointly complete for some z, € X.
Suppose there exists a function ¢ : (R*)® — Rt upper semicontinous and nondecreasing
in each variable, such that

7(t) := max{y(t,1,¢,¢,t),¥(t,t,2¢,0,t),9%(¢,t,0,2¢t,1)}
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satisfies v(t) < t for each t > 0. Suppose that the F, satisfy

H(FXI,FZy) S z/;{D(a:,Fl.'c),D(y,F2y),D(m,F2y),D(y,Fla:),d(z,y)} (19)

for all z,y in X. Then F; and F, have a common fixed point. Moreover F; and F; are
continuous at each fixed point.

The existence of a fixed point is Theorem 2.1 of Guay et al [28]. To prove that Fy is
continuous at a fixed point z, let {yp,} C X,yn — 2z, and set z = yn,y = z in (19) to get

H(Flyn’FZZ) S d){D(yn’Flyn)’D(ZaFZZ),D(ynFZZ)a D(Z)Flyn), d(ynaz)}-
Thus

D(Flyn’z) S "/){D(yn,Flyn)a OaD(ynFZZ), D(ZaFlyn)ad(ynZ)}-

Suppose that § = limsup D(Fiyn,z) > 0. Since D(yn,Fi1yn) < D(yn,2z) + D(2,F1yn),
limsup D(yn,F1ys) < limsup D(z,Fyy,). Since z € Fyz,limsup D(y,Fz) = 0. Therefore we
have § < 9(6,0,0,6,0) < 1(6,4,6,8,6) < 6, a contradiction. Consequently lim, D(Fiyn,z) =0,
and lim,, D(yn,F1y.) = 0.

From (19) with z = y = z,

H(F\z,F32) < y{D(z,Fy2), D(2,F;2), D(2,F;z), D(2,F\ z),d(z,2)} = ¥(0,0,0,0,0) = 0,

and Fyz = F,z. Substituting in the inequality for H we have

H(FlynaFlz) S y{D(yn)Flyn)y 0) D(yruFlz)v D(Z,Flyn),d(ynaz)}'

Taking the limsup as n — oo, yields limsup, H(Fiyn,F1z) < ¥(0,0,0,0,0) = 0, and F is
continuous at z.

A similar argument verifies that F3 is continuous at z.

THEOREM 20. Let X be a complete metric space, F, : X — C(X). Suppose that there
exists a function 1 satisfying the conditions of Theorem 19 and such that

H(F,'.’l?,ij) < QIJ{D(I,F‘,:):), D(y’ij)i D(z,F,y), D(y,F;a:), d(x,y)} (20)

for each z,y in X, for each i,j, 1 # j. Then {F,} has a common fixed point, and each of the
F; is continuous at this fixed point.

The existence of a common fixed point is Theorem 2.5 of Guay et al [28]. The continuity
is proved in the same way as in Theorem 19.

Theorem 4 of Kaneko [19] is a special case of Theorem 20.

THEOREM 21. Let (X,d) be a complete Hausdorff uniform space defined by {d : A € I'}.
Let F; : X — 2% i = 1,2 satisfying

Hy(Fiz,Fay) < axda(z,Fiz) + bada(y,F2y) + eada(z,Fay) + eada(y,F1z) + fada(z,y)} (21)
for each z,y in X, where ay,bx,cx,ex, fa > 0,ax +bx +cx+ex+ fa <1 and ay = by or

¢x = ex. Then Fy and F; have a common fixed point. Also, F; and F; are continuous at each
common fixed point.
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The proof that there is a common fixed point z is Theorem 3.1 of Mishra [29]. To prove
that F) is continuous at z, let {y,} C X,y, — 2, and set £ = yn,y = z in (21) to get

Hx(Fiyn,F22) < axda(yn,Fiyn) + bada(2,F22) + cada(yn, F22) + exda(z,F1yn) + fada(yn,2).
Since dx(FiYn,2z) < Ha(F1yn,F22), the above inequality implies that

(aA + fA)dx(ynyz) + c,\d,\(y,.,z)
1—ay—by

It then follows that lim, d\(yn,Fiyn) = 0. Setting z = y = z in (21) yields F1z = Fp=.

Substituting in the inequality for H gives

dr(Fiyn,2) < — 0 as n — oo.

H(Fiyn,F1z) < axda(yn,F1yn) + cada(yn,F12) + exdr(2,F1yn) + frda(yn,2)-

Taking the limit as n — co we obtain lim, Hx(Fiyn,F12) = 0, and F is continuous at 2.
Similarly, F; is continuous at z.
The result in Mishra and Singh [30] is a special case of Theorem 3.1 of Mishra [29).
THEOREM 22. Let X be a reflexive Banach space, K a nonempty closed bounded convex
subset of X. Let T be a mapping of K into the family of nonempty weakly compact convex
subsets of K satisfying

H(Tz,Ty) < ¢(max{D(z,Tz), D(y,Ty)} (22)

for each z,y in X, where ¢ : [0,00) — [0,00), nondecreasing, right continuous, such that
$(t) < t for each t > 0. Then there exists a nonempty subset M of K such that Tz = M for
each z € M. Moreover, T is continuous at each point of M.

The fact that a subset M exists with the stated properties is Theorem 1 of Kaneko [31].
To prove the continuity of T', let 2 € M. Let {y,} C X,yn — 2, and set z = y,,y = 2z in (22)
to get

H(Tyn,Tz) < ¢(max{D(yn,Tyn), D(2,T2)}).

Thus D(Tyn,z) < H(Tya,Tz) < ¢(D(yn,Tyn)). Assume that § = limsup D(Tyn,z) > 0. Then
we have § < ¢(lim sup[D(yn,z) + D(Tyn,2)]) = ¢(8) < 8, a contradiction. Therefore § =0 and
T is continuous at 2.

THEOREM 23. Let (X,d) be a complete metric space, {Sn}, {Tn} sequences of maps
from X — CB(X). Suppose that there exists an h,0 < h < 1, such that, for each m,n, and
each z,y in X,

H(Smz,Tny) < hmax{d(z,y), D(z,Smz), D(y,Tny), [(Dz,Tny) + D(y,Smz)}/2}. (23)

Then {Si,} and {T,} have a common fixed point z. Moreover, {S;,} and {T,} are continuous
at z.

The existence of a common fixed point z is Theorem 1 of Kubiak [32]. To prove that each
Sm is continuous, let {yn} C X,yn — 2, and set z = yi,y = z in (23) to get

H(Smyk’T"z) < hma‘x{d(ykiz)v D(yk,smyk), D(z,T,.z), [(D(yk,T,.Z) + D(Z’Smyk)]/z}‘
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Since D(Smyk,z) < H(Smyk,Inz), the above inequaltiy yields

D(Smyk,z) < h d(yx,z)/(1 —h) - 0 as k — oo.

It then follows that limy D(yk,Smyx) = 0.
Setting ¢ = y = z in (23) gives the result that S,z = T,2. Substituting in the inequality
for H yields

H(Smykasmz) < hmax{d(yk,z): D(ykvsmyk)v 0, [(D(yk,sz) + D(Zysmyk)]/2}’

and, taking the limit as k¥ — oo gives limg H(Smyk, Smz) = 0, and each S,, is continuous at 2.

A similar argument verifies that each T, is continuous at z.

Special cases of Theorem 1 of Kubiak [32] appear in Avram [33], Iseki [21], Popa [34 - 35],
Ray [36], Rus [37], and Wong [38]. Achara [39] has the same result as Kubiak [32], but with
CB(X) replaced by C(X).

THEOREM 24. Let (X,d) be a complete metric space, T, : X — CB(X). Suppose that
there exist a, > 0,7 = 1,...,5 such that

min{al +az + a3 + 204,01 + a2+ a3 +2C15} <1

and m # n implies

H(Twmz,Tny) < a1d(z,y) + a2 D(z,Tmz) + a3 D(y,Tny) + a4 D(2,Tny) + as D(y,Tmz) (24)

for all z,y in X. Then {T,} has a common fixed point.

The proof that the {T},} has a common fixed point is Theorem 1 of Kita [40]. To prove
continuity, let z be a comon fixed point of {T,}, and let {yn} C X,yn — 2.
Suppose that a4 < as. Then min{a;+az+a3+2ay4, a1 +az+az+2as} = a1 tas+asz+2a4 < 1.

Set z = 2,y = yx. From (24),
H(Tmz,Tayx) < a1d(z,yk) + @2D(2,Tmz) + a3 D(yk,Tuyk) + @4 D(2,Tnyx) + a5 D(yx,Tm2),
or, since D(z,Tnyi) < H(Tmz,Tuyk), we obtain

(a1 + a3)d(z,yx) + as D(yx,Tmz)
1-— a3 — 04
Thus limg D(2,T,yi) = 0, which implies that limx D(yx,Tnyz) = 0.
Substituting z = y = z into (24) verifies that T,z = T,z. It then follows that

D(z,Toyx) < — 0 as k — oo.

H(TnzaTnyk) = H(TmzaTnyk) < ald(zayk) + a3D(yk7Tnyk) + 04D(Z,Tnyk) + O‘SD(yk vaz)'

Taking the limit as k¥ — oo yields the result that each T, is continuous at z.
If ay > as, then, setting = = y,y = 2z in (24) yields

(o1 + a2)d(2,yk) + a4 D(y&,Tm2)
1- az3 — Qs

D(Trmyk,z) < — 0as k — oo.

from which it follows that each T}, is continuous at z.
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Although we have experienced some success with establishing the continuity of multivalued
maps at a fixed point, there are some definitions that do not lend themselves to such an analysis.
We cite here three examples.

THEOREM K. (Khan and Kubiaczyk [41], Theorem 1) Let S, T,: X — B(X) be such that,
for some ¢ € ® := {¢ : (R*)5 — R* : is upper semicontinuous from the right, nondecreasing
in each variable coordinate such that ¢(t,¢,t,at,bt) < t for each t > 0,a,b > 0, with a+b < 2},

6(51,Ty) < ¢(d(:l:,y), 6(3’53)1 6(y1Ty)1 D(zaTy)’ D(y,Tz)

for each z,y in X. Then S and T have a unique common fixed point u such that u € SunTu.
In the above theorem the difficulty arises from the fact that §(u,Tu) need not be zero.
THEOREM M. (Mukherjee and Som [42], Theorem 1) Let (X, d) be a complete metric
space, T1, T2 : X — CB(X) satisfying any one of the following conditions for each z,y in X:
(i) é(z,Trz) + 6(y,Tay) < ad(z,y),1 S a < 2,
(ii) 6(z,Thz) + 8(y,Tay) < B{(z,Tay) + H(y,Taz) + d(z.y)},1/2 < B < 2/3,
(i) 8(z,hz) + 8(y,Toy) + 6(Tiz, Toy) < v{H(z,T2y) + H(y,T12)},1 < v < 3/2,
(iv) 8§(Taz,Tzy) < nmax{d(z,y), H(z,Tyz), H(y,T2y), [H(z,T2y) + H(y,T12)]/2},0 < n < 1.
Then T; and T; have a common fixed point.
THEOREM S. (Singh et al [43], Theorem 2.1) Let S, T', be multivalued mappings from a
metric space X — CL(X). If there exists a function f : X — X such that SX UTX C f(X)
and, for each z,y in X,

H(Sz,Ty) < ¢(max{D(fz,Sz), D(fy,Ty), D(fz,Ty), D(fy,Sz),d(fz.fy)})

where ¢ : Rt —» R*, ¢ upper semicontinuous and nondecreasing with ¢(t) < ¢ for each ¢ > 0,
there exists a point z, in X such that (S,T) is asymptotically regular at z, and f(z) is
(S,T; f,z,)-orbitally complete, then f,S, and T have a coincidence point. Further, if z is a
coincidence point of f,S,T, and fz is a fixed point of f, then

(a) fz is a fixed point of S (resp T') provided f commutes weakly with S (resp T) at z,
and

(b) fz is a common fixed point of S and T at 2.

ADDED IN PROOF. 1. A closer examination of the proof of Theorem K shows that
6(u, Su) = 6(u, Tu) = 0. Therefore an argument similar to the one already used repeatedly in
this paper yields that S and T are continuous at the fixed point.

2. Theorem M contains an error in the proof. Moreover, conditions (i) and (ii) imply that
Tyz = Thz = {z} for each z in X. The parameter values on conditions (iii) and (iv) make it
impossible to use standard proof techniques to obtain a fixed point.

3. If one assumes the continuity of f in Theorem S, then it is straightforward to verify
that S and T are continuous at the fixed point fz.
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